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S4 for results. 
Figure S2. The Mendelian phenotypic code replicates are current understanding 
of complex disease pathophysiology, see main Figure 3A and 3B. 
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Figure S1. Flow chart for the statistical procedures implemented during the 
analysis of the complex-Mendelian disease pairs, see main Figure 2 and Table 
S4 for results. 
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Figure S2. The Mendelian phenotypic code replicates are current understanding 
of complex disease pathophysiology, see main Figure 3A and 3B.  (A), Left 
panel: the physiological systems enriched within the comorbidities for each 
complex phenotype.  System enrichments were computed by constructing a null 
distribution of enrichment scores obtained by randomly shuffling the systems 
annotated to each Mendelian disorder. (A), Right Panel:  The system 
enrichments that are marginally (p<0.05) and globally (FDR<0.05) significant.  
(B) The systems enriched in each group of complex diseases (left) and those that 
reached marginal and global significance (right). 
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Figure S3. Complex disease risk profiles in patients harboring multiple 
Mendelian phenotypes, see main Figure 3C for comparison of model fits.   Each 
panel depicts the observed incidence rate (95% confidence intervals, gray) for 
one of the twenty diseases listed in Figure 3C, plotted against the number of 
comorbid Mendelian diseases diagnosed per patient.  The predicted risk curves 
for the combinatorial and additive genetic models are shown in red and blue 
respectively (95% credible intervals, generated through Markov Chain Monte 
Carlo sampling, see Extended Experimental Procedures for details). 
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Figure S4.  Flow chart for the statistical procedures implemented during the 
analysis of the Mendelian-Mendelian disease pairs, see main Figure 4 and Table 
S5 for results. 
 
 
 



 
Figure S5.  The matrix of comorbidity log-odds for the significant Mendelian-
Mendelian comorbidities, including the effects of shared pathology and ICD9 
coding distance, see main Figure 4 for filtered version.   
 
   
 



 
 
Table S2.   ICD9 and ICD10 codes used to identify the complex diseases, see 
main Figures 1, 2, 3, and 4 for results.  This table is provided as an excel file. 
 
Table S3.  Curated data pertaining to the Mendelian diseases used in this study, 
see main Figures 1, 2, 3, and 4 for results.  This includes ICD9 and ICD10 billing 
codes, the specific Mendelian disorders indicated by such billing codes (may be 
multiple), the genes associated with said disorders, and the primary and 
secondary biological systems affected in diseased patients.  This table is 
provided as an excel file. 
 
Table S4.  The summary statistics for the complex-Mendelian comorbidity 
analysis, see Figure 2 for results matrix.  This table contains the following 
dataset-specific (order of the entries provided in first line of the table) and global 
statistics for each initially significant complex-Mendelian disease pair: dataset-
specific relative risk estimates, dataset-specific conditional odds ratio, 95% 
confidence intervals for said odds ratios, Bonferroni-corrected p-values for the 
association, global weighted average of the relative risk estimates, global 
weighted average of the odds ratio estimates, relative risk predicted by the linear 
model (USA only), and 95% confidence interval for the previous estimate.  This 
table is provided as an excel file. 



 
Table S5.  The summary statistics for the Mendelian-Mendelian comorbidity 
analysis, see Figure 4 and Figure S5 for results.  This table contains the following 
dataset-specific (order of the entries provided in first line of the table) and global 
statistics for each initially significant Mendelian-Mendelian disease pair: dataset-
specific standardized risk ratio estimates, dataset-specific conditional odds ratio 
estimates, 95% confidence intervals for said odds ratios, Bonferroni-corrected p-
values for the association, global weighted average of the risk ratio estimates, 
global weighted average of the odds ratio estimates, miscoding error corrected 
odds ratios, miscoding error corrected 95% confidence intervals, odds ratio 
predicted by the linear model (USA only), 95% confidence interval for the 
previous estimate, and the error corrected versions of the previous two statistics.  
This table is provided as an excel file. 
 
 
Extended Experimental Procedures 
 
Mendelian Disease Billing Code Curation 
 
To construct the set of simple genetic disorders used in the analysis, we began 
with a large list of human diseases whose etiology is thought to be almost 
entirely due to genetic variation.  This list was generated using the Online 
Mendelian Inheritance in Man (OMIM) (Antonarakis and McKusick, 2000; 
Hamosh et al., 2005) knowledge base, Orphanet (Liem, 2008; Weinreich et al., 
2008) and other resources (NIH).  It included both Mendelian diseases, defined 
as those that have been mapped to a specific set of genes/loci, and 
“chromosomal” disorders (monosomy, trisomy, large gene duplications and 
deletions), which provide a much less specific signal of genetic association. Most 
of the diseases in the original list could not be accurately mapped to the ICD 
taxonomies because they were either: 1) not covered by the taxonomies or 2) 
were grouped with complex diseases.  Of the initial list (containing well over 5000 
diseases), we were able to reliably map (once again, by iterative, manual 
curation) 213 specific disorders to 95 billing codes (see Table S3). Ultimately, 90 
of these billing codes represent diseases linked to specific loci (Mendelian 
disorders) and 5 are associated with chromosomal disorders. We also annotated 
each Mendelian disease with the genes assigned to its respective loci by 
consulting a variety of resources within the National Library of Medicine (NIH) 
and the primary literature.  The genes associated with each simple genetic 
phenotype are listed in Table S3. 
 
Additional Details Concerning Disease Tree Inference 
 
As described in the main text, the complex disease tree was inferred using the 
Neighbor-Joining method (Saitou and Nei, 1987). The disease-disease similarity 
matrix was computed using the pair-wise Euclidean distances among the 
complex-Mendelian disease relative risks.  To assess tree reliability, we 



performed bootstrapping by resampling the Mendelian disorders, with 
replacement, 10,000 times and estimating a separate tree for each of the 
samples (Efron, 1982; Felsenstein, 1985, 1993).  The bootstrap numbers 
reported in the main text were computed as the percent of bootstrapped 
replicates that contain a given tree partition.  The above analysis was performed 
using the DendroPy software package (Sukumaran and Holder, 2010) and 
rapidNJ (Simonsen et al., 2008).  Tree visualization was performed using FigTree 
(2013). 
 
Additional Details Concerning GWAS Enrichment Analysis 
 
To test for Mendelian enrichment in genome-wide association (GWA) results, we 
first obtained a list of all protein-coding genes that harbor single nucleotide 
polymorphisms (SNPs).  This list was generated by cross-referencing the human 
gene set maintained by ENSEMBL (Flicek et al., 2011) with the SNP-annotated 
genes in SCAN (Gamazon et al., 2010).  This resulted in a set of 17,341 genes 
that harbor SNPs within their chromosomal boundaries, 575 of which were 
included in our list of Mendelian loci (see Table S3).  On average, the Mendelian 
genes were longer and harbored more SNPs than their non-Mendelian 
counterparts (Mann-Whitney U Test, p=4.4× 10-6 and p=8.8× 10-8 respectively); 
however, our statistical analysis procedure explicitly accounted for this bias.  
Specifically, we tested whether Mendelian loci were significantly enriched in 
GWA signals using a Binomial Test.  In our version of the test, a significant signal 
within a Mendelian gene represented a “success,” and we tested whether such 
successes occurred at a greater rate than would be expected under a null model 
in which all SNPs were equally likely to be signals.  In other words, the probability 
of a success under the null hypothesis was computed by dividing the number of 
SNPs in Mendelian genes (177,735) by the total number of SNPs in all protein 
coding genes (5,008,300).  The number of trials for the test was equivalent to the 
total number of significant signals observed within protein-coding genes.  To test 
for enrichment in the loci specifically indicated by the “Mendelian code,” we first 
tested whether the GWA signals provided for each complex disease were 
enriched in the precise genes that were linked to their comorbid Mendelian 
disorders.  This was performed using the same Binomial Test outlined above, 
except that a success was defined as a significant signal in a comorbid gene, the 
number of trials was given by the number of complex disease-specific protein-
coding signals, and the success rate under the null was computed by dividing the 
number of SNPs contained within the comorbid genes by the total number of 
SNPs in all protein-coding genes.  Unfortunately, these individual tests lacked 
sufficient power, so we computed the global enrichment of GWA signals in 
comorbid loci by summing the complex disease-specific “successes.”  The 
probability mass function for the null model of this statistic (and p-value) was 
computed exactly by taking the convolution of the individual null models.  
 
Computing the Functional Gene Network Similarity Among Mendelian 
Phenotypes 



 
To evaluate the Mendelian-Mendelian associations within the context of a large, 
molecular-genetic network, we used HumanNet, an undirected network in which 
the nodes represent genes and the edges denote functional relationships, each 
of which is weighted by the log-likelihood ratio of the evidence in favor of a true 
relationship (Lee et al., 2011).  To compute the functional “similarity” between 
any two genes, we first converted the likelihood-ratios (LogLR) into probabilities 
according to: 
 

P(Gene1 ↔ Gene2 ) =
exp LogLR[ ]

1+ exp LogLR[ ] , 

where ↔ indicates a direct functional relationship between two genes.  Next, we 
used Dijkstra’s shortest path algorithm (Dijkstra, 1959) to approximate the 
probability of an indirect functional relationship between any two genes: 
 

 

where  denotes an indirect relationship.  To compute the genetic network 
functional similarity between any two Mendelian phenotypes, these approximate, 
indirect association probabilities were combined by computing the probability of 
at least one indirect, functional relationship among the genes underlying each 
disorder: 

 
 

where and  denote the sets of genes linked to DiseaseA  and DiseaseB  
respectively.  Finally, the overall functional similarity between two phenotypes 
was computed using the log-odds that at least one indirect, functional 
relationship exists between at least one of pair of their associated genes: 
 

 

 
To compute whether the genes underlying the comorbid Mendelian disorders 
were more functionally similar than expected, we first summed together the gene 
network similarities for all of the comorbid Mendelian disease pairs.  Then, we 
randomly shuffled the significantly comorbid pairs 100,000 times and re-
computed their overall functional similarity.  The p-value for the statistic was 
generated by counting the total number of shuffled datasets that had a functional 
similarity at least as high as that of the observed. 
 
Mendelian Disease Biological Systems Annotation and Enrichment 
 
We annotated each Mendelian disorder with the set of biological systems 
affected in patients harboring the disease.  To keep the subsequent analysis as 



simple as possible, we considered the following set of 17 systems: Circulatory, 
Otic, Respiratory, CNS, Reproductive, Intellectual/Personality, Skeletal, Immune, 
Integumentary, Urinary, Metabolic, Endocrine, Muscular, Visual, Digestive, 
Growth/Development, and Cellular Proliferation/Cancer.  Each disorder was 
annotated by consulting the National Library of Medicine’s Genetics Home 
Reference (2012), Up-to-Date , and the primary literature.  The systems 
annotated to each Mendelian disease are provided in Table S3. 
 
To determine whether the comorbid Mendelian disorders associated with each 
complex disease were enriched/depleted for particular systems, we first 
computed enrichment/depletion scores for each complex disorder by summing 
the number of comorbid Mendelian phenotypes that were annotated with each 
system, weighted by the relative risks of the associations.  To evaluate the 
significance of the scores, we randomly shuffled the systems annotated to each 
Mendelian disorder 10,000 times and re-computed the enrichment/depletion 
scores.  A p-value for each complex disease was generated by determining the 
fraction of randomized annotations that resulted in an enrichment/depletion score 
at least as extreme as the observed value.   Multiple testing was controlled using 
the False Discovery Rate (Benjamini and Hochberg, 1995).  The results of this 
analysis, depicted in Figure S2, are highly consistent with the known 
pathophysiology of the complex diseases examined in this work.  
 
 
Statistical Analysis Procedures for Complex-Mendelian Disease Pairs 
 
Contingency Table Analysis  
 
After parsing the clinical records, we first constructed 2×2 contingency tables for 
all possible complex-by-Mendelian disease pairs.  Using these contingency 
tables, we then computed the following statistics for each pair: the relative risk for 
the complex disease associated with the Mendelian disorder, the conditional 
maximum likelihood estimate of the disease comorbidity odds ratio (with 95% 
confidence interval), and the p-value for a null model in which the two diseases 
occur independently of one another (Fisher’s Exact Test). The analyses were 
performed using custom scripts written in Python and R.  We considered a 
comorbidity relationship to be initially significant given that: 1) it passed the 0.05-
significance level in at least one dataset after a strict Bonferroni correction (i.e. p-
value × number of tests × number of datasets) and 2) none of the datasets 
predicted discordant effects (<0.5% of the disease pairs). To account for 
potentially confounding factors in our analysis, we subjected this set of initially 
significant complex-Mendelian disease pairs to another round statistical 
modeling, described in detail in below. 
 
Accounting for the Potentially Confounding Effects of Demographic and 
Environmental Covariates 
 



In addition to age, gender, and insurance billing codes, the USA dataset also 
provided the county of origin for each patient.  We took advantage of this fact and 
aligned the county-annotated clinical records with information gathered by the 
United States census (U.S.A. Health Resources and Services Administration, 
2013).  This allowed us to combine our patient-specific data (age, gender, and 
phenotype) with a variety of county-level confounding factors, including average 
per capita income, percent ethnicity (separately for American Indians, Asians, 
White Hispanics, White non-Hispanics, Black Hispanics, Black non-Hispanics, 
and Pacific Islanders), and the proportion of various socioeconomic groups (poor, 
urban, and insurance status).  We then incorporated both the patient-specific and 
county-level data into a single Poisson regression analysis for each initially 
significant complex-Mendelian disease pair, which allowed us to estimate the 
relative risks associated with the Mendelian disorders after accounting for a 
variety of demographic and environmental (i.e. county-level) factors. 
 
Specifically, we modeled the incidence counts for each complex disease within 
every county of the United States after conditioning on the presence/absence of 
its comorbid Mendelian partners.  Let yi, j ,k ,l denote the total number patients 

diagnosed with the complex disease of interest who were treated in county i  
contained within state j  and are of age k , where age is measured in decades 
and subsumes one of 11 possible values (0-10).  The index l  indicates whether 
the comorbid Mendelian disorder is absent (0) or present (1) within this particular 
population.  Finally, let Ni, j ,k ,l  denote the total number of patients with these same 

attributes, regardless of their complex disease status. We modeled the incidence 
counts yi, j ,k ,l  using the following Poisson mixed-effects regression model: 

P(yi, j ,k ,l | λi, j ,k ,l ) =
λi, j ,k ,l

yi , j ,k ,l exp[−λi, j ,k ,l ]

yi, j ,k ,l !

λi, j ,k ,l = Ni, j ,k ,l × exp α + bXi, j + mZi, j 

, 

where α  denotes the baseline rate for the complex disease, Xi, j  and b are 

vectors of fixed effects and their coefficients respectively, and Zi, j and m are 

random effects and their coefficients respectively.   
 
The specific fixed effects ( Xi, j ) included into the model were: Mendelian Disease 

Status (binary), Gender (binary), Average Per Capita Income ($11,362-$89,471), 

Percent Ethnicity (separately for American Indian, Asian, White Hispanic, White 
Non-Hispanic, Black Hispanic, Black Non-Hispanic, and Pacific Islander), 
Percent Insured, Percent Poor, and Percent Urban.  These factors were chosen 
from a larger superset using standard model selection procedures.  The 
coefficient b0  corresponds to the fixed effect of the comorbid Mendelian disorder, 
and therefore, the complex-Mendelian pair was determined to be comorbid if b0  
was found to be significantly greater than 0.  The random effects included into 
the model (Zi, j ) were: 1) a single random intercept for every county within each 



state and 2) an additional random intercept for every age group (0-11) within 
each state.  An additional state-level random intercept term was initially included 
as well but was found to have vanishing effects after incorporating the other two 
variables. The model parameters (α , b, and m) were fit to the data for each 
initially significant complex-Mendelian disease pair independently using an 
approximate maximum likelihood method, see lme4 R package for details (Bates 
et al., 2013; R Core Team, 2013). 
 
Integrating the Contingency Table Analysis with the Regression Modeling Output 
 
Given that the confounding factors described above do not significantly contribute 
to the observed comorbidities, we hypothesized that the Poisson regression 
modeling results should replicate the simple contingency table analyses. We 
tested this using the USA dataset by comparing the relative risks estimated from 
the Poisson regression model with those obtained from the contingency tables.  
We assumed that a comorbidity relationship replicated in the Poisson model given 
that: 1) the 95% confidence interval for the relative risk estimate did not overlap 0, 
and 2) the direction of the effect was concordant with the simpler analysis.  
Overall, 96.7% of the comorbidity relationships that were not specific to a 
particular gender were replicated by the linear modeling, with 2.2% failing to 
remain significant and the remaining 1.1% removed due to discordancy.  The 
replication rates for both the male- and female-specific disorders were 88% and 
95% respectively. All relationships that failed to replicate in the linear modeling 
were excluded from downstream analyses.  Finally, those initially significant 
comorbidity relationships that were not detected in USA (<2% of total) were 
maintained as long as the linear modeling did not predict a significant, discordant 
effect in the USA dataset.  
 
We found that the covariates that we included into the Poisson regression 
analysis did in fact have statistically significant effects on the complex-Mendelian 
disease comorbidity risks, but overall, these effects were marginal.  The average 
decrease in relative risk between the mixed effects model and the contingency 
table analysis was approximately 8%.  Because of this slight but significant bias, 
the relative risks estimated from the Poisson regression models were used in 
subsequent analyses provided that the association was detected within USA; 
otherwise, the global weighted average of the relative risk estimate was used 
instead. Table S4 contains a summary of the statistics described above for each 
complex-Mendelian disease pair that reached initial significance. Figure S1 
displays a flow diagram for the statistical procedures implemented during the 
analysis of the complex-Mendelian disease pairs. 
 
Statistical Analysis Procedures for Mendelian-Mendelian Disease Pairs 
 
Contingency Table Analysis  
 



The first stage of the statistical analysis procedure for the Mendelian-Mendelian 
disease pairs was conducted by constructing 2×2 contingency tables for all 
possible pairs.  To detect initially significant comorbid Mendelian disorders, we 
computed the following summary statistics for each disease pair: 1) the 
conditional maximum likelihood estimate of the disease-disease comorbidity 
odds ratio, 2) the p-value for the association according to Fisher’s Exact Test, 
and in place of relative risk, 3) we computed the symmetric standardized shared 
risk ratio, defined as: 

SRR = Observed #(M1,  M 2 )

Expected #(M1,  M 2 )
, 

where #(M1, M 2 )  denotes the number of patients diagnosed with Mendelian 
diseases M1  and M 2simultaneously.  The expected number of patients with both 
diseases was computed by assuming disease independence and multiplying the 
product of their marginal incidence rates by the total number of patients in the 
dataset: 
 Expected #(M1,  M 2 ) = f1 × f2 × T ,   

where T  denotes the total number of patients and f1 (or f2 ) denotes the 
marginal incidence rate for M1  (or M 2 ).  Consistent with the complex-Mendelian 
disease pair analysis, we considered a comorbidity relationship to be initially 
significant given that its Bonferroni-corrected Fisher’s Exact Test p-value was 
less than 0.05 and none of the datasets produced discordant results.   
 
Assessing and Accounting for the Effects of Medical Billing Errors 
 
As discussed in the main text, insurance billing errors could potentially create 
false signals of Mendelian-Mendelian disease comorbidity.  Mendelian disorders 
are rare and many of them share similar symptoms.  Thus, medically similar 
conditions have the potential to be miscoded within clinical records, possibly 
creating false signals of disease comorbidity.  This can happen, for example, 
when an erroneous code is corrected by a later diagnosis. In the end, it will 
appear as if the patient was diagnosed with multiple Mendelian diseases when in 
fact they harbor a single illness.  In practice, we found that it was difficult to 
differentiate diagnostic errors from true Mendelian disease co-occurrences, as 
there was no direct way to distinguish between the two scenarios.  Therefore, we 
attempted to remove the effects of billing code errors from our datasets by 
conservatively filtering false-positives using a statistical modeling approach.   
 
According to the diagnostic error hypothesis outlined above, billing codes 
corresponding to clinically related Mendelian diseases should be miscoded more 
often than those corresponding to more distinct phenotypes.  Therefore, the 
comorbidity false positive rate should be higher for Mendelian diseases with 
similar pathophysiology.  We measured the similarity between Mendelian 
diseases using two metrics.  First, we computed the distance between disease 
codes within the ICD9 taxonomy. This taxonomy is organized hierarchically 
according to pathology, so the distance between two codes in the ICD9 tree 



directly reflects the clinical similarity of their corresponding phenotypes.  Second, 
we annotated each Mendelian disorder with the biological systems it affects (see 
Additional Analysis Procedures for details).  We provided two types of 
annotations for each illness: a primary affected system and a list of secondary 
affected systems (see Table S3).  Most Mendelian diseases are severely 
debilitating and highly pleiotropic.  In other words, they often affect a wide variety 
of systems, but similar Mendelian diseases tend to share the same primary 
system.  Therefore, we used the shared primary biological system as a predictor 
of false positives in the Mendelian diagnostic error analysis. 
 
We incorporated the previous two disease similarity metrics into the following 
simple logistic regression model, which measured their effect on comorbidity 
detection in the clinical datasets.   Let ∆i, j denote the taxonomical distance 

between two Mendelian disorders M i  and M j  ( ∆i , j ∈ 1,…,5{ }), where each 

distance value was treated as a unique factor rather than an integer.  
Furthermore, let Ωi, j  denote another factor variable that indicated whether the 

two diseases shared the same primary biological system. Ωi, j  instantiated one of 

the 17 annotations (biological systems) listed in Table S3 given that two diseases 
shared a primary system; otherwise, Ωi, j  instantiated the value Null.  For each 

disease pair, we constructed a 21-dimensional, binary design vector (17 primary 
systems plus 4 taxonomical distances), denoted Di, j , such that each element in 

the vector indicated whether one of the previously defined similarity factors was 
present.  We set ∆i , j = 5  and Ωi , j = Null  to be the baseline values for this model, 

and thus, Di, j = 0 if a disease pair was completely dissimilar.  Finally, let  

indicate that diseases M i  and M j  were detected as comorbid in the initial 

contingency table analysis.  We modeled the probability of this event according 
to: 

  , 

where e  is a vector of parameters indicating the effects associated with the 
factors in Di, j .  As expected, the two measures of Mendelian disease similarity 

were strongly predictive of comorbidity (Likelihood Ratio Tests, p-values < 
2.2 ×10−16 ).  Furthermore, the estimated effects associated with these predictors 
were rather large. For example, Mendelian disease pairs with the lowest and 
highest taxonomical distances had a 17-fold difference in the probability of 
comorbidity detection.   
 
Thus far, we have only considered the most conservative interpretation of this 
analysis, which is that similar Mendelian diseases were more likely to be 
miscoded. An alternative to the “miscoding bias” interpretation is that Mendelian 
phenotypes with similar biology are more likely to be truly comorbid. In fact, we 
would expect the same result under the genetic modifier hypothesis discussed in 



the main text, as Mendelian disease variants with similar biological effects should 
have a higher probability of apparent genetic interaction.  However, because we 
were unable to disentangle these competing hypotheses, we chose to favor the 
conservative interpretation and assumed that disease similarity only resulted in 
miscoding bias.  In the remainder of this section, we describe our approach for 
estimating the rates of Mendelian-Mendelian co-occurrence due to shared 
biology (and thus miscoding).  These “error” rates were then used to 
conservatively filter perceived biases from the Mendelian-Mendelian comorbidity 
results. 
 
Ideally, we would have estimated and removed the effects of diagnostic errors on 
Mendelian disease co-occurrence rates while simultaneously including other 
potentially confounding covariates, such as ethnicity, socio-economic status, and 
environment.  For the complex-Mendelian disease pairs, the effects associated 
with the latter set of covariates were estimated using mixed-effects Poisson 
regression modeling.  Unfortunately, adding the shared pathology terms to the 
Poisson regression model proved intractable, as this necessitated the joint 
inference of all Mendelian-Mendelian regression models simultaneously.  
Instead, we estimated the effects of ICD9 taxonomical distance and the shared 
primary biological systems through an independent Poisson regression 
procedure.  The resulting parameter estimates were then subsequently included 
as offsets into another round of Poisson regression analysis, which accounted for 
the same demographic/environmental covariates that were modeled during the 
complex-Mendelian analysis (see below for more details).  We note that this 
independent modeling approach should be valid as long as the effects of shared 
pathology and the demographic/environmental covariates are uncorrelated. 
 
We inferred the effects of shared pathology on Mendelian disease co-occurrence 
rates independently for each of the eight clinical datasets provided in Table 1.  
The model applied to each dataset was as follows.  Let  denote the 2×2 

contingency table for the disease pair consisting of M i  and M j .  For the sake of 

modeling convenience, we randomly assigned one disorder to be the response 
disease (in this case M i ) and the other disorder to be the predictor ( M j ), noting 

that this decision ultimately had no impact on the statistical inference results.  Let 
yi , j  denote the number patients with Mendelian disease M i , and let j  index the 

predictor disease status, which varies over 0,1{ } (indicating the 
presence/absence of M j  respectively).  Finally, let N j  denote the total number of 

patients in the dataset with the predictor disease status j , regardless of whether 
they were also diagnosed with M i .  We modeled the conditional counts of the 
response of disease ( yi , j ) using the following Poisson distribution: 



P(yi, j | λi, j , N j ) =
λi, j( )yi , j

exp λi , j 
yi, j !

λi, j = N j × exp α i + Xi, j × (θi, j + e × Di, j ) ,

 

where α i, j  denotes the baseline incidence rate for disease M i , X j  indicates the 

presence/absence of the predictor disease, θi , j  indicates its effect on M i , and e  

is a vector of perceived “error” effects due to disease similarity.  Thus, the full, 
conditional probability model for the contingency table  is: 

 

According to this formalism, M i  and M j are comorbid if θi , j  is significantly 

greater than zero.  For reference, the previous statistical model can be viewed as 
a Poisson approximation to the product binomial model used to analyze 2-way 
contingency tables.  
 
To infer the model from the data, we assumed that each contingency table in the 
dataset was conditionally independent of the others, resulting in the following 
likelihood: 

 

 

P(y | D,
�α ,

�

θ ,e) =
j=1

2

∏P(yi , j | λi, j , N j )
i=1

T

∏ ,   

where T denotes the total number of Mendelian-Mendelian disease pairs (4,560 
in our study).  Generally, inference for Poisson regression models proceeds by 
obtaining the parameters that maximize the previous function.  However, we 
found that the present model was under-constrained, so we took a Bayesian 
approach and added another hierarchy.  Specifically, we assumed that  

�α ,  
�

θ , 
and e  were sampled from the following prior distributions: 

 

where  denotes a Gaussian distribution with mean µ  and variance σ 2 .   

Furthermore, we assumed that the prior parameters specified above were in turn 
sampled from the following fixed hyper-priors: 
 

 

where Γ−1  denotes the inverse gamma distribution.  These hyper-priors were 
chosen by examining the disease incidence rates in each dataset coupled with 



the results of the previously described contingency table and logistic regression 
analyses.  Posterior distributions for the model and prior parameters were 
inferred through Markov Chain Monte Carlo (3-independent chains, each with 
100,000 burn-in iterations, followed by 10,000 samples, thinned by 10 iterations) 
using the Gibbs sampling procedure outlined in (Doss and Narasimhan, 1994).   
We checked algorithmic convergence by comparing the inference results 
obtained from the three independently initialized Markov chains.  On simulated 
data, the choice of hyper-priors had relatively little impact on inference, as long 
as they were specified within reason (i.e. the hyper-priors assigned non-
negligible probability mass to the correct order of magnitude).  However, the 
large size of the clinical record databases precluded a detailed analysis of their 
effects on the actual datasets. 
 
Whether driven by miscoding errors or genetic interactions, we found that our 
estimates of the disease similarity effects on the co-incidence rates for Mendelian 
disorders were remarkably consistent across datasets (average multiplicative 
effect approximately equal to 4.3).  Taking the conservative interpretation, we 
removed the disease similarity effects from our estimates of the comorbidity odds 
ratios as follows.  For the associations detected within USA (approximately 95% 
of them), we simply included the estimated error effect terms as offsets in 
another Poisson mixed effects model, which accounted for demographic and 
environmental covariates (see below for details).  For associations that were 
detected in datasets other than USA, we estimated the disease-disease 
comorbidity odds ratio using the following equation: 

Odds Ratioi, j  =  
exp α i, j +θ

i , j




 / 1− exp α

i , j
+θ

i , j




( )

exp α
i , j





 / 1− exp α

i , j




( ) , 

where α i, j  and θ
i , j

 denote the Monte Carlo approximations to these parameters. 

 
Accounting for the Potentially Confounding Effects of Demographic and 
Environmental Covariates 
 
To assess the effects of environmental and demographic factors on Mendelian-
Mendelian disease comorbidity, we once again applied a mixed effects Poisson 
regression model to the disease incidence counts contained within USA, as 
demographic/environmental information could be obtained for this dataset (see 
Statistical Analysis Procedures for Complex-Mendelian Disease Pairs for details).  
Briefly, for each initially significant Mendelian-Mendelian disease pair, we 
arbitrarily assigned one disorder to be the response disease and the other to be 
the predictor, consistent with the procedure described in the previous section.  
Next, we applied the same mixed effects Poisson regression model that was 
used to analyze the complex-Mendelian associations to each Mendelian pair.  To 
account for any “perceived” billing code errors, we also included any non-zero 
effects due to disease similarity (see previous section) as offset terms.  Finally, 
after fitting the models using an approximate maximum likelihood procedure, we 



converted the asymmetric relative risk estimates into symmetric odds ratios using 
the following equation: 

Odds Ratioi, j  = 
exp α + b0  / 1− exp α i, j + b0 ( )

exp α[ ] / 1− exp α[ ]( ) ,  

where α  and b0  denote the expected values for the baseline and predictor 
disease effect rates respectively (see Statistical Analysis Procedures for 
Complex-Mendelian Disease Pairs for more details).  We note that nearly 98% of 
the initially comorbid Mendelian-Mendelian relationships that were detected in 
USA remained significant after accounting for demographic and environmental 
covariates. 
 
Integrating the Various Statistical Analysis Procedures 
 
To summarize, our statistical approach for detecting significant Mendelian-
Mendelian comorbidity relationships consisted of three stages: 1) an initial 
analysis that relied on simple contingency tables, 2) a regression analysis which 
attempted to estimate and remove the effects of Mendelian billing code errors, 
and 3) an additional regression analysis which included potentially confounding 
socioeconomic, demographic, and environmental covariates.  The latter could 
only be performed for those relationships detected in USA (approximately 95% of 
the initially comorbid pairings).  Ultimately, our integration procedure for the 
previous three statistical analyses came in two flavors.  Our most conservative 
analysis, which is presented in the main text and in Figure 4, removed all initially 
significant Mendelian-Mendelian associations in which the odds ratio, after 
correcting for demographic, geographic, and billing code errors, was significantly 
lower than the estimate obtained using the contingency table analysis (as 
determined from the 95% confidence intervals for the corrected estimates).  
However, we also performed all subsequent analyses (minus the genetic 
modeling) using a less conservative filtering procedure, which maintained all 
comorbidity relationships that replicated in the final stage of the analysis, 
regardless of odd-ratio differences (see Figure S5 and Table S5 for comorbidity 
results).  All subsequent analyses produced qualitatively identical results. Figure 
S4 displays a flow diagram for the statistical procedures implemented during the 
analysis of the Mendelian-Mendelian disease pairs. 
 
Genetic Modeling Procedures 
 
Multi-locus Genetic Models for Complex-Mendelian Disease Comorbidity 
 
As a simple illustration, consider a Mendelian phenotype, M, and a complex 
disease, D, that are apparently comorbid and share one genetic locus in 
common, denoted µ.  Assume that phenotype D follows the additive model and is 
linked to deleterious variation harbored by n loci: [g1, …, gn-1, µ].   To keep this 
illustration as simple as possible, we limit the model to include only three types of 
genotypes: wild type (indicated with superscript w), mildly deleterious (m), and 



severely deleterious (s).  The wild-type variation represents the functional norm 
for each genetic locus, and both severe and mild genotypes harbored by the loci 
in [g1, …, gn-1] predispose the bearer to the complex disease D. Severe variation 
in locus µ predisposes carriers to both phenotypes M and D, but mild variation in 
µ predisposes the bearer only to the complex phenotype. For mathematical 
simplicity, we also assume that the population frequencies for these three 
genotype classes are the same across every gene in the set [g1, …, gn-1, µ], and 
we impose the following relationships among the genotype frequencies: 

 

0 ≤ ps ≤ pm
≪ pw ≤ 1,

ps + pm + pw = 1.
 

Of course, more general formulations of this model are possible, but they are 
associated with less transparent equations (see below for details).  
 
Now, assuming complete penetrance of the severely deleterious variants, the 
apparent prevalence of the Mendelian disease, given either a dominant or 
recessive inheritance pattern, is: 

P(φ = M | Θ) = pS =
1−[1− fS ]2 ,

[ fS ]2,








M  is dominant,

M  is recessive,
 

where fS is the population frequency of severely deleterious alleles. If we also 
invoke complete penetrance for the genotypes linked to the complex disease, its 
prevalence is given by:  

P(φ = D | additive,Θ) = 1− 1− ps − pm 
2n

.
 

Consequently, the expected frequency of individuals in the population that are 
affected by both diseases is simply: 

P(φ = D ∧ M | additive,Θ) = P(φ = M | Θ).
 

The standardized shared risk ratio for D and M, defined as their observed joint 
prevalence divided by their expected joint prevalence given independence, is: 
 

SRRadditive = P(φ = D ∧ M | Θ)

P(φ = D | Θ)P(φ = M | Θ)
= 1

P(φ = D | Θ)
. 

Therefore, under this simple model, the shared risk ratios between complex and 
Mendelian disorders should follow the inverse frequency of the complex disease.  
Of course, this result is not consistent with the observed data, which could be 
due to a variety of reasons, including the oversimplified assumptions upon which 
it relies.  
 
Under the two-community model, a complex disease D transpires if and only if 
both gene communities harbor penetrant, deleterious variation.  Furthermore, the 
community-specific penetrance functions can be chosen from the full range of 



multi-locus genetic models: additive, multiplicative, threshold, and many others 
(Risch, 1990).  For the purpose of our illustration, the simplest such choice is a 
per-community additive model, which was defined in the Experimental 
Procedures.  Given this assumption, the disease prevalence equation for the 
combinatorial model is very similar to that specified for the additive model, with 
the exception of an additional term that enforces the requirement that two 
communities of loci must be affected by deleterious variation simultaneously in 
order for the complex disease to occur.  Let  denote the total number of mildly 
or severely deleterious locus-specific genotypes harbored by the community. 
According to the assumptions made in the previous paragraph,  

 

Assuming complete penetrance, the probability that both communities are 
affected by deleterious variants is: 

 

which is equivalent to the expected prevalence of the complex disease in the 
population. 

As with the additive model, we account for the co-occurrence of Mendelian (M) 
and complex (D) diseases by assuming that M and D share one locus in 
common, µ, and that this locus belongs to one of the two communities (say  □ ).  
According to the combinatorial model, the joint prevalence of the two diseases 
and their standardized shared risk ratio are given by the following two equations: 

 

Importantly, the risk ratio under the combinatorial model is always less than or 
equal to the inverse of the complex disease prevalence, in contrast to the 
heterogeneity model.  Therefore, in principle, these two models could be 
distinguished by examining shared risk in our actual dataset, although a more 
rigorous analysis requires the introduction of additional modeling complexities.  

The Additive and Combinatorial Models Under More General Assumptions 
 



We can formulate more general versions of the two models described in the main 
text and in the previous section, at the expense of more complicated equations.  
However, the more general assumptions allow us to make more realistic 
inferences from the clinical datasets.  Below, we extend the previous two models 
to include general genotype frequencies and penetrance parameters.  In 
subsequent sections, we demonstrate how these more general assumptions 
allow us to make novel and interesting inferences from the clinical record 
datasets. 
 
To begin, we assume that the genotype at the ith locus in both models is either 
harmful ( Ii = 1) or normal ( Ii = 0).  Therefore, the genetic model at locus i can be 
any one of the following:  dominant ( Ii = 1if Gi = Aa,aA,aa{ }), recessive ( Ii = 1 if 

Gi = aa{ }), or haploid ( Ii = 1 if Gi = a{ } ).  Importantly, the penetrance of the 
harmful genotypes is allowed to be incomplete.  Consistent with previous 
notation, we use F(G) to indicate the frequency of the genotype in the population 
and WD (G)  (or W (G) when the disease of interest in unambiguous) to indicate 
the penetrance of genotype G with respect to disease D.  Under the additive 
model (the n  loci contribute independently to disease risk), the joint probability of 
the complex disease D  and its underlying genotype is: 
 

 

P(ϕ = D,g = G | Additive,Θ) = F(G) × W (G)

= F(Gi
Gi ∈G
∏ ) × 1− [1−W (G j )]

G j ∈G
∏













= pi
Ii (1− pi )

1−Ii ×
Ii ∈I
∏ 1− [1− x jδ (I j = 1)]

I j ∈I
∏












,

 

where F(Gi ) = pi <1 is the frequency of the harmful genotype(s),W (Gi ) = xi > 0  if  

Ii = 1 and W (Gi ) = 0  otherwise, and the vector Θ contains all parameters defined 

in the model (i.e. Θ = pi , xi{ }∀I i ∈I ). Similarly, the joint phenotype-genotype 
probability under the two-community combinatorial model is: 

 

Consistent with previous notation, one community in the model is indicated using 
a square, and the other is indicated with a circle.  In the equation defined above, 
we have assumed that functional perturbation of both communities 
deterministically causes the complex disease.  We could relax this assumption by 
including an overall two-community penetrance parameter, but this assumption 



would simply linearly rescale the per-loci parameters, negating its utility.  
Furthermore, although we do not explicitly include environmental factors in the 
previous two models, they could be introduced as additional “loci” that represent 
environmental insults. 
 
The previous joint phenotype-genotype probability equations can be further 
simplified by expressing them in terms of the underlying distributions over the 
penetrance and genotype frequency parameters.  First, assume that these 
parameters are each drawn identically and independently from two distinct Beta 
densities, with each pi  following a beta-distribution with parameters a  and b , 
and each x j  following a beta-distribution with parameters α  and β : 

P(pi | a,b) = Γ(a + b)

Γ(a)Γ(b)
pi

a−1(1− pi )
b−1

P(x j |α ,β ) = Γ(α + β )

Γ(α )Γ(β )
x j

α −1(1− x j )
β−1

. 

By multiplying the joint phenotype-genotype prevalence equations by the beta 
densities and rearranging terms, we obtain the following probability density over 
genotype, phenotype, and model parameters: 

 

P(ϕ = D,g = G,
�
x,

�
p | Additive,Θ) =

pi
Ii (1− pi )

1−Ii

Ii ∈I
∏ P( pi | a,b) × 1− [1− x jδ (I j = 1)]P(x j |α ,β )

I j ∈I
∏












.
 

To express the previous equation in terms of the hyper-parameters a , b , α  and 
β  only, we simply integrate the previous equation over the penetrance and 
genotype frequency parameters as follows: 
  
P(ϕ = D, g = G | Additive,Θ) =

pi
Ii (1− pi )

1−Ii P(pi | a,b)dpi

0

1

∫
Ii ∈I
∏ × 1− [1− x jδ (I j = 1)]P(x j |α ,β )dx j

0

1

∫
I j ∈I
∏












.
 

This equation is further simplified by noting each integral corresponds to the 
expectation of a Beta density, resulting in: 
 
P(ϕ = D,g = G | Additive,Θ)

= a

(a + b)










Ii

1− a

(a + b)










1−Ii

Ii ∈I
∏ × 1− 1− β

α + β






δ (I j = 1)






I j ∈I
∏













= 〈p〉Ii 1− 〈p〉[ ]1−Ii

Ii ∈I
∏ × 1− 1− 〈x〉δ (I j = 1)( )

I j ∈I
∏












,

 

where 〈p〉 = a

a + b
 and 〈x〉 = α

α + β
 denote the expected values for the genotype 

frequency and penetrance distributions respectively.   



 
At this point, each genomic locus in the additive model is indistinguishable from 
the others (as each locus-specific term in the previous equation is identical), and 
therefore, we rewrite the joint genotype-phenotype frequency in terms of the 
number of deleterious variants present, denoted k , such that: 

P(ϕ = D,g = G | Additive,Θ) =
P(ϕ = D,g′ = k | Additive,Θ) =

n
k







〈p〉k 1− 〈p〉[ ]n−k

1− 1− 〈x〉( )k



,

 

where the binomial term accounts for the number of ways to select k  loci from 
the total pool of n  possible.  Finally, the frequency of the complex disease, 
independent of genotype, can be derived by marginalizing previous equation 
over all possible genotypes capable of producing disease, resulting in: 

 P(ϕ = D | Additive,Θ) = n
k






k=1

n

∑ p
k

1− p 
n−k

1− (1− x )k .   

The same logic outlined above can be applied to the combinatorial model, as an 
independent additive model governs whether each community is affected by 
deleterious genetic variation.  Thus, the overall prevalence of the complex 
disease given the assumptions underlying the combinatorial model is: 

 

where  denotes the number of loci in community .   
 
Complex Disease Risk in Patients with Multiple Mendelian Disorders 
 
Thus far, we have demonstrated how the two genetic models outlined in the main 
text can be used to account for complex-Mendelian disease comorbidity, and we 
specified their predictions for complex disease risk under more general 
assumptions.  Below, we combine the previous two results and specify the 
models’ predicted marginal risks for complex disease conditional on the co-
occurrence of comorbid Mendelian disorders.  This derivation allows us to assess 
the likelihood of each model by applying them to a rather novel (although not 
unheard of) phenomenon: the appearance of multiple comorbid Mendelian 
diseases within individual patients. 
 
Let  denote the set of K  Mendelian disorders 
harbored by some patient, and assume each of them can predispose this 
individual to some complex disease D .  For the sake of simplicity, assume that 
each Mendelian disorder maps to a single locus and that none of them share the 
same locus.  Therefore, if a patient harbors the Mendelian disease set , then 
we assume that this individual also harbors at least K  deleterious genetic 
variants (one for each of the K  observed diseases plus any additional 
unobserved variants). Consistent with the notation used in the previous section, 



our goal is to specify the following two probabilities:  and 
.  For the additive genetic model, this derivation is 

fairly straightforward.   
 
Given an observed set of K  Mendelian disorders and the additive genetic 
modeling assumptions outlined above, there are only three ways that an 
individual can acquire the complex disease: 
 

1) The patient can acquire the disease as a result of Mendelian disorder 
variation in his/her genome only (red) 

2) The patient can acquire the disease due to variation in both Mendelian 
and non-Mendelian loci (green)  

3) The patient can acquire the disease due to variation in non-Mendelian loci 
only (blue) 
 

In mathematical terms, the previous three conditions are expressed as follows: 
 

 

where n′  denotes the additional number of loci (excluding the Mendelian loci 
under consideration) associated with the complex disease ( n′ = n − K ).   
 
For the two-community combinatorial model, the derivation of the 
probability  proceeds similarly, although with an 
additional complication.  As before, we assume that a patient with the disease set 

 harbors K  deleterious variants in Mendelian loci; however, we do not know 
the community assignments for these variants.  Therefore, we introduce an 
additional set of latent variables (one for each of the K  “observed” Mendelian 
variants), denoted Z , where each Z j ∈Z  indicates whether a variant belongs to 

the first (
 
Z j =□) or second ( ) community.  Finally, for the sake of simplicity, 

we assume that the remaining n′  deleterious variants are evenly divided 
between the two communities (although this assumption could be relaxed at the 
expense of additional computation): 



   

 
As noted in the previous section, the combinatorial model is simply the product of 
two additive models, each of which governs the affected status of a different 
community.  With this in mind, let  denote that community  is affected by 
deleterious genetic variation.  The probability of the complex disease under the 
combinatorial model, conditional on the Mendelian disease set  and the 
community assignment indicators Z , is: 
 

 
where  is an indicator function which returns 1 given that the community 

assignment of the jth  locus is equivalent to . 
 
Ideally, we would express the previous probability without conditioning on the 
community assignments of the Mendelian loci, as these are not known a priori.  
In the case of a single patient, this turns out to be relatively simple.  First, after 
integrating the locus-specific genotype frequency and penetrance parameters out 
of the model, the K  Mendelian disease loci are statistically indistinguishable 
from one another.  Therefore, we introduce two new variables, denoted

 
K

□
 and 

, which indicate the number of “observed” Mendelian loci assigned to each 
community: 

  

This allows us to rewrite the probability for the complex disease as: 

 



We can remove the dependence on 
 
K

□
 and by multiplying the previous 

equation by a prior distribution for the community assignments, denoted 
, and summing over all possible assignments : 

 

For simplicity, we assume a uniform prior: 
  , 
and therefore,  
 

 

Because each of the K  variants are statistically indistinguishable and 
, the previous summation can be rewritten as:  

 
where the binomial coefficient accounts for the number elements in  that are 
consistent with  .  
 
To summarize, the following two equations provide the probability for the 
complex disease, conditional on its co-occurrence with K  Mendelian disorders, 
under the additive and combinatorial genetic models: 
 

   

 
Importantly, these two functions make strikingly different predictions with respect 
to the probability of D  as a function of the number comorbid Mendelian 
disorders.  To see this, assume that the average penetrance for each variant is 
relatively small ( 〈x〉 <<1).  Given this assumption, it is easy to demonstrate 
(Risch, 1990) that the probability for the complex disease under the additive 
model can be approximated as: 



 

In natural language, the previous equation states that the average risk for the 
disease should approximately increase according to a linear function of the 
number of comorbid Mendelian phenotypes.  Conversely, if we invoke this same 
approximation for the combinatorial model, we obtain: 

 

This indicates that the combinatorial model predicts a polynomial increase in 
disease risk as a function of K .  In the main text, we illustrate that most of the 
complex diseases that we examined (barring, for example, Type I and Type II 
Diabetes) appear to display a super-linear increase in average disease risk as a 
function of the number of comorbid Mendelian disorders.  This result suggests 
that the combinatorial model more realistically captures disease risk in patients 
with compound Mendelian variants.  To formally test this hypothesis, we 
performed Bayesian model selection to determine which genetic model best 
accounted for the variation in complex disease risk observed across patients with 
differing numbers of comorbid Mendelian disorders.  This approach is described 
in greater detail below.  
 
Applying the Genetic Models to Clinical Data: A Bayesian Approach 
 
As discussed above (and in the main text), we observed that the combinatorial 
and additive genetic models make distinct predictions with respect to the effects 
of compound deleterious Mendelian variants on complex disease risk.  To 
formally test which model best accounts for the disease risks observed within the 
clinical datasets, we took a Bayesian approach and computed the posterior 
probability for each model conditional on the complex and Mendelian disease 
incidence counts harvested from the patient records.  This procedure involved 
three steps: 1) specifying the likelihoods for the patient data under each model, 
2) integrating these likelihoods over the unknown model parameters, and 3) 
using the resulting marginal likelihoods to compute the desired posterior 
probabilities.   
 
Let 

 
ϕ
��

 denote the complex disease status for all T patients contained within the 
clinical record dataset, where ϕi = D(ϕi ≠ D) indicates that the ith  patient is (is 

not) diagnosed with complex disease D . Let  
�

K  denote a vector containing the 
number of comorbid Mendelian disorders assigned to each patient.  Our goal is 



specify the likelihood of 
 
ϕ
��

 conditioned on the number of comorbid Mendelian 

disorders harbored by each patient, denoted 
 
P(ϕ

��

|
�

K,Additive,Θ) and 

 
P(ϕ

��

|
�

K ,Combintorial,Θ) for the additive and combinatorial models respectively. In 

the present analysis, 
 
ϕ
��

 included disease incidence counts for all patients 
contained within the datasets USA and DK, as these were very unlikely to 
contain overlapping information. 
 
With respect to the additive model, the likelihood is fairly straightforward.  Let 
δ ϕi = D( )  denote an indicator function which returns 1 if patient i  has the 
complex disease and 0 otherwise.  With this notation in place, the likelihood for 
the patient data is simply: 

 

P(ϕ
��

|
�

K ,Additive,Θ) =

i=1

T

∏ P(ϕi = D | Ki ,Additive,Θ)[ ]δ (ϕi =D) × 1− P(ϕi = D | Ki ,Additive,Θ)[ ]1−δ (ϕi =D )
,
 

where the P(ϕi = D | Ki ,Additive,Θ) is equivalent to , as 

defined in the previous section.  The above likelihood can be further simplified by 
noting that the per-patient likelihood terms are identical among individuals with 
the same number of comorbid Mendelian diseases.  Let T (K ) denote the total 
number of patients with K  comorbid Mendelian phenotypes, and let D(K )  
denote the number of these patients who also suffer from the complex disease 
D .  The previous likelihood can be concisely rewritten as: 

 

P(ϕ
��

|
�

K ,Additive,Θ) =

k=1

Kmax

∏ P(ϕ = D | k,Additive,Θ)[ ]D(K ) × 1− P(ϕ = D | k,Additive,Θ)[ ]T (K )−D(K )
,
 

where Kmax  is largest number of comorbid Mendelian disorders harbored by a 
single patient within the dataset. 
 
The corresponding likelihood equation for the combinatorial genetic model is a bit 
more complicated.  Because the community assignments of the comorbid 
Mendelian disorders should be the same for all of the patients, this likelihood 
must first be expressed conditional on the community assignments of the 
Mendelian disease loci.  Reusing notation from the previous section, let Z  
denote the community assignments for all Mendelian loci that are comorbid with 
complex disease D .  The data likelihood, conditional on these community 
assignments, is: 

 

where  is equivalent to .  Previously, we 

removed the dependence of the combinatorial model on the community 



assignments Zby marginalizing them out of the probability distribution.  This can 
be performed once again by applying the same uniform prior.  Let L  denote the 
number of Mendelian disease loci associated with the disorder D , and let 
P(Z | L) represent our prior distribution for the community assignments of these 
loci, where: 
 P(Z | L) = 2− L  . 
 Plugging this prior into the previously defined likelihood and marginalizing over 
all possible community assignments (denoted ) yields:  

 

Unlike in the previous section, this marginalization requires the summation over 
2L  different assignments, rendering it computationally intractable.  As an 
approximation, we instead performed the marginalization independently for each 
patient, which results in following, approximate likelihood: 

 

The marginal probabilities contained within each bracket are equivalent to the 
per-patient complex disease probabilities derived in the previous section, and 
thus, the approximate likelihood for the data can be concisely written as: 

 

P(ϕ
��

|
�

K,Combinatorial,Θ) ≈

i=1

T

∏ P(ϕi = D | Ki ,Combinatorial,Θ)[ ]δ (ϕi =D) × 1− P(ϕi = D | K i ,Combinatorial,Θ)[ ]1−δ (ϕi =D )

=
k=1

Kmax

∏ P(ϕ = D | k,Combinatorial,Θ)[ ]D(K ) × 1− P(ϕ = D | k,Combinatorial,Θ)[ ]T (K )−D(K )
,

 
where P(ϕi = D | Ki ,Combinatorial,Θ)  is equivalent to 

.  Although imperfect, we found that the previous 

approximation worked very well on simulated data, introducing an unbiased error 
that was always less than 1% of the total likelihood while requiring several orders 
of magnitude less computational time.   



 
With the data likelihood for each model fully defined, it is straightforward to 
specify the desired marginal likelihoods.  Let P(Θ)  denote a prior distribution 
over the parameter set Θ, where Θ = 〈p〉,〈x〉{ }  with respect to both the 
combinatorial and additive genetic models.  In practice, we used independent, 
non-informative beta densities as the prior distributions for both 〈p〉  and 〈x〉 .  
The marginal likelihoods for the models were computed by multiplying the data 
likelihoods defined above by the prior distributions followed by integrating the 
resulting product over all possible values: 
 

 

P(ϕ
��

|
�

K,Combinatorial) = P(ϕ
��

|
�

K ,Combinatorial,Θ)P(Θ)dΘ∫
P(ϕ

��

|
�

K,Additive) = P(ϕ
��

|
�

K ,Additive,Θ)P(Θ)dΘ∫ .
 

Although straightforward in principle, the above integrals are analytically 
intractable, so we employed the following thermodynamic approximation, 
described in detail in (Friel and Pettitt, 2008).    
 
Briefly, let 

 
ln P(ϕ

��

|
�

K ,Combinatorial)denote the logarithm of the marginal likelihood 
under the combinatorial model (the procedure for the additive model is 
equivalent), and let 

 
Pt (Θ |ϕ

��

,
�

K,Combinatorial)denote the posterior density over the 
model parameters evaluated at some temperature t :  

 

 

Pt (Θ |ϕ
��

,
�

K,Combinatorial) =
P(ϕ

��

|
�

K ,Combinatorial,Θ) 
t
P(Θ)

∫ P(ϕ
��

|
�

K,Combinatorial,Θ) 
t
P(Θ)dΘ

.  

The previous equation, termed the power posterior, is equivalent to the standard 
posterior distribution over model parameters when the temperature t  is set equal 
to 1.  Importantly, the desired model marginal likelihood can be defined in terms 
of the power posterior as follows: 

 

ln P(ϕ
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|
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K,Combinatorial) =

ln P(ϕ
��

|
�

K ,Combintorial,Θ) × Pt (Θ |ϕ
��

,
�

K ,Combinatorial)dΘ
Θ∫ 


0

1

∫  dt

= EΘ|ϕ
��

,
�

K ,t
ln P(ϕ

��

|
�

K,Combintorial,Θ) 
0

1

∫  dt.

  

At first glance, the previous equation may not seem that useful, as it requires 
integrating over the power posterior expectation of the data likelihood, which in 
fact requires computing the very integral that we were originally trying to solve 
(the model marginal likelihood).  However, the previous equation establishes as 
an accurate (although computationally intensive) approach to approximating the 
desired marginal likelihood.   
 



First, the one-dimensional integral over the power posterior expectation can be 
approximated using a discrete set of V  temperature points (denoted 

 

�

t = t1,…,tV{ }) and the trapezoid rule, resulting in: 
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��
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K ,t
ln P(ϕ
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K,Combintorial,Θ) 
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∫  dt

≈ (ti+1 − ti )
i=1

V −1

∑ ×…

         …
EΘ|ϕ

��

,
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K ,ti+1
ln P(ϕ
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|
�

K ,Combintorial,Θ) + EΘ|ϕ
��

,
�

K ,ti
ln P(ϕ

��

|
�

K,Combintorial,Θ) 
2

.

 

Importantly, the posterior expectation at each temperature can be approximated 
as well. In practice, we did so by drawing samples from the power posteriors 
using the Hamiltonian Markov Chain Monte Carlo algorithm implemented in the 
STAN programming environment (Stan Development Team, 2013).  These 
samples were then used to obtain Monte Carlo estimates for the desired 
expectations of the data likelihoods, which were then plugged into the previous 
equation.  The convergence and performance of the MCMC sampling procedure 
was assessed at each temperature by comparing two independent Markov 
chains and assessing their combined effective sample size using the methods 
and procedures outlined in the STAN reference manual (Stan Development 
Team, 2013). 
 
As noted by others (Friel and Pettitt, 2008,  Calderhead and Girolami 2009), we 
found that the accuracy of the marginal likelihood approximatation was strongly 
dependent on the temperature points  

�

t .  More specifically, we found that our 
estimates required accurate estimation of the one-dimensional integral at very 
low temperatures.  This was due to the fact that our prior distributions were very 
diffuse and the corresponding posteriors were sharply peaked.   Therefore, to 
adequately cover both low and high temperature ranges, we used the following 
piecewise function to define  

�

t : 

 

 

t
�1

= i

V1








c

∀i = 1…V1

�

t 2 = exp i ×
t0

1 − log tmin( )
V2









∀i = 1…V2 −1

�

t = 0,
�

t 2 ,
�

t 1{ }

  

In practice, we set c=V1 = 39 , c = 3.0 , V2 = 9 , and tmin = 1×10−10, for a total of 49 
different temperatures. 
 
 
After approximating the model marginal likelihoods, the posterior distribution over 
the competing genetic models was given by: 
 



 

P(Φ|ϕ
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K ) = P(ϕ
��
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K ,Φ)P(Φ)

P(ϕ
��
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K ,Φ)P(Φ)
Φ∈ Add, Comb{ }
∑

,  

where Φ  denotes one of the two genetic models considered in the present study.  
In practice, we assumed a uniform prior over models, and thus, 

 

P(Φ|ϕ
��

,
�

K ) = P(ϕ
��

|
�

K ,Φ)

P(ϕ
��

|
�

K ,Φ)
Φ∈ Add, Comb{ }
∑

. 

 
In the main text, we reported model posterior probability in terms of the log10-
Bayes Factor favoring the combinatorial genetic model, defined as: 

 

log10 -Bayes Factor = log10

P(Combinatorial|ϕ
��

,
�

K )

P(Additive|ϕ
��

,
�

K )
. 

 
Additional Details Concerning Model Inference 
 
We fit the additive and combinatorial models to the complex-Mendelian 
comorbidity data for 20 distinct diseases (see main Figure 4C and Figure S3).  
For each of the two models, there are three unknown parameters: the population-
level mean frequency of the deleterious genotypes ( 〈p〉 ), the population-level 
mean of the penetrance parameters ( 〈x〉), and the total number of loci 
associated with the disease (n). In practice, without additional sources of data, it 
is impossible to jointly infer both the population-level mean genotype frequency 
parameter and the total number of loci.  Therefore, we repeated estimation of 
parameters for each model over a range of potential loci numbers.  This was 
accomplished by computing the posterior densities over the mean genotype 
penetrance and frequency parameters, conditional on the significantly comorbid 
complex-Mendelian disease co-occurrence counts (see above for details).  
Disease co-occurrences were obtained by combining the two largest, non-
overlapping clinical datasets (USA and DK), and to prevent confounding factors 
from biasing our results, only Mendelian diseases whose comorbidity odds ratios 
were accurately estimated by the marginal disease counts were included into the 
analysis. We used non-informative, Beta distributions as priors for the unknown 
model parameters.  
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