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1 BOLT-LMM algorithm details

The BOLT-LMM algorithm is overviewed in Online Methods. Here, we provide additional details

for components of the computation not fully described earlier.

1.1 Model setup

1.1.1 Initialization: Missing data, normalization, and covariates

Given a data set of genotypes and phenotypes, we apply the following procedure to create a nor-

malized genotype matrix X . We begin by dealing with missing data as follows. First, we perform

QC by filtering out SNPs and individuals with missing rates exceeding thresholds (default 10%

for each). Second, we filter out individuals with missing phenotypes. Third, if the analysis in-

cludes covariates, we filter out individuals with any missing covariates. (As an alternative to this

approach, known as “complete case analysis,” we also implement the option to use the “missing

indicator method,” which adds missing status indicator variables as additional covariates.) Finally,

we replace missing genotypes in the remaining data with per-SNP averages. We denote by N and

M the numbers of samples and SNPs remaining post-QC.

Next, we mean-center each SNP and normalize the SNPs to have equal sample variance. We

also mean-center the phenotypes. We model covariates by projecting them out from both genotypes

and phenotypes, which is equivalent to including them as fixed effects. Explicitly, we compute a

basis spanning the covariate vectors and subtract out the components of the SNP and phenotype

vectors along the basis vectors. This procedure is mathematically equivalent to multiplying by

an orthogonal projection matrix Pfixed that projects vectors to an (N − C)-dimensional subspace

S ⊂ RN orthogonal to the covariates, where C is the number of independent covariates (including

the all-1s vector, which is implicitly included as a covariate upon mean-centering). For compar-

ison, GCTA-LOCO [12] version 1.24 provides two options for treating covariates: (1) projecting

out covariates from the phenotype vector only (the default, which is an approximate approach);

or (2) fitting covariates as fixed effects along with the candidate SNP in each association test (the

--mlma-no-adj-covar option, which is equivalent to projecting covariates out from both geno-

types and phenotypes). The GCTA-LOCO documentation notes that the latter option significantly

reduces the computational efficiency of GCTA-LOCO, but the BOLT-LMM implementation is not
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subject to this loss of computational efficiency.

We denote by X the final N × M matrix of genotypes and y the final N -vector of pheno-

types after QC, normalization, and projection. While y and all columns of X (i.e., SNP vectors)

are N -dimensional vectors, it is important to keep in mind that they all actually belong to the

(N − C)-dimensional subspace S left after projecting by Pfixed. For example, when estimating

variance parameters, accounting for the loss of degrees of freedom distinguishes restricted max-

imum likelihood (REML) analysis—the preferred approach, which we implement—from maxi-

mum likelihood (ML), and when computing χ2 test statistics, we need to use N − C instead of N

as the sample size.

1.1.2 Models

We therefore use the following general model to estimate hyperparameters (i.e., variance param-

eters under the infinitesimal model and Gaussian mixture parameters under the non-infinitesimal

model):

y = Xβ + eproj, (18)

where

y ∈ S ⊂ RN : projected phenotypes

X = N ×M matrix, xm ∈ S ⊂ RN for m = 1, . . . ,M : projected genotypes

β ∈ RM : iid random effects with E[βm] = 0,Var(βm) = σ2
β

eproj ∈ S ⊂ RN : iid random normal noise with eproj ∼ N(0, σ2
ePfixed).

Reiterating the point above, this “mixed” model does not contain any fixed effects; the fixed effects

have been projected out, so that the entire model—including the noise term eproj—lives in the

subspace S.

Model for estimating infinitesimal model parameters. When estimating variance parameters

under the infinitesimal model in Step 1a of the BOLT-LMM algorithm, we assume the SNP effect
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prior is the normal distribution

βm ∼ N(0, σ2
β)

and we estimate σ2
β and σ2

e using the stochastic REML approximation algorithm described in Sec-

tion 1.2. Note that the following notation is often used for the total genetic effect Xβ and its

covariance:

g = Xβ

K =
XX ′

M
(the “empirical kinship” or GRM)

σ2
gK = Cov(g)

in which case

σ2
β = σ2

g/M.

Model for estimating Gaussian mixture model parameters. When estimating Gaussian mix-

ture parameters in Step 2a of the BOLT-LMM algorithm (after having obtained estimates of σ2
g and

σ2
e in Step 1a), we generalize the SNP effect prior to the three-parameter mixture of normals

βm ∼

N(0, σ2
β,1) with probability p

N(0, σ2
β,2) with probability 1− p,

(19)

where we require

pσ2
β,1 + (1− p)σ2

β,2 = σ2
β = σ2

g/M.

We reparameterize the remaining two degrees of freedom using the parameters f2 and p, where

f2 denotes the proportion of the total mixture variance within the second Gaussian (the “spike”

component that models small genome-wide effects):

f2 =
(1− p)σ2

β,2

pσ2
β,1 + (1− p)σ2

β,2

.

Thus, Step 2a consists of estimating f2 and p.
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Prospective model for computing association statistics. When performing association tests

(under the infinitesimal model) in Step 1b of the BOLT-LMM algorithm, we modify the above

models by (1) including the SNP being tested as a fixed effect and (2) leaving out all SNPs on its

chromosome from the random effect:

y = xtestβtest +XLOCOβ + eproj. (20)

As discussed in Online Methods, we do not by default re-estimate the hyperparameters σ2
g , σ

2
e

(and f2, p in the Gaussian mixture case; see below) when performing association tests; instead,

we simply reuse the estimates obtained above from the slightly different models above, which

include all SNPs in the random effect (and no fixed effect). However, we also offer the option of

re-estimating σ2
g and σ2

e with each chromosome left out in turn.

Retrospective formulation of association tests. In Online Methods, we defined the BOLT-

LMM-inf χ2 test statistic as an approximation of the standard prospective mixed model χ2 statistic

using the model of equation (20). We then briefly noted that the BOLT-LMM-inf association test

can also be viewed as a retrospective quasi-likelihood score test similar to T SCORE−R [44] and

MASTOR [23]. Following ref. [23], this viewpoint models the phenotype y as known and the SNP

xtest as random, being drawn from a distribution with covariance Cov(xtest) = Φ and mean

E[xtest | y] = (ΦV −1y)α, (21)

where we wish to test the null hypothesis α = 0. Note that xtest is a discrete random variable,

so we cannot formally model it as a multivariate normal and perform likelihood-based analysis,

but the retrospective mean model is enough to obtain a quasilikelihood score test statistic that is

asymptotically χ2-distributed:

χ2
LMM-R =

(xtestΦ
−1(ΦV −1y))2

(ΦV −1y)′Φ−1(ΦV −1y)
=

(xtestV
−1y)2

(V −1y)′Φ(V −1y)
. (22)

Previous formulations of this statistic [23, 44] have been aimed at family studies in which the

pedigree matrix may be used as the covariance matrix Φ. For the general case of individuals with
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unknown pedigree, a seemingly natural choice is to substitute the GRM, but unfortunately, the

GRM does not accurately reflect the covariance matrix of the distribution of unassociated (i.e.,

null) SNPs, which form the null model under the retrospective framework. In particular, for large

sample sizes, this approach incurs deflation because it incorporates SNPs associated with y into the

covariance model (for xtest, treated as random), causing overestimation of the variance of xtestV
−1y.

This phenomenon is not overcome by LOCO analysis because unlike with prospective modeling,

the problem is not proximal contamination; rather, it is polygenicity: to obtain unbiased variance

estimates based on genotype data, we would need to eliminate associated SNPs, which runs into

the same difficulty faced by genomic control [13, 24].

While the denominator of χ2
LMM-R in equation (22), (V −1y)′Φ(V −1y), cannot be computed

without Φ (which is in general inaccessible as discussed above), it does not involve the candidate

SNP xtest and can therefore be treated as a constant calibration factor, so that in practice, equation

(22) is equivalent to the BOLT-LMM-inf formulation in equation (8). (More precisely, within

a LOCO scheme, the matrix V depends on which chromosome xtest belongs to, so there should

formally be a different denominator for each chromosome, but all are approximately equal.) The

retrospective model thus provides an alternative justification for the BOLT-LMM-inf statistic.

Importantly, the retrospective viewpoint also enables a natural generalization of BOLT-LMM-

inf to the more powerful BOLT-LMM association test for non-infinitesimal phenotypes. The basic

observation motivating this extension is that in the retrospective mixed model statistic χ2
LMM-R,

the vector V −1y is a scalar multiple of the residual after best linear unbiased prediction (BLUP)—

i.e., the component of the phenotype remaining after conditioning out SNP effects estimated by the

mixed model, which drives the power of mixed model association—but this vector may be replaced

by any other vector not involving xtest. More precisely, we generalize the infinitesimal retrospective

mean model, equation (21), by replacing the BLUP residual σ2
eV
−1y with the residual phenotype

yresid-LOCO upon conditioning out the effects of SNPs not on the same chromosome as xtest (where

yresid-LOCO is estimated by fitting a Gaussian mixture extension of the standard LMM):

E[xtest | y] = (Φyresid-LOCO)α. (23)

This model produces χ2
BOLT-LMM as a quasi-likelihood score test for α ?

= 0.
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1.1.3 Estimated SNP effect sizes

When performing a genome-wide association study, it is of interest not only to analyze χ2 statistics

for association but also estimated SNP effect sizes; to this end, BOLT-LMM outputs such effect

sizes. We explain below how BOLT-LMM estimates effect sizes, but first, we discuss an important

distinction between two uses of the term “estimated effect size” that can be a source of confusion.

Distinction between estimated effect sizes in association tests vs. prediction. When perform-

ing mixed model GWAS, each SNP xm is in turn tested for association with the phenotype y, and

the “estimated effect size” of xm is defined to be the fitted value β̂m,assoc of the fixed effect xm in the

mixed model given by equation (20), taking xtest = xm. Importantly, the model in equation (20) is

different for each SNP, with the fixed effect xm changing from test to test (and the SNPs included

in the random effect also changing from chromosome to chromosome, assuming the LOCO frame-

work is being used). If we denote the (estimated) phenotypic covariance by V−chr(m), the mixed

model association effect size is given by

β̂m,assoc =
x′mV

−1
−chr(m)y

x′mV
−1
−chr(m)xm

. (24)

Note that equation (24) is very similar to but not the same as the formula for the prospective mixed

model test statistic:

χ2
m =

(x′mV
−1
−chr(m)y)2

x′mV
−1
−chr(m)xm

. (25)

(We also note in passing that the BLUP residual is given by σ2
eV
−1y, which is why the standard

mixed model association test is similar to testing the SNP for correlation with the BLUP residual.)

In contrast, when performing mixed model prediction (i.e., BLUP), a single model is fit, equa-

tion (18), in which all SNPs are included as random effects. Each SNP receives an “estimated

effect size” when the model is fit, but these effect sizes,

β̂m,BLUP =
σ2
g

M
x′mV

−1y, (26)

are conceptually completely different from the association effect size estimates β̂m,assoc. The ef-

fect sizes β̂m,BLUP are meaningful precisely for the purpose of prediction; that is, they have the
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property that building a linear combination of the SNPs using the coefficients β̂m,BLUP produces

the BLUP prediction. In particular, these coefficients take into account linkage disequilibrium

between nearby SNPs to correctly weight their contributions. These same statements apply to the

effect sizes that BOLT-LMM iterates on internally when using variational Bayes to fit the Bayesian

mixed model.

For a concrete example that may aid intuition, consider two SNPs in perfect LD. When testing

association, each SNP should be ignored when testing the other; the fact that we happen to have

two redundant tags should not change the strength of association. However, when creating a risk

score (i.e., prediction), it would be incorrect to assign each SNP the effect size assuming only

one copy of the SNP: doing so would overweight the contribution of these SNPs. Instead, the LD

needs to be accounted for by acknowledging the presence of both SNPs and splitting the total effect

between the two SNPs.

To summarize, we emphasize that association effect sizes must not be confused with predic-

tion effect sizes; in particular, it is inappropriate to use the former as coefficients for polygenic

prediction.

Estimated effect sizes reported by BOLT-LMM. Estimating association effect sizes—i.e., β̂m,assoc

given in equation (24)—is computationally challenging for the same reasons that computing χ2 as-

sociation statistics in equation (25) is challenging: building and inverting the covariance matrix is

slow. Fortunately, it turns out that we can harness that fact that we already have a way to estimate

χ2 statistics: namely, BOLT-LMM-inf. Combining equations (24) and (25), we have

β̂m,assoc =
x′mV

−1
−chr(m)y

x′mV
−1
−chr(m)xm

=
χ2
m

x′mV
−1
−chr(m)y

≈
χ2
m,BOLT-LMM-inf

x′mV
−1
−chr(m)y

. (27)

BOLT-LMM already computes both the statistics χ2
m,BOLT-LMM-inf and the quantities V −1−chr(m)y, so

the final expression in equation (27) is simple to compute. This quantity is the effect size estimate

that the BOLT-LMM software reports. (Note that the BOLT-LMM software reports this effect size

regardless of whether the infinitesimal or Gaussian mixture prior is used because there is no natural

analog of the above for the Gaussian mixture model.)
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1.2 Variance component estimation: Monte Carlo REML approximation

Here we provide details of our stochastic algorithm for estimating REML variance parameters in

Step 1a of BOLT-LMM. The crux of the method is to employ the observation that the REML

first-order conditions on σ2
g and σ2

e are equivalent [48, equation (14.8)] to the system of equations

E[
∑

ê2rand] =
∑

ê2data, E[
∑

β̂2
rand] =

∑
β̂2

data, (28)

where both the left and right sides of each equation, defined below, are functions of the assumed

variance parameters σ2
g and σ2

e . (The summations are over components of each vector, which is a

slight abuse of notation for ||ê||2 and ||β̂||2.)

• On the right sides, êdata and β̂data are best linear unbiased predictions (BLUP) on the observed

phenotype data assuming the basic linear mixed model y = Xβ + eproj, equation (18), with

Cov(y) = σ2
g

XX ′

M
+ σ2

ePfixed.

• On the left sides, expectations are taken over the same quantities, with the phenotype data

replaced by random yrand generated according to the model y = Xβ + eproj with variance

parameters set to the assumed σ2
g and σ2

e .

We can therefore estimate the left sides (for a particular choice of σ2
g and σ2

e ) by Monte Carlo sam-

pling, i.e., by generating random yrand = Xβrand + erand from βrand,m ∼ N(0, σ2
g/M), erand,n ∼

N(0, σ2
e) and then performing BLUP on yrand—i.e., solving the mixed model equations (Sec-

tion 1.2.1)—using the assumed σ2
g and σ2

e [26, 27]. Only a few Monte Carlo trials are required;

BOLT-LMM computes 3–15 trials, with the number of trials decreasing as N increases, reflecting

the way in which the standard error depends on sample size and the number of trials. Explicitly,

BOLT-LMM by default uses 4 × 109/N2 trials, with a minimum of 3 and a maximum of 15. The

number of trials can also be varied as a user-specified parameter.

Explicitly, defining

δ = σ2
e/σ

2
g (29)

H =
XX ′

M
+ δIN , (30)
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the BLUP estimates β̂ and ê for a phenotype vector y are:

β̂ =
1

M
X ′H−1y (31)

ê = δH−1y. (32)

(Note that technically, the scaled covariance matrix is actually HS = σ2
gCov(y) = XX′

M
+ δPfixed;

however, because all of our vectors belong to the subspace S, using IN instead of Pfixed produces

the correct result and has the convenience of making the operator H invertible in the full space

RN .)

Equations (29)–(32) show that for a fixed value of δ, the BLUP predictions ê and β̂ are constant.

Thus, the right sides of the REML first order conditions (28), involving BLUP on the observed

phenotypes, depend only on the variance ratio δ and are independent of the variance scale, which

we may parameterize by σ2
g (in which case σ2

e = σ2
gδ becomes a dependent variable). The left

sides scale proportionately with σ2
g because scaling up the variances scales up randomly generated

phenotypes yrand. Therefore, finding σ2
g and σ2

e that solve the pair of equations (28) is equivalent

to: (1) finding the value of the single parameter δ such that

E[
∑
β̂2]

E[
∑
ê2]

=

∑
β̂2

data∑
ê2data

, (33)

and (2) choosing σ2
g to scale the expectations to match the values observed on the data. (This

procedure is analogous to the usual REML trick of optimizing over δ and then setting σ̂2
g =

y′H−1y/(N − C) [49].)

We propose an algorithm that rapidly estimates the ratio of expectations in equation (33) and

uses this estimate within a one-parameter search over δ. Define

fREML(log δ) = log

(∑
β̂2

data∑
ê2data

/
E[
∑
β̂2]

E[
∑
ê2]

)
.

For a fixed value of δ, we produce Monte Carlo estimates of the expectations by generating random

phenotypes

yrand = Xβrand + erand, proj,
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where

βrand ∼ iid N
(

0,
√

1/M
)

erand ∼ iid N(0,
√
δ)

erand, proj = Pfixederand.

(Note that as the variance scale parameter σ2
g is irrelevant for this part of the computation, we set

it to 1 for convenience. Note also that the use of the projection matrix Pfixed is what makes this

procedure compute REML rather than ML estimates.) We then run BLUP (using the chosen value

of δ) using conjugate gradient iteration [28, 29] (Section 1.2.1) to obtain Monte Carlo estimates of

E[
∑
β̂2]/E[

∑
ê2], and we likewise run BLUP to compute β̂data and êdata, which together give an

estimate f̂REML(δ) of fREML(δ).

We wish to find δ such that fREML(log δ) = 0. We have observed empirically in simulations

and real data sets that fREML(log δ) increases monotonically with δ except possibly at extremely

small or large values of δ outside the range of reasonable parameter values (corresponding to, say,

0.01 < hg
2< 0.99). Thus, one approach to finding the unique zero of fREML within the reasonable

parameter range is binary search, with the caveat that some care is needed because we can only

compute noisy Monte Carlo estimates f̂REML of fREML.

We implement the following more robust approach. Instead of independently re-randomizing

phenotypes yrand used to compute estimates f̂REML at different values of δ, we a generate a single

set of random phenotypic component pairs

βrand ∼ N
(

0,
√

1/M
)

erand, unscaled ∼ N(0, 1)

erand, unscaled, proj = Pfixederand, unscaled

and then use these component pairs to generate random phenotypes

yrand = Xβrand +
√
δ · erand, unscaled, proj.
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for any given δ. Using this approach (taken in ref. [26]), the Monte Carlo estimate f̂REML(log δ)

becomes a smooth function of log δ, allowing us to use the secant method, a finite difference

approximation of Newton’s method, to perform zero-finding on f̂REML.

We note that satisfying the first-order conditions is not in general a sufficient condition to have

found the REML global optimum, but for the case of only one non-identity variance component,

the likelihood surface appears to be well-behaved, and we have never observed an instance in

which this estimation procedure failed.

1.2.1 Conjugate gradient iteration to solve mixed model equations

The core computational subroutine needed for Monte Carlo REML (and also for calibration of the

BOLT-LMM-inf statistic) is solution of the mixed model equations, i.e., computation of expres-

sions of the form V −1x, where

V = σ2
g

XX ′

M
+ σ2

eIN .

We solve the mixed model equations using conjugate gradient iteration as in refs. [28, 29], which

requires onlyO(MN )-time matrix-vector products. More precisely, computing V −1x using conju-

gate gradient iteration only requires computing products of V with vectors, which we can compute

in O(MN )-time without forming V by leaving V in factored form σ2
gXX

′/M +σ2
eIN , distributing

the product, and multiplying from right to left. Note that V is positive definite because XX ′ is

positive semidefinite and σ2
g , σ

2
e > 0. Moreover, because most real phenotypes have only a small

fraction of heritable variance, the identity component σ2
eIN typically accounts for much of the

covariance V , so that V is a well-conditioned matrix and conjugate gradient iteration converges

rapidly (as determined by the residual norm dropping below a specified relative tolerance, which

by default we set to 0.0005).

1.3 Gaussian mixture model fitting: Variational Bayes iteration

As outlined in Online Methods, the core component of the BOLT-LMM Gaussian mixture mod-

eling algorithm is a variational iteration [20–22, 38] that computes approximate posterior mean

effect sizes βm for the Gaussian mixture model version of equation (18). We sketch the iteration

in slightly more detail here, leaving a full description for Section 2.
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The idea of the iteration is to obtain successively better approximations of the SNP effect sizes

by cyclically updating each estimated SNP effect with its posterior mean conditional on the current

estimates of all other SNP effects. Explicitly, we begin by initializing each SNP effect βm to 0 and

initializing the residual phenotype yresid = y−Xβ to y. Then, each iteration performs the following

loop over SNPs m = 1, . . . ,M :

1. Remove effect of SNP m from residual. yresid,−m ← yresid + xmβm

2. Re-estimate effect of SNP m. βm ← posterior mean given yresid,−m

3. Replace effect of SNP m in residual. yresid ← yresid,−m − xmβm

Step 2 amounts to computing the posterior mean of βm given its assumed mixture prior in equa-

tion (19), the environmental noise distribution eproj ∼ N(0, σ2
ePfixed), and the residual phenotype

yresid,−m given current estimates of all other SNP effects. Steps 1 and 3 are a computational tech-

nique allowing the residual in Step 2 not to be computed from scratch for each SNP, so that an

entire iteration (updating each SNP effect once) takes O(MN) time.

The basic structure of this iteration is the shared with previous variational methods [20–22,38],

with the update Step 2 varying among methods depending on the assumed SNP effect prior. As

noted in Online Methods, an additional slight difference is that BOLT-LMM estimates the hyperpa-

rameters σ2
g , σ2

β using REML and f2, p using cross-validation [15], whereas previous approaches

have performed hyperparameter estimation within the variational iteration [22, 38] or using the

variational approximate log likelihood [21]. We used cross-validation instead because we found

cross-validation estimates to be more robust to decreases in the quality of the variational approxi-

mation caused by linkage disequilibrium.

1.4 Cross-validation for estimating Gaussian mixture parameters

BOLT-LMM performs model selection among the 18 possible parameter pairs (f2, p) by perform-

ing cross-validation to optimize mean-squared prediction R2. More precisely, for each parameter

pair, for each cross-validation fold, BOLT-LMM estimates posterior mean SNP effect sizes βm

on the training data and uses these effect size estimates to make predictions on the left-out fold,

which are then compared to the actual left-out phenotype values. (Note that effect size estimates

used as coefficients in genomic prediction are conceptually completely different from effect sizes
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output by an association test, as discussed in Section 1.1.3.) The parameter pair (f2, p) producing

the highest prediction R2 (mean across folds) is then selected. However, if the best model only

reduces prediction error by less than 1% (in absolute prediction R2) compared to the infinitesimal

model, BOLT-LMM terminates the Gaussin mixture analysis and does not proceed to Step 2b to

compute association statistics. We implement this feature as the default option to save unnecessary

computation in situations where the Gaussian mixture model provides little or no improvement in

association power.

We perform 5-fold cross-validation to select best-fit Gaussian mixture model parameters ac-

cording to maximal prediction R2. For large sample sizes N > 10,000, computing a subset of the

cross-validation folds is already sufficient to obtain parameter estimates that achieve near-optimal

association power, so by default, we compute only enough folds to make predictions on 10,000 test

fold samples. This observation holds because absolute prediction R2 corresponds directly to the

power of the corresponding retrospective association test (as measured by increase in χ2 statistics

at truly associated loci, or equivalently, increase in effective sample size; see Online Methods), and

the standard error of prediction R2 estimated via cross-validation scales as the inverse square root

of the number of test samples.

1.5 LD Score regression

LD Score regression [24] observes that for complex traits, properly calibrated χ2 association statis-

tics approximately obey the following linear trend (on average across the genome):

χ2 ∼ 1 + (constant) · (LD Score), (34)

where loosely speaking, the LD Score of the test SNP is its effective number of LD partners.

Because the intercept of this regression relation is 1, it follows that if we have computed a set

of χ2 statistics up to an unknown constant factor c, then one way to estimate c is to compute the

intercept of the regression of χ2 statistics on LD Scores. (Note that this approach only works on

test statistics that are not vulnerable to proximal contamination; equation (34) does not hold for

χ2 statistics that are deflated due to LD between the candidate SNP and SNPs included in the

model.)
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To achieve very precise calibration, BOLT-LMM adopts a slightly more complex procedure

that matches the intercept of LD Score regression on χ2
BOLT-LMM (after calibration) to that of the

properly-calibrated infinitesimal statistic χ2
BOLT-LMM-inf. We do so to increase robustness of the

calibration to violations of the modeling assumptions underlying LD Score regression, which

may result in attenuation bias (i.e., inflation of the intercept toward the mean χ2) that causes

the straightforward LD Score correction to association statistics to be conservative, though still

much less conservative than genomic control. Because LD Score regression on either χ2
BOLT-LMM

or χ2
BOLT-LMM-inf should be affected roughly equally by attenuation bias, matching LD intercepts

guards against this potential problem (Supplementary Table 6).

1.6 Performance optimization

Beyond the broad algorithmic techniques we have described, the BOLT-LMM software employs a

variety of performance optimizations that provide large constant-factor savings (>10x) in memory

and running time over a straightforward implementation.

1.6.1 Memory

Computation on raw genotypes. The key optimization that we implement for memory effi-

ciency is direct computation on raw genotypes. Raw genotypes can be stored in only 2 bits per

base, versus 64 bits (8 bytes) for standard double-precision floating point values. However, all pre-

vious methods necessarily work with floating point matrices (either the N ×N GRM or a floating

point representation of the N × M normalized genotype matrix) because they perform spectral

decomposition. In contrast, because BOLT-LMM applies iterative methods that use the genotype

matrix only in matrix multiplications, it is enough for us to store the raw genotypes plus lookup

tables containing normalization information that we apply on-the-fly. Explicitly, for each SNP,

rather than storing a normalized genotype vector in memory, we simply store its raw allele count

(0, 1, 2, or missing) for each individual and additionally record its mean allele count and normal-

ization constant. Then, when performing computations involving the SNP, we build a properly

normalized SNP vector using the above information. Importantly, this vector can be thrown away

after the computation, thus keeping BOLT-LMM’s memory footprint small.
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An additional subtlety arises when working with covariates because normalized genotype vec-

tors no longer contain only 4 values after projecting out covariates. In this case, we store the

components of each normalized genotype vector along a basis that spans the covariates, and we

do the same for the phenotype vector. We treat these “covariate component” values as additional

coordinates that we carry along in all computations, so that whenever we need to compute a dot

product (the basic computation all of our iterations use), we can do so by taking the usual dot

product and subtracting the dot product of the additional covariate component vector.

Streaming computation of association tests. In analyses of data sets containing very large num-

bers of SNPs (e.g., millions of imputed SNPs) that may be stored as real-valued dosages, it is often

desirable to compute association statistics for all SNPs but use only a subset of genotyped SNPs

in the mixed model. In this situation, we retain memory efficiency by reading and analyzing SNPs

not used in the mixed model only when performing final computation of retrospective association

test statistics. That is, we first compute a set of residual phenotypes yresid-LOCO using only the sub-

set of typed SNPs in the model; then, we successively read each test SNP and compute and output

its association test, throwing away the SNP after completing the computation. This streaming

computation allows us never to store the full set of SNPs in memory.

1.6.2 Computational speed

Batch computation using optimized matrix subroutines. The iterative methods we have de-

scribed reduce the association computation to basic building blocks of vector operations (for vari-

ational iteration) and matrix-vector operations (for conjugate gradient iteration). These operations

can be performed using optimized implementations of the Basic Linear Algebra Subprograms

(BLAS), but all BLAS libraries achieve maximal speed when performing matrix-matrix “Level 3

BLAS” operations. We therefore batch our computations into matrix-matrix multiplications by

performing simultaneous updates across SNPs and parameter values.

Conjugate gradient iteration uses Level 2 BLAS operations as written. Variational iteration

only uses Level 1 BLAS as written (Section 1.3), so to step up to Level 2 BLAS, we perform block

updates of SNP effect sizes. Explicitly, the basic variational iteration consists of re-estimating each

SNP effect in turn conditioned on current estimates of other SNP effects, which requires computing
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dot products of each SNP with the residual phenotype vector. Instead of computing dot products

one at a time (a Level 1 BLAS operation), we compute dot products of a block of 64 SNPs at once

(a matrix-vector multiplication, which is Level 2 BLAS). When we subsequently update the effect

size of each SNP in turn, we just need to be careful to update its dot product to reflect changes that

have been made to the residual vector due to previous updates of previous SNPs within the block.

We do so by precomputing a 64 × 64 correlation matrix for each SNP block.

To step up from Level 2 BLAS to Level 3 BLAS, we make use of the fact that all computation-

ally intensive steps of the BOLT-LMM algorithm require multiple replicates of almost the same

computation: Step 1a computes BLUP on different random phenotypes; Step 1b solves a set of

similar linear systems for different LOCO reps and calibration SNPs; Step 2a computes variational

Bayes assuming different hyperparameter values; Step 2b computes variational Bayes for different

LOCO reps. With some care, we can in each case simultaneously perform iterations across the

different replicates. The upshot is that by using batch computations, BOLT-LMM performs all

O(MN )-time operations using BLAS 3 matrix-matrix multiplications (DGEMM). Our software

distribution uses the well-tuned Intel Math Kernel Library (MKL) BLAS implementation.

Multithreading. Conveniently, most BLAS implementations also support optimized multithreaded

computation on multi-core processors, which are now commonplace. In practice, multithreading

rarely decreases computation time by a factor equal to the number of cores used because of vari-

ous overhead costs, but Level 3 BLAS operations often come close to achieving this theoretically

maximal speedup. The BOLT-LMM software supports multithreading through BLAS, and we rec-

ommend using this option whenever multiple cores are available. We performed our benchmarking

analyses using single-core computation simply to give a fair comparison against methods that do

not support multithreading.

Low-level optimization. We reduce the overhead of loading raw genotypes and building normal-

ized genotype vectors using a few additional low-level tricks. Instead of looking up normalized

genotype values one at a time when loading a SNP, we build an intermediate lookup table that maps

all 256 possible values of 4 consecutive genotypes (stored in 1 byte) to a 4-vector of normalized

values. When loading these 4-vectors from the lookup table into the normalized SNP vector being
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built, we use streaming SIMD extensions (SSE instructions) to perform multiple loads at once.

2 Theory

2.1 Variational Bayes

In Bayesian analysis, one specifies a probability model over observations and model parameters,

often wishing to obtain posterior mean estimates of parameters of interest. Unfortunately, the

posterior distribution is typically infeasible to integrate over. The idea of the variational framework

(termed “variational Bayes”) is to approximate the posterior distribution with a factorized form that

is much easier to work with computationally. The factorized form can be integrated over, allowing

calculation of approximate posterior mean estimates. For a full discussion of variational Bayes,

we refer to ref. [50]. Previous variational methods for Bayesian linear regression in genetics have

been presented in refs. [21,22,38]. Here, we briefly summarize key aspects of variational Bayes for

quick reference and to establish notation. We then derive formulas giving the variational iteration

used by BOLT-LMM, and we further derive theory establishing equivalence between this family

of variational methods and penalized linear regression.

2.1.1 Terminology and notation

We begin by considering a general probability model p(y, β) over observations y and parameters

β. We assume that p(y, β) takes into account the prior distributions of β, so that p(y, β) is the joint

probability of sampling parameters β and observing y.

• The true log likelihood (LL) of observing y is the log of the integral of p(y, β) over all

possible values of the parameters β:

true LL = log

∫
p(y, β)dβ.

This integral is typically intractable to compute.

• The true posterior distribution of the parameters β conditional on observing y is given by
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normalizing the joint probability p(y, β) by the likelihood:

true posterior distribution = p(β | y) =
p(y, β)∫
p(y, β)dβ

.

• The variational approximation to the posterior distribution is the best approximation of the

posterior distribution p(β | y) with a distribution q(β) that factors:

approx posterior distribution = q(β) =
∏
i

qi ≈ p(β | y).

The factors qi are usually constrained to have simple forms. For instance, if β represents

a set of individual parameters βi, each factor qi may be required to be a function of only

one parameter βi, in which case qi is an approximate marginal posterior for βi. This fully

factorized variational approximation is the approach we consider here.

• The approximate log likelihood is a variational lower bound on the true log likelihood, given

by:

approx LL = L(q) =

∫
q(β) log

p(y, β)

q(β)
dβ (35)

= true LL−DKL(q(β) ‖ p(β | y)),

whereDKL denotes the Kullback-Liebler (KL) divergence between probability distributions.

Note that the second line says that the gap between the variational lower bound and the true

LL is given by the KL divergence between the approximating distribution q and the true

posterior distribution p(β | y).

Variational iteration, which we describe in the next section, successively refines the approxi-

mation of p(β | y) with q(β) by iteratively updating the factors qi, reducing the KL divergence

DKL(q(β) ‖ p(β | y)) and therefore monotonically improving the lower bound L(q). The point

of the iteration is that at convergence, the distribution q(β) will ideally be a good approximation

of the true posterior distribution p(β | y) that can easily be integrated over (because of its factored

form) to perform approximate posterior inference.
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Before moving on, we note that it follows from the above that the faithfulness of the approx-

imating distribution q(β) to the true posterior p(β | y) determines the accuracy of the resulting

approximate posterior inference. Because we only consider approximating distributions q(β) that

factor as
∏

i qi, the optimal quality of the approximation depends on the extent to which the pos-

terior distribution p(β | y) can be approximately factored in the prescribed manner. For Bayesian

linear regression, which is our focus here, correlation among regressors (i.e., linkage disequilib-

rium among markers) tends to pose a challenge for some types of inference using variational meth-

ods. For example, when regressors are correlated, the approximate posterior is often too tightly

concentrated (i.e., overconfident of parameter localization). However, aggregate inference can still

be robust. We refer to ref. [21] for an in-depth exploration of these issues.

2.1.2 General variational iteration

The variational Bayes algorithm iteratively updates each approximate marginal distribution qi using

the update step

log(qi(βi))← Eqi′ , i′ 6=i[log p(y, β)] + C.

As written, the above update step updates the entire distribution qi—a function of βi—to its new

optimum (as a distribution, optimizing in the sense of calculus of variations). Indeed, the only

assumption made by the variational approximation is that the approximate posterior distribution

q(β) factors (i.e., the parameters are assumed to be conditionally independent, conditional on the

observed outputs): no assumption is made about the functional form of the factors qi(βi). However,

the factor distributions qi are typically characterized by sets of sufficient statistics, so that in each

iteration, only the sufficient statistics for factor i need to be updated based on the current values

of the sufficient statistics for each of the other factors. Moreover, we will show in Section 2.1.3

that in the case of Bayesian linear regression, the factor distributions take the form of conditional

posterior distributions. For the Gaussian mixture priors we use in BOLT-LMM, these conditional

posteriors retain the Gaussian mixture form, just with different parameters.

Convex optimization theory guarantees the convergence of variational iteration [45]. Moreover,

convergence of the approximate log likelihood, which monotonically increases during the iteration,

serves as a convergence criterion. At convergence, approximate posterior means of the parameters
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βi can be read off from the approximate marginal distributions qi: for the special case of fully

factorized Bayesian linear regression, these values are among the sufficient statistics updated at

each iteration.

2.1.3 Variational iteration for Bayesian linear regression

We now specialize to the Bayesian linear regression model

y = Xβ + e

e ∼ N(0, σ2
eIN)

prior on βm = πm(βm)

That is, we assume each regression coefficient (i.e., SNP effect) has a prior distribution πm(βm) and

the response y is the sum of regressor effects plus iid Gaussian noise with variance σ2
e . (Note that

this noise model does not take into account projecting out covariates as described in Section 1.1;

projecting out C independent covariates just reduces N to N − C in the equations below.) The

joint probability p(y, β) of parameters β and observations y satisfies

p(y, β) = pnoise(y −Xβ)
∏

πm(βm) =

(
1√

2πσ2
e

)N

exp

(
−||y −Xβ||

2

2σ2
e

) M∏
m=1

πm(βm). (36)

Below we derive the fact that the fully factorized variational approximation matches the it-

erative conditional update algorithm discussed in Section 1.3. The fully factorized variational

approximation takes the form

q(β) =
M∏
m=1

qm(βm) ≈ p(β | y).

The variational update step for the approximate marginal distribution qm optimizes the KL diver-

gence DKL(q||p) over all distributions qm, fixing the other marginals qm′ to their current distribu-

tions, thereby monotonically increasing the approximate (lower bound) log likelihood L(q). The
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update amounts to:

log(qm(βm)) ← Eqm′ (βm′ ), m′ 6=m[log p(y, β)] + C

= Eqm′ (βm′ ), m′ 6=m

[
−||y −Xβ||

2

2σ2
e

+
M∑

m′=1

log πm′(βm′)

]
+ C

= −
||y −X−mβ−m − xmβm||2

2σ2
e

+ log πm(βm) + C

= −||yresid,−m − xmβm||2

2σ2
e

+ log πm(βm) + C,

where β−m denotes the vector of estimated posterior mean effect sizes at SNPs other than m

according to the current approximate marginal posterior distributions qm′(βm′). (In the above se-

quence of equations, we absorb all terms independent of βm into the constant C; the use of “+C”

in all lines does not imply that the constant is the same from line to line.) To see how the posterior

mean estimates β−m enter the equation in the third line above, consider expanding the quadratic

term ||y −Xβ||2 inside the expectation. (Note that taking an expectation over qm′(βm′), m′ 6= m

corresponds to integrating over qm′(βm′)dβm′ .)

• For terms that are linear in βm′ (for m′ 6= m), E[βm′ ] can be replaced with βm′ by linearity

of expectation over qm′(βm′).

• Terms that are quadratic in βm′ are independent of βm, so E[β2
m′ ] can be replaced by β

2

m′ +

Varqm′ (βm′) to re-complete the square ||y − X−mβ−m − xmβm||2. The leftover terms, pro-

portional to Varqm′ (βm′) = Eqm′ [β
2
m′ ] − β

2

m′ , are constant (with respect to βm) and can be

absorbed into the constant term.

Finally, the contributions of the prior terms πm′(βm′) for m′ 6= m also become additive constants

upon taking expectations and can be absorbed into the constant term as well.

Exponentiating the result above gives

qm(βm) ∝ exp

(
−||yresid,−m − xmβm||2

2σ2
e

)
πm(βm), (37)

which is simply a conditional posterior distribution for βm (given the prior πm(βm) and conditional

on setting all other βm′ to their variational expected means). That is, for Bayesian linear regression,

23



the optimal approximating marginal distribution q(βm) (making no assumptions about the form of

each marginal, only requiring that the approximating posterior fully factorizes) turns out to be the

conditional posterior. In particular, as we derive in Section 2.1.4, if the prior has the nice form of

a mixture of Gaussians, then the approximating marginal keeps that form (with different means,

standard deviations, and weights).

Moreover, the approximate log likelihood L(q) can be obtained by substituting the joint prob-

ability p(y, β) = pnoise(y −Xβ)
∏
πm, given in equation (36), into equation (35):

L(q) =

∫
q(β) log

p(y, β)

q(β)
dβ

= Eq[log pnoise(y −Xβ)] +
∑

Eq[log πm/qm]

= Eq[log pnoise(y −Xβ)]−
∑

DKL(qm||πm)

= −N
2

log 2πσ2
e −
||y −Xβ||2

2σ2
e

−
∑
||xm||2Varqm(βm)

2σ2
e

−
∑

DKL(qm||πm)

= −N
2

log 2πσ2
e −
||y −Xβ||2

2σ2
e

−
∑
||xm||2Varqm(βm)

2σ2
e

+
∑

(Eqm [log πm] +H(qm)),

(38)

where βm = Eqm [βm], using the same trick of completing the square as above, only now we have

to be careful to account for the leftover constant terms involving Varqm(βm). In the last line,H(qm)

denotes information entropy. Once again, we note that if C independent covariates are projected

out from our model as described in Section 1.1, then we simply reduce N to N − C in equation

(38) to account for the lost degrees of freedom.

2.1.4 Update equations for Gaussian mixture prior

We now specialize to Bayesian linear regression with the specific Gaussian mixture prior

βm ∼

N(0, σ2
β,1) with probability p

N(0, σ2
β,2) with probability 1− p,

(39)
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i.e.,

πm(βm) = p · 1√
2πσ2

β,1

exp

(
− β2

m

2σ2
β,1

)
+ (1− p) · 1√

2πσ2
β,2

exp

(
− β2

m

2σ2
β,2

)
.

To obtain the the conditional marginal distribution qm(βm), we substitute the above into equation

(37), obtaining

qm(βm) = pm ·
1√

2πτ 2m,1

exp

(
−

(βm − βm,1)2

2τ 2m,1

)
+ (1−pm) · 1√

2πτ 2m,2

exp

(
−

(βm − βm,2)2

2τ 2m,2

)
,

i.e.,

βm ∼qm

N
(
βm,1, τ

2
m,1

)
with probability pm

N
(
βm,2, τ

2
m,2

)
with probability 1− pm,

where

β̂m :=
yTresid,−mxm

||xm||2

βm,k :=
σ2
β,k

σ2
β,k + (σ2

e/||xm||2)
β̂m

τ 2m,k :=
1

1
σ2
e/||xm||2

+ 1
σ2
β,k

=
σ2
β,kσ

2
e/||xm||2

σ2
β,k + (σ2

e/||xm||2)

pm :=

p
s1
e−β̂

2
m/2s

2
1

p
s1
e−β̂

2
m/2s

2
1 + 1−p

s2
e−β̂

2
m/2s

2
2

where s21 and s22 are the variances of the marginal distribution of β̂m in each case (assuming

yresid,−m = xmβm + e and marginalizing over random βm and e):

s2k := σ2
β,k +

σ2
e

||xm||2

for k = 1, 2. These equations explicitly give the update formulas for the BOLT-LMM variational

iteration (Step 2 in Section 1.3), in which each estimated SNP effect is set to its conditional poste-

rior mean.

To compute the approximate log likelihood for use in testing convergence of the iteration, it is

convenient to consider a reparameterization of the model (following ref. [21]) in which instead of
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having one parameter βm for each SNP (with πm(βm) a mixture of two Gaussians), we introduce

a state parameter sm ∈ {0, 1} and consider a prior πm(βm, sm) with:

πm(βm | sm = 0) = Gaussian 1: N(0, σ2
β,1)

πm(βm | sm = 1) = Gaussian 2: N(0, σ2
β,2)

πm(sm = 0) = mixture fraction: p.

This parameterization gives exactly the same model as the original Bayesian linear regression, with

the only difference being that the mixture prior on βm in equation (39) is replaced by the joint prior

distribution πm(βm, sm) above with the extra hidden state sm.

We can now apply the variational approach to factorize the approximate posterior distribution

over all SNPs—in (βm, sm) pairs—as a product of joint distributions qm(βm, sm). Each optimal

factor distribution qm has the property that when integrated over sm, it matches the variational

approximation qm(βm) from the original parameterization, implying that the estimated posterior

means are identical. This parameterization lends itself more easily to computation of KL diver-

gences, however. We have the formula:

DKL(qm(βm) ‖ πm(βm)) = DKL(qm(βm, sm) ‖ πm(βm, sm))

= pm log
pm
p

+ (1− pm) log
1− pm
1− p

− pm
2

(
1 + log

τ 2m,1
σ2
β,1

−
τ 2m,1 + β

2

m,1

σ2
β,1

)

− 1− pm
2

(
1 + log

τ 2m,2
σ2
β,2

−
τ 2m,2 + β

2

m,2

σ2
β,2

)
.

Writing

Varqm(βm) = Eqm [β2
m]− β2

m = pm(τ 2m,1 + β
2

m,1) + (1− pm)(τ 2m,2 + β
2

m,2)− β
2

m,

we have all of the terms needed to compute L(q) according to equation (38).

We note that in the limit σβ,2 → 0 of the point-normal prior used by ref. [21], the formulas
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become

DKL(qm(βm) ‖ πm(βm)) = pm log
pm
p

+ (1− pm) log
1− pm
1− p

− pm
2

(
1 + log

τ 2m,1
σ2
β,1

−
τ 2m,1 + β

2

m,1

σ2
β,1

)
Varqm(βm) = pm(τ 2m,1 + β

2

m,1)− β
2

m

= pm(τ 2m,1 + β
2

m,1)− (pmβm,1)
2,

matching ref. [21].

2.1.5 Equivalence with penalized linear regression

We now show that the variational iteration of Section 2.1.3 for Bayesian linear regression is equiv-

alent to coordinate descent applied to a penalized linear regression problem. Equivalently, the fully

factorized variational approximation to Bayesian linear regression (for an arbitrary choice of prior

on regressor effects) can be recast as applying a transformation to the prior and then finding a

posterior mode of the (new) Bayesian linear regression with transformed prior. More precisely, we

have the following equivalence of optimization problems:

1. Maximize the variational approximate log likelihood (for the fully factored VB approxima-

tion to Bayesian linear regression).

2. Minimize the penalized linear regression objective function

||y −Xβ||2 +
∑

penaltym(βm),

where the penalty is derived from the prior in the original Bayesian linear regression.

3. Find a posterior mode of the Bayesian linear regression with prior

π̃m(βm) ∝ exp(−penaltym(βm)),

which we can view as a transformation of the original prior πm(βm).
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We also have the following equivalence of algorithms:

1. Variational iteration applied to the original Bayesian linear regression.

2. Coordinate descent applied to the corresponding penalized linear regression.

Implications for numerical optimization. The equivalence of variational Bayes with penalized

linear regression (in the context of Bayesian linear regression) elucidates some numerical proper-

ties of the algorithm that are not immediately apparent. In particular, penalized linear regression is

in general a numerically challenging non-convex optimization. We can therefore expect variational

iteration to be susceptible to numerical issues such as convergence to local optima. Some methods

have tried to address this problem by repeating the iteration for different random choices of update

orders or different initialization points [21,22,38]. In our simulations, we found that using a single

run of the iteration was typically already sufficient for BOLT-LMM to achieve most of the avail-

able power gain, however, so we opted to use just a single run to avoid increasing computational

cost.

Mathematical derivation. As discussed in Section 2.1.1, variational theory gives the following

lower bound to the log likelihood, which variational iteration tries to maximize:

L(q) = −N
2

log 2πσ2
e −
||y −

∑
xmEqm [βm]||2

2σ2
e

−
∑
||xm||2Varqm(βm)

2σ2
e

−
∑

DKL(qm||πm).

Note that L(q) is a functional, i.e., it evaluates factored distributions q = q1 · · · qM that attempt to

approximate the posterior. We will show that in fact, this maximization is equivalent to optimizing

the objective function (over effect size estimates β̂m) of a penalized linear regression:

L(β̂) = −N
2

log 2πσ2
e −
||y −Xβ̂||2

2σ2
e

−
∑

penaltym(β̂m).

The key is that we can define a mapping β̂m 7→ qm( · ; β̂m) with Eqm [βm] = β̂m and define

penaltym(β̂m) :=
||xm||2Var(qm( · ; β̂m))

2σ2
e

+
∑

DKL(qm( · ; β̂m)||πm),
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with the property that

(penalized LR objective) L(β̂) = L
(
q =

∏
qm( · ; β̂m)

)
(approx LL with derived qm)

≤ max
{
L(q) : q =

∏
qm, Eqm [βm] = β̂m

}
(40)

≤ maxL(q). (41)

(Note that if the SNPs are normalized such that ||xm|| are all equal, then the penalty is independent

of m.)

The mapping β̂m 7→ qm( · ; β̂m) is derived from the variational update step, which we know

chooses the qm that optimizes L(q) conditional on the current choices of the other marginal dis-

tributions. Thus, equality holds in (40) at any convergence “point” of the iteration. Here a con-

vergence “point” really means a choice of approximating distributions q1, . . . , qM ; however, if the

above mapping exists, these distributions may be parameterized by β̂1, . . . , β̂M . Equality holds

in (41) at the global maximizer of the variational approximate log likelihood. It follows that

L(β̂), which is upper-bounded by the global maximum of L(q), attains that global maximum at

β̂m,opt = Eqm,opt [βm]. That is, the solution to the penalized linear regression optimization of L(β̂)

corresponds to the solution to the variational optimization of L(q): if we could solve the penalized

linear regression optimally, we would have the optimal variational Bayes solution.

All that remains is to define the mapping β̂m 7→ qm( · ; β̂m), which we obtain indirectly from

the variational update step via the key observation that the optimal marginal qm conditioned on

all other marginals depends only on a single statistic: the correlation of xm with the residual

yresid,−m = y −
∑

m′ 6=m xm′Eqm′ [βm′ ]. That is, we have:

xTmyresid,−m 7→ qm 7→

 penalty terms Var(qm), DKL(qm||πm)

conditional posterior mean Eqm [βm]

Moreover, the conditional posterior mean Eqm [βm] is an increasing function of the correlation

statistic xTmyresid,−m, meaning that we can invert the final mapping to obtain Eqm [βm] 7→ qm, giving

the desired mapping β̂m 7→ qm(·; β̂m). If we wanted to derive an explicit formula for penaltym(βm),

we could try to invert the mapping xTmyresid,−m 7→ Eqm [βm], but in general there is probably no

closed form.
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2.2 Convergence rate of BOLT-LMM iterative computations

Because BOLT-LMM applies iterative methods for numerical linear algebra, its running time de-

pends not only on the cost of matrix operations, which scales linearly with M and N , but also

the number of O(MN )-time iterations required for convergence, which is largely determined by

the condition number of the phenotypic covariance matrix and in particular increases with sample

size (N ), heritability, relatedness, and population structure. Simulations show empirically that the

number of iterations scales roughly with
√
N and does not change dramatically within the range

of typical values of the other parameters, hence our estimate of an overall running time that scales

roughly with MN 1.5 (Supplementary Fig. 1 and Supplementary Fig. 2).

More precisely, we measured (for varying N ) the numbers of iterations required by BOLT-

LMM-inf and BOLT-LMM to reach convergence, as defined by: (1) the conjugate gradient resid-

ual norm dropping below a relative tolerance of 0.0005, in BOLT-LMM-inf; and (2) the variational

Bayes change in approximate log likelihood dropping below 0.01, in BOLT-LMM. For both meth-

ods, we observed that the number of iterations increased roughly as
√
N (Supplementary Fig. 1).

For BOLT-LMM-inf, our intuition (based on random matrix theory) is that the conditioning of

the covariance matrix becomes modestly worse as the sample size increases; we believe this phe-

nomenon is responsible for the ≈
√
N increase in conjugate gradient iterations. For BOLT-LMM,

which faces a nonlinear problem due to its Gaussian mixture prior on effect sizes, we are not aware

of theoretical bounds on the convergence rate of variational iteration. However, the nonlinearity

appears not to be a major hurdle in practice, perhaps because heritability is typically low and also

because we limit the nonlinearity by bounding the extent to which the mixture prior deviates from

normality (by bounding the mixture parameters f2 and p).

We note that the high observed-scale heritabilities of case-control ascertained traits and inflated

heritabilities of phenotypes in family data, in combination with population structure or relatedness

among samples, may reduce the computational efficiency of BOLT-LMM (Supplementary Fig. 2);

an avenue for future investigation is to mitigate this effect by including PCs to improve the numer-

ical conditioning of the computation.
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2.3 Correspondence between association power and prediction accuracy

Intuitively, mixed model analysis to test a candidate marker for association gains power over lin-

ear regression (assuming no confounding) by conditioning on other markers modeled as random

effects. This intuition is especially clear in the BOLT-LMM statistical formulation, where we ret-

rospectively test candidate markers for association with residual phenotypes. Residualizing elim-

inates the component of phenotype that was successfully predicted by other markers, so that the

subsequent association test is trying to detect candidate marker association signal amid phenotypic

variance (“noise”) that has been decreased by a factor of 1-R2. (Here, R2 denotes out-of-sample

prediction R2; even though in practice we residualize by genetic predictions computed in-sample,

the extent to which these predictions capture true genetic effects corresponds to out-of-sample

prediction R2.) Note that residualizing leaves the amount of candidate marker signal unchanged,

assuming no proximal contamination and assuming a randomly ascertained phenotype; violation

of these assumptions results in loss of power [12].

Quantitatively, a reduction of association test noise by a factor of 1-R2 results in an increase

in χ2 statistics by a factor of 1/(1-R2) at truly associated loci. (More precisely, the quantity χ2-1

increases by 1/(1-R2) on average, but for χ2 � 1 at known loci, this distinction is minor.) This

relationship can be seen explicitly in comparing equation (1) of ref. [34] for prediction R2 using

BLUP,

R2 =
h2g

1 + M
Nh2g

(1−R2)
, (42)

with Supplementary Table 2 of ref. [12], which gives the following formulas for mean χ2 statistics

using linear regression vs. mixed model association:

mean χ2
LR at causal SNPs = 1 +

Mh2g
M causal

(43)

mean χ2
LMM at causal SNPs = 1 +

Mh2g
M causal

· 1

1−R2
, (44)

where R2 in equation (44) (denoted r2h2g in ref. [12]) satisfies the same quadratic equation (42).

In Fig. 3a, we plot increases in mean χ2 statistics at known loci for mixed model methods

vs. PCA, and in Fig. 3b, we plot absolute prediction R2. As explained above, the increase in

mean χ2 statistics at known loci for mixed model methods vs. linear regression—assuming no
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confounding—is approximately 1/(1 − R2) − 1 ≈ R2. When including principal components in

linear regression to avoid confounding, we get an increase in mean χ2 statistics at known loci for

mixed model methods vs. PCA of approximatelyR2
LMM−R2

PCA, where the latter is the prediction

R2 obtained by linear prediction using only the principal components. Thus, the red bars in Fig. 3a

roughly correspond to differences between red and black bars in Fig. 3b, and analogously for

blue bars. The correspondence is approximate because of the approximations mentioned above

and two additional subtleties: (1) the LOCO scheme that BOLT-LMM uses to avoid proximal

contamination renders the mixed model unable to condition out effects of markers on the same

chromosome as the candidate marker; (2) our measurement of prediction R2 uses 5-fold cross-

validation, reducing the training sample size by 20%. However, these two effects have small

magnitudes and act in opposite directions, so that ultimately the correspondence is very tight, as is

visually apparent in Fig. 3.

We note two caveats to the correspondence between association power and prediction accuracy

claimed above. First, in ascertained case-control data sets, mixed model methods that achieve pos-

itive prediction R2 may actually reduce association power due to ascertainment-induced “linkage

disequilibrium” between causal markers [12]. The result of this phenomenon is that residualizing

by other SNPs has a deleterious, masking effect on the association signal at a candidate SNP, sim-

ilar to proximal contimation [5, 9, 12]. Second, in data sets with pervasive family relatedness, the

correspondence between association power and prediction accuracy is again less clear-cut. Our

intuition here is similar: family relatedness introduces “long-range LD” that produces an effect

similar to proximal contamination.

3 Parameters of mixed model software used in analyses

We ran BOLT-LMM with default options except in analyses investigating power of the Gaussian

mixture model, in which we used the --forceNonInf option to fit the Gaussian mixture model

even in scenarios with no expected power gain.

We ran the 2012-02-10 intel64 release of EMMAX with default options. We ran GEMMA

version 0.94 with default options. We ran GCTA version 1.24 with the --mlma-loco option

for leave-one-chromosome-out analysis. We ran FaST-LMM version 2.07 using all markers to
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compute the similarity matrix. We ran FaST-LMM-Select version 2.07 with the autoSelect option

-autoSelectSearchValues

"0,1,3,10,30,100,300,1000,3000,10000,30000,100000,300000"

to test increasing numbers of selected SNPs up to a maximum of 300,000 SNPs. We benchmarked

the precompiled executable distribution of each software package.

4 Pseudocode outlining BOLT-LMM algorithm

Step 1a: Estimate variance parameters.
Algorithm: Use secant iteration to find approximate zero of derivative of log likelihood.

X := normalized genotypes # N x M matrix

y := phenotype vector # N-vector

MCtrials := max(min(4e9/N2, 15), 3) # set number of Monte Carlo trials

for t = 1 to MCtrials

for j = 1 to M

βrand[j,t] := randn() * sqrt(1/M) # generate random SNP effects

for i = 1 to N

erand,unscaled[i,t] := randn() # generate random environmental effects

end for

h2
1 := 0.25, logDelta1 := log((1-h2

1)/h
2
1)

f1 := evalfREML(logDelta1) # perform first fREML evaluation

if f1 < 0, h2
2 := 0.125; else h2

2 := 0.5

logDelta2 := log((1-h2
2)/h

2
2)

f2 := evalfREML(logDelta2) # perform second fREML evaluation

for s = 3 to 7 # perform up to 5 steps of secant iteration

logDeltas := (logDeltas−2*fs−1 - logDeltas−1*fs−2) / (fs−1 - fs−2)

if abs(logDeltas - logDeltas−1) < 0.01 # check convergence

break

fs := evalfREML(logDeltas) # perform next fREML evaluation

end for
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return σ2
g := y′H−1y/N, σ2

e := δ * σ2
g

###

function f = evalfREML(logDelta)

for t = 1 to MCtrials

# build random phenotypes using pre-generated components

yrand[:,t] := X * βrand[:,t] +
√
δ * erand,unscaled[:,t]

# compute H−1yrand[:,t], where H = XX’/M+δI

H−1yrand[:,t] := conjugateGradientSolve(X, δ, yrand[:,t])

# compute BLUP estimated SNP effect sizes and residuals

β̂rand[:,t] := 1/M * X’ * H−1yrand[:,t]

êrand[:,t] = δ * H−1yrand[:,t]

end for

# compute BLUP estimated SNP effect sizes and residuals for real phenotypes

H−1ydata := conjugateGradientSolve(X, δ, y)

β̂data[:,t] := 1/M * X’ * H−1ydata[:,t]

êdata[:,t] = δ * H−1ydata[:,t]

# evaluate fREML

f := log((sum(β̂2
data) / sum(ê2data)) / (sum(β̂2

rand) / sum(ê2rand)))

end

Step 1b: Compute and calibrate BOLT-LMM-inf statistics.

σ2
g,σ

2
e := variance parameters calculated in Step 1a

# precompute V −1-chry, where V-chr = σ2
gX-chrX-chr’/M-chr + σ2

eI

for chr = 1 to 22

V −1-chry := conjugateGradientSolve(X-chr, σ2
g, σ2

e, y)

end for

# compute calibration for BOLT-LMM-inf statistic using 30 random SNPs
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for t = 1 to 30

m := random SNP in {1..M}

x := X[:,m] # normalized genotype vector for chosen SNP m

chr := chromosome containing chosen SNP m

V −1-chrx := conjugateGradientSolve(X-chr, σ2
g, σ2

e, x)

prospectiveStat[t] := (x’V −1-chry)ˆ2/(x’V
−1
-chrx)

uncalibratedRetrospectiveStat[t] := N * (x’V −1-chry)
2/(norm(x)2

*norm(V
−1
-chry)

2)

end for

infStatCalibration := sum(uncalibratedRetrospectiveStats) / sum(prospectiveStats)

# compute BOLT-LMM-inf mixed model statistics at all SNPs

for m = 1 to M

x := X[:,m]

chr := chromosome containing SNP m

boltLMMinf[m] := N * (x’V −1-chry)ˆ2/(norm(x)
2
*norm(V

−1
-chry)

2) / infStatCalibration

end for

return boltLMMinf[:]
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Step 2a: Estimate Gaussian mixture prior parameters.
Algorithm: Optimize prediction mean-squared error in cross-validation.

σ2
g,σ

2
e := variance parameters calculated in Step 1a

for f2 in {0.5, 0.3, 0.1}

for p in {0.5, 0.2, 0.1, 0.05, 0.02, 0.01}

MSE[f2,p] := 0

for CVfold in 1 to 5

foldIndivs := subset of samples {1..N} in fold CVfold

Xtrain := X[-foldIndivs,:], ytrain = y[-foldIndivs]

Xtest := X[foldIndivs,:], ytest = y[foldIndivs]

[βfit,yresid] := fitVariationalBayes(Xtrain,ytrain,σ2
g,σ

2
e,f2,p)

ypred := Xtest * βfit

MSE[f2,p] += norm(ypred - ytest)2

end for

end for

end for

return [f2,p] = argmin(MSE)

###

function [βfit,yresid] = fitVariationalBayes(X,y,σ2
g,σ

2
e,f2,p)

σ2
β,1 := σ2

g/M * (1-f2) / p # set Gaussian variances

σ2
β,2 := σ2

g/M * f2 / (1-p)

βfit := zero M-vector # initialize SNP effect estimates to 0

yresid := y # initialize residual phenotype to y

approxLL := -inf

for t = 1 to maxIters # perform VB iterations until convergence or maxIters

approxLLprev := approxLL

approxLL := -N/2 * log(2πσ2
e)

# update SNP effect estimates in turn and accumulate contributions to approxLL

for m = 1 to M

x := X[:,m]

yresid += βfit[m] * x # remove effect of SNP m from residual

β̂m := x’ * yresid / norm(x)2 # see formulas in 2.1.4
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βfit[m] := pm * βm,1 + (1-pm) * βm,2 # set effect size to conditional posterior mean

approxLL -= norm(x)2/(2σ2
e) * Varqm(βm) + DKL(qm||πm) # update approxLL (see 2.1.4)

yresid -= βfit[m] * x # update residual with new effect of SNP m

end for

approxLL -= norm(yresid)2 / (2σ2
e)

# test convergence

if approxLL - approxLLprev < 0.01

break

end for

end

Step 2b: Compute and calibrate BOLT-LMM Gaussian mixture model statistics.

σ2
g,σ

2
e,f2,p := mixture parameter estimates from Steps 1b and 2a

boltLMMinf[:] := infinitesimal mixed model stats computed in Step 1b

# compute uncalibrated BOLT-LMM statistics

for chr in 1 to 22 # leave-one-chromosome-out (LOCO) to avoid proximal contamination

# fit model using all SNPs not on chromosome; compute residuals

[βfit,yresid] := fitVariationalBayes(X-chr,y,σ2
g,σ

2
e,f2,p)

for m in (SNPs on chr)

uncalibratedBoltLMM[m] := N * (X[:,m]’yresid)2 / (norm(X[:,m])2
*norm(yresid)

2)

end for

end for

# calibrate BOLT-LMM statistics using LD Score

interceptBoltLMMinf := LDscoreIntercept(boltLMMinf) # see LD Score ref. [24]

interceptUncalibratedBoltLMM := LDscoreIntercept(uncalibratedBoltLMM)

LDscoreCalibration := interceptUncalibratedBoltLMM / interceptBoltLMMinf

# apply calibration

for m in 1 to M

boltLMM[m] := uncalibratedBoltLMM[m] / LDscoreCalibration

end for

return boltLMM[:]
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5 Data sets

5.1 Simulations

We simulated data sets from the WTCCC2 data with the goal of creating realistic test scenarios

including linkage disequilibrium and possible confounding from population stratification or relat-

edness. The WTCCC2 data set contains 15,633 samples genotyped at 360,557 SNPs after QC; full

details are given in ref. [12]. In the simulations that we ran to assess power and Type I error, we

used these genotypes directly (subsampling to N = 5,211 samples for some simulations).

5.1.1 Simulated genotypes

In the simulations we used to benchmark computational costs, we simulated genotype data with

N = 3,750 to 480,000 individuals and M = 150,000 or 300,000 SNPs by subsampling the desired

number of SNPs from the WTCCC2 data set and then independently building N individuals as

mosaics of individuals from the original data set using the following procedure. First, specify a

number of “ancestors” A for each individual to have. Then, for each simulated individual, select

A ancestors at random from among the original individuals and create the simulated individual’s

genotype data by chopping the genome into segments of 1,000 SNPs and copying each segment

from a randomly sampled (diploid) ancestor.

Note that this approach retains realistic LD among SNPs, and for small values of A, it also

retains population structure and introduces relatedness among individuals that share ancestors. In

our simulations, we used A = 2 (substantial structure and relatedness) or A = 10 (low levels of

structure and relatedness).

5.1.2 Simulated phenotypes

We simulated phenotypes as sums of up to four components: genetic effects from a specified

number of causal SNPs, genetic effects from a specified number of standardized effect SNPs, pop-

ulation stratification, and environmental effects. We simulated genetic effects by selecting SNPs

at random from the first half of the list of typed SNPs in each chromosome and at least 2Mb and

2cM before the middle SNP. (Likewise, when assessing calibration at null SNPs, we only tested

38



SNPs in the second halves of chromosomes and at least 2Mb and 2cM beyond the middle SNP, to

avoid contamination of null SNPs from LD with causal SNPs.) We sampled effect sizes for the

selected normalized SNPs from a standard normal distribution. We simulated population strati-

fication by taking the first principal component of the normalized genotype matrix. We sampled

environmental effects for all individuals from a standard normal. To create phenotypes with speci-

fied proportions of variance explained by each of these effects, we normalized each component (an

N -vector across samples) and created a linear combination of the components with weights equal

to the square roots of the desired variance fractions. Note that standardized effect SNPs thus have

effect sizes that vary from SNP to SNP; it is the average variance explained by these SNPs that is

standardized.

5.1.3 LD Scores for simulated data

Because causal SNPs in our simulated phenotypes are selected only from among genotyped SNPs,

we computed reference LD Scores (used to calibrate the BOLT-LMM statistic in our simulations)

by summing LD only to typed SNPs—as opposed to all SNPs, which is appropriate for real phe-

notypes [24]—in 379 European-ancestry samples from the 1000 Genomes Project [51].

5.2 WGHS data

The Women’s Genome Health Study (WGHS) is a prospective cohort of initially healthy, female

North American health care professionals at least 45 years old at baseline representing participants

in the Women’s Health Study (WHS) who provided a blood sample at baseline and consent for

blood-based analyses. The WHS was a 2x2 trial beginning in 1992-1994 of vitamin E and low

dose aspirin in prevention of cancer and cardiovascular disease with about 10 years of follow-

up. Since the end of the trial, follow-up has continued in observational mode. Genotyping in the

WGHS sample was performed using the HumanHap300 Duo “+” chips or the combination of the

HumanHap300 Duo and iSelect chips (Illumina, San Diego, CA) with the Infinium II protocol.

For quality control, all samples were required to have successful genotyping using the BeadStudio

v. 3.3 software (Illumina, San Diego, CA) for at least 98% of the SNPs. A subset of 23,294 indi-

viduals were identified with self-reported European ancestry that could be verified on the basis of
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multidimensional scaling analysis of identity by state using 1443 ancestry informative markers in

PLINK v. 1.06. In the final data set of these individuals, a total of 339,596 SNPs were retained with

MAF >1%, successful genotyping in 90% of the subjects, and deviations from Hardy-Weinberg

equilibrium not exceeding p = 10−6 in significance. In our analyses, we further eliminated non-

autosomal SNPs, duplicate SNPs, and custom SNPs, leaving 324,488 SNPs.
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Supplementary Figure 1. Detailed computational cost metrics from running BOLT-LMM on
simulated data sets with increasing sample size (Fig. 1): (a) running time, (b) memory usage, (c)
conjugate gradient iterations used in LOCO analysis, (d) variational Bayes iterations used in
LOCO analysis (max among 22 LOCO reps). Note that the conjugate gradient computation (c) is
required to compute both the BOLT-LMM-inf and BOLT-LMM statistics, whereas the variational
Bayes computation (d) is relevant only to the BOLT-LMM statistic. Additionally, BOLT-LMM
skips the LOCO variational Bayes computation when estimated improvement in prediction R2

using the Gaussian mixture model is small (<1%); in (d), this behavior occurred for N <60K.
(Note that in such cases, some variational Bayes work is still needed in making this determination;
see Supplementary Note Section 1.4 for details.) Each plotted point corresponds to one simulation
with M causal = 5,000 SNPs explaining h2causal = 0.2 of phenotypic variance. Reported run times
are medians of five identical runs using one core of a 2.27 GHz Intel Xeon L5640 processor.
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Supplementary Figure 2. Dependence of BOLT-LMM computational cost metrics (see
Supplementary Fig. 1) on heritability explained by genotyped SNPs (h2g), sample size, and sample
structure. BOLT-LMM was run on simulated data sets with N = 30,000 or 60,000 samples, each
generated as a mosaic of genotype data from 2 (left panels) or 10 (right panels) random
“ancestors” from the WTCCC2 data set (N = 15,633, M = 360K). Phenotypes were simulated
with M causal = 5,000 SNPs explaining h2causal = 0.15–0.35 of phenotypic variance. In order to
measure variational Bayes iterations (e, f) used in LOCO analysis for all parameter combinations,
BOLT-LMM Gaussian mixture model analysis was run to completion even when estimated
improvement in prediction R2 using the Gaussian mixture model was small (i.e., the default
behavior was overriden). Error bars, s.e.m., 10 simulations.
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Supplementary Figure 3. Power of BOLT-LMM and existing mixed model association methods
to detect standardized effect SNPs in the simulations of Fig. 2 (real genotypes from the WTCCC2
data set with N = 15,633 and M = 360K, simulated phenotypes with varying numbers of causal
SNPs). Error bars, s.e.m., 100 simulations.
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Supplementary Figure 4. BOLT-LMM increases power to detect associations in simulations
while maintaining false positive control. (a) Mean χ2 at standardized effect SNPs. (b) Mean χ2 at
null SNPs (i.e., SNPs not in LD with causal SNPs). Simulations used real genotypes from the
WTCCC2 data set (N = 15,633, M = 360K) and simulated phenotypes with the specified number
of causal SNPs explaining 50% of phenotypic variance and 60 more standardized effect SNPs
explaining an additional 2% of the variance. Error bars, s.e.m., 100 simulations. Plotted data are
for BOLT-LMM, BOLT-LMM-inf, and EMMAX statistics. We verified on the first 5 simulations
that the BOLT-LMM-inf and GCTA-LOCO statistics were nearly identical and that the EMMAX
and GEMMA statistics were nearly identical (Supplementary Table 7).
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Supplementary Figure 5. Power increase of BOLT-LMM Gaussian mixture model association
analysis over standard mixed model analysis as a function of sample size, number of causal SNPs,
and heritability explained by genotyped SNPs (h2g). Plotted are ratios of mean χ2 BOLT-LMM vs.
BOLT-LMM-inf statistics at standardized effect SNPs as a function of (a) M causal or (b)
h2gN/M causal. This metric is equivalent to increase in effective sample size using the Gaussian
mixture model. Data sets used N = 30,000 or 60,000 simulated individuals, each generated as a
mosaic of genotype data from 2 (left panels) or 10 (right panels) random “ancestors” from the
WTCCC2 data set (N = 15,633, M = 360K). Phenotypes were simulated with M causal =
2,500–15,000 SNPs explaining h2causal = 0.15–0.35 of phenotypic variance and 60 more
standardized effect SNPs explaining an additional 0.005 (N = 60K) or 0.01 (N = 30K) of the
variance. In all simulations, both BOLT-LMM and BOLT-LMM-inf statistics were properly
calibrated (mean χ2 = 1.00–1.01 at null SNPs). Error bars, s.e.m., 10 simulations.

49



0 10 20 30 40
0

10

20

30

40

χ2 expected

χ2  o
bs

er
ve

d:
 B

O
LT

−
LM

M
Null SNPs

a

0 10 20 30 40
0

10

20

30

40

χ2 expected

χ2  o
bs

er
ve

d:
 B

O
LT

−
LM

M
−

in
f

Null SNPs
b

0 10 20 30 40
0

10

20

30

40

χ2 expected

χ2  o
bs

er
ve

d:
 B

O
LT

−
LM

M

All SNPs
c

0 10 20 30 40
0

10

20

30

40

χ2 expected

χ2  o
bs

er
ve

d:
 B

O
LT

−
LM

M
−

in
f

All SNPs
d

Supplementary Figure 6. Q-Q plots of BOLT-LMM χ2 statistics (a, c) and BOLT-LMM-inf
χ2 statistics (b, d). The observed quantiles of both association statistics at null SNPs (a, b) match
theoretical χ2 quantiles. The observed test statistics over all SNPs (c, d) show lift-off consistent
with polygenicity as simulated. Data shown are from one simulation using the setup of Fig. 2
(real genotypes from the WTCCC2 data set with N = 15,633 and M = 360K, simulated
phenotypes with 5060 causal SNPs explaining 0.52 of phenotypic variance). To reduce clutter,
5% of the SNPs are plotted.
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Supplementary Figure 7. Scatter plot of BOLT-LMM-inf vs. GCTA-LOCO χ2 statistics.
BOLT-LMM-inf and GCTA-LOCO are expected to differ slightly because GCTA-LOCO is the
standard prospective statistic whereas BOLT-LMM-inf is a retrospective statistic. Data shown are
from one simulation using the setup of Fig. 2 (real genotypes from the WTCCC2 data set,
simulated phenotypes with 5060 causal SNPs explaining 0.52 of phenotypic variance). To reduce
clutter, 5% of the SNPs are plotted.
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Supplementary Table 2. BOLT-LMM increases power to detect associations in simulations

(a)

M causal PCA BOLT-LMM-inf BOLT-LMM
1,250 6.55 (0.07) 6.92 (0.07) 8.71 (0.08)
2,500 6.52 (0.07) 6.89 (0.08) 7.65 (0.09)
5,000 6.56 (0.07) 6.94 (0.07) 7.23 (0.07)

10,000 6.56 (0.07) 6.94 (0.07) 7.04 (0.07)

(b)

h2causal PCA BOLT-LMM-inf BOLT-LMM
0.3 6.41 (0.07) 6.54 (0.07) 6.71 (0.07)
0.5 6.52 (0.07) 6.89 (0.08) 7.65 (0.09)
0.7 6.63 (0.08) 7.39 (0.09) 9.71 (0.11)

(c)

N PCA BOLT-LMM-inf BOLT-LMM
5,211 2.83 (0.04) 2.88 (0.04) 2.90 (0.04)

10,422 4.71 (0.06) 4.90 (0.06) 5.14 (0.06)
15,633 6.52 (0.07) 6.89 (0.08) 7.65 (0.09)

These tables provide the numerical data (mean χ2 statistics at standardized effect SNPs) plotted in
Fig. 2.
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Supplementary Table 3. Calibration of BOLT-LMM statistics in simulations with varying
genetic architectures and sample sizes

(a)

M causal PCA BOLT-LMM-inf BOLT-LMM
1,250 1.009 (0.001) 1.006 (0.001) 1.005 (0.001)
2,500 1.008 (0.001) 1.005 (0.001) 1.004 (0.001)
5,000 1.007 (0.001) 1.005 (0.001) 1.004 (0.001)

10,000 1.009 (0.001) 1.007 (0.001) 1.007 (0.001)

(b)

h2causal PCA BOLT-LMM-inf BOLT-LMM
0.3 1.005 (0.001) 1.004 (0.001) 1.005 (0.001)
0.5 1.008 (0.001) 1.005 (0.001) 1.004 (0.001)
0.7 1.011 (0.001) 1.009 (0.001) 1.000 (0.001)

(c)

N PCA BOLT-LMM-inf BOLT-LMM
5,211 1.002 (0.001) 1.004 (0.001) 1.004 (0.001)

10,422 1.005 (0.001) 1.005 (0.001) 1.005 (0.001)
15,633 1.008 (0.001) 1.005 (0.001) 1.004 (0.001)

We report mean χ2 statistics at null SNPs in the simulations of Fig. 2. The very slight inflation of
BOLT-LMM and BOLT-LMM-inf arises from the use of approximate variance parameter
estimates and from the fact that standard mixed model methods eliminate the effects of
stratification nearly perfectly but not completely (Supplementary Table 4).
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Supplementary Table 4. Calibration of BOLT-LMM statistics using different variance
component estimation procedures

Variance component Leave-out h2strat = 0.01 h2strat = 0
estimation procedure segments GCTA-LOCO BOLT-inf BOLT GCTA-LOCO BOLT-inf BOLT
Once with no left-out 22 NA 1.005 1.004 NA 1.004 1.002
SNPs 100 NA 1.002 1.000 NA 1.001 0.999
Independently for each 22 1.002 1.001 0.999 1.000 0.999 0.997
leave-out segment 100 NA 1.000 0.998 NA 0.998 0.997

Mean GCTA-LOCO, BOLT-LMM-inf, and BOLT-LMM chi-squared statistics at null SNPs
computed using different methods for variance component analysis and different numbers of
leave-out segments. We used the same simulation setup as in Fig. 2 (real genotypes from the
WTCCC2 data set, simulated phenotypes with 2560 causal SNPs explaining 0.52 of phenotypic
variance). We performed two sets of simulations: one with environmental stratification h2strat

explaining 0.01 of the variance, and the other with no environmental stratification. Thus, the top
left entries of 1.005 for BOLT-LMM-inf and 1.004 for BOLT-LMM correspond to the calibration
results in Supplementary Table 3 for M causal = 2,500, h2causal = 0.5, N = 15,633 (appearing in each
of Supplementary Table 3a,b,c). Data shown are from 100 simulations, which gave a standard
error of 0.001 for all numbers above.
By default, the BOLT-LMM algorithm estimates variance parameters once using all SNPs and
then reuses the variance estimates when computing association statistics, leaving each of the 22
chromosomes out in turn. This procedure is an approximation of the theoretically precise method
of re-estimating variance parameters once per leave-out segment, which the BOLT-LMM
software offers as an alternative option (Online Methods). The quality of the approximation can
also be improved by subdividing chromosomes for leave-out analysis; we compare results with 22
vs. 100 leave-out segments, which the BOLT-LMM software allows as well (Online Methods).
GCTA-LOCO re-estimates variance components once for each of 22 left-out chromosomes.
These simulations demonstrate that very slight (0.1–0.5%) inflation of χ2 test statistics can stem
from two causes: (1) reusing the same variance parameter estimates across all LOCO reps rather
than re-estimating them for each LOCO rep; and (2) near-complete but imperfect correction for
stratification by mixed model methods [52]. The first source of slight inflation is specific to the
BOLT-LMM approximation procedure but can be reduced by partitioning the genome into finer
leave-out segments or eliminated by refitting variance parameters for each LOCO rep at a small
increase in computational cost (Online Methods). This inflation does not increase with sample
size (Supplementary Table 3c). The second source of slight inflation is shared by all mixed model
methods, as evidenced by the 0.2% inflation of GCTA-LOCO in the h2strat = 0.01 simulation, and
scales with sample size and proportion of variance explained by ancestry in the same manner as
inflation caused by genuine polygenic effects (see Supplementary Table 2 of ref. [12]). To
completely eliminate this source of very slight inflation, it is necessary to either include principal
components as fixed effects or include a second variance component that models
ancestry [12, 52–54]. However, we believe that this very slight inflation is not a significant
problem for standard mixed model methods or BOLT-LMM.

55



Supplementary Table 5. Type I error of BOLT-LMM and EMMAX association tests in
simulations

Method α = 10−2 α = 10−4 α = 10−6 α = 5× 10−8

BOLT-LMM 1.02× 10−2 705103 1.04× 10−4 7221 1.05× 10−6 73 4× 10−8 3
BOLT-LMM-inf 1.02× 10−2 707636 1.03× 10−4 7119 1.07× 10−6 74 6× 10−8 4
EMMAX 0.63× 10−2 434081 0.39× 10−4 2673 0.32× 10−6 22 0× 10−8 0

Type I error rates and counts for test statistics at null SNPs in the simulations of Fig. 2 (real
genotypes from the WTCCC2 data set, simulated phenotypes with causal SNPs explaining 52%
of phenotypic variance and environmental stratification explaining 1% of phenotypic variance).
To increase statistical resolution, we combined data from all 400 simulations (with 1310, 2560,
5060, and 10060 causal SNPs, 100 simulations each) for a total of 69,293,600 hypothesis tests.
Type I error was statistically indistinguishable between different subsets of 100 simulations. The
very slight upward bias of actual vs. expected Type I error rates for the BOLT-LMM-inf and
BOLT-LMM association tests is explained by very slight (0.1–0.5%) inflation of χ2 test statistics
(Supplementary Table 4), which can be mitigated by performing a more precise variance
parameter calculation if desired (Online Methods).
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Supplementary Table 6. Power and calibration of BOLT-LMM statistics, BOLT-LMM with
MCMC, and FaST-LMM-Select in simulations

(a) M causal = 1,250

Method Mean χ2 at Mean χ2 at LD Score
std. effect SNPs null SNPs intercept

PCA 2.843 (0.041) 1.003 (0.001) 1.008 (0.001)
BOLT-LMM-inf 2.923 (0.041) 1.005 (0.001) 1.008 (0.001)
BOLT-LMM 3.174 (0.045) 1.003 (0.001) 1.008 (0.001)
BOLT-LMM with MCMC 3.154 (0.045) 1.004 (0.001) 1.008 (0.001)
FaST-LMM-Select 2.852 (0.037) 1.021 (0.003) 1.026 (0.002)

(b) M causal = 500

Method Mean χ2 at Mean χ2 at LD Score
std. effect SNPs null SNPs intercept

PCA 2.918 (0.045) 1.004 (0.001) 1.010 (0.001)
BOLT-LMM-inf 2.988 (0.047) 1.005 (0.001) 1.010 (0.001)
BOLT-LMM 4.181 (0.064) 1.002 (0.001) 1.010 (0.001)
FaST-LMM-Select 3.520 (0.044) 1.017 (0.002) 1.021 (0.002)

We report mean χ2 statistics at standardized effect SNPs, mean χ2 statistics at null SNPs, and LD
Score intercepts [24] of association statistics computed by linear regression with PC covariates
(PCA), variants of BOLT-LMM, and FaST-LMM-Select over 100 simulations. Each simulation
used real genotypes from N = 5,211 WTCCC2 samples and simulated phenotypes with (a) 1,250
or (b) 500 causal SNPs explaining 70% of variance, 60 standardized effect SNPs explaining 2%
of variance, and a 1% ancestry effect. In simulation group (a), we ran the MCMC modification of
BOLT-LMM for 1,000 iterations of the Gibbs sampler through all SNPs. We do not report
MCMC results for (b) because the Gibbs sampler had not converged after 1,000 iterations; we
hypothesize the MCMC was slow to mix in this case because of the small number of causal SNPs
resulting in a highly nonlinear model involving a few large effect sizes.
In simulation group (a) with M causal = 1,250, FaST-LMM-Select typically selected 100 top SNPs
to include in the mixed model; in (b) with Mcausal = 500, FaST-LMM-Select typically selected 300
top SNPs. In (a), we observed that FaST-LMM achieved lower power than BOLT-LMM-inf (as
measured by mean χ2 at standardized effect SNPs), which we found surprising, especially given
that FaST-LMM-Select reported that including 100 top SNPs in the mixed model achieved a 7%
average reduction in cross-validation prediction MSE (which is in between that achieved by
BOLT-LMM-inf and BOLT-LMM, consistent with our expectations). We are unsure why this
improvement in out-of-sample prediction MSE did not translate into improved association power,
although we also noticed that in (b), the association power achieved by FaST-LMM-Select was
lower than we expected given its cross-validation report (≈30% reduction in MSE).
The calibration results (mean χ2 at null SNPs) also show that in these simulations, the choice of
FaST-LMM-Select to use ≈100–300 SNPs in the mixed model led to mild inflation due to
inadequate stratification correction. Accordingly, the LD Score intercept for FaST-LMM-Select is
inflated relative to the other methods. (Note that the LD Score intercepts for the other methods,
which are properly calibrated, are slightly greater than 1 due to attenuation bias; see
Supplementary Note Section 1.5 for a detailed discussion.) Normalizing FaST-LMM-Select to
have the same LD Score intercept as BOLT-LMM-inf (which is how BOLT-LMM is calibrated)
produces a properly calibrated statistic: e.g., in (a) we get 1.021 / (1.026/1.008) = 1.003, which is
similar to the other methods. Note, however, that calibration alone does not solve the problem of
potential false positives at unusually differentiated markers.57



Supplementary Table 7. Correlations between mixed model statistics computed by various
mixed model methods under the infinitesimal model

R2 (s.e.m.) GCTA-LOCO GEMMA
BOLT-LMM-inf 0.999471 (0.000017) 0.962928 (0.000916)
EMMAX 0.963326 (0.000969) 0.999997 (0.000000)

Squared correlation coefficients between χ2 association statistics over all SNPs computed by
various mixed model methods using the simulation setup of Fig. 2 (real genotypes from the
WTCCC2 data set, simulated phenotypes with 5060 causal SNPs explaining 0.52 of phenotypic
variance). Means and standard errors over 5 simulations are reported. BOLT-LMM-inf and
GCTA-LOCO statistics both avoid proximal contamination via LOCO analysis but are expected
to differ slightly because GCTA-LOCO is the standard prospective statistic whereas
BOLT-LMM-inf is a retrospective statistic. EMMAX and GEMMA are both susceptible to
proximal contamination but are expected to differ slightly because GEMMA is an exact statistic
whereas EMMAX is an approximate statistic.
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Supplementary Table 8. Comparison of χ2 statistics computed by various methods at
known SNPs for WGHS phenotypes

# known # tagged # p < 0.05 Mean log fold # p < 0.05 Mean log fold
Phenotype SNPs SNPs PCA & LMM χ2 LMM / PCA PCA & BOLT χ2 BOLT / PCA
ApoB 59 (ref. [55]) 57 40 2.3 (1.4) 40 9.9 (2.1)
LDL 59 (ref. [55]) 57 45 1.4 (1.1) 45 8.7 (1.7)
HDL 72 (ref. [55]) 72 55 3.4 (1.2) 55 9.4 (1.8)
Cholesterol 73 (ref. [55]) 71 53 1.8 (1.1) 54 5.5 (1.2)
Triglycerides 41 (ref. [55]) 39 29 -0.6 (1.8) 29 1.7 (2.0)
Height 180 (ref. [56]) 170 131 6.0 (1.5) 134 6.2 (1.6)
BMI 32 (ref. [57]) 31 18 4.2 (1.8) 18 3.8 (1.8)
SystolicBP 20 (ref. [58]) 20 11 2.6 (1.9) 11 2.6 (1.9)
DiastolicBP 19 (ref. [58]) 19 9 3.2 (1.8) 9 3.0 (2.0)

The first two data columns provide additional information about known SNPs used in the power
comparison of Supplementary Table 9: # known SNPs, number of genome-wide significant
associated SNPs reported in largest GWAS to date; # tagged SNPs, number of such SNPs with an
R2 ≥ 0.2 tagging SNP typed in WGHS. (Note that for the ApoB phenotype, we used known
SNPs for the closely related LDL phenotype.) Sums of χ2 statistics compared in Supplementary
Table 9 were computed across the WGHS-typed tagging SNPs.
We also report here one additional metric for increase of power: Mean log fold-change in
χ2 statistics at tagging SNPs. This metric weights all tagging SNPs evenly (Supplementary
Table 9), whereas comparing sums of χ2 statistics weights stronger associations more heavily.
Because log fold-change is sensitive to noise from non-replicating SNPs, we restrict to tagging
SNPs with at least nominal significance (p < 0.05) according to both methods being compared.
Methods: PCA, linear regression using 10 principal components as covariates; LMM,
BOLT-LMM-inf; BOLT, BOLT-LMM. Errors, s.e.m.
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Supplementary Table 9. BOLT-LMM increases power to detect associations for WGHS
phenotypes

Prediction R2 χ2 incr. at known loci
Phenotype hg

2 PCA (%) LMM (%) BOLT (%) p-value LMM vs. BOLT vs.
Actual, Expected BOLT>PCA PCA (%) PCA (%)

ApoB 0.24 0.0 1.5 (0.1), 1.7 10.4 (0.3) 4.3E–6 1.5 (0.6) 10.0 (1.2)
LDL 0.18 0.1 1.0 (0.1), 1.0 7.5 (0.2) 2.8E–6 1.4 (0.6) 8.1 (0.8)
HDL 0.22 0.1 1.7 (0.1), 1.5 6.7 (0.2) 2.3E–5 1.7 (1.5) 7.1 (2.2)
Cholesterol 0.20 0.1 1.1 (0.1), 1.1 5.9 (0.1) 1.3E–6 1.7 (0.7) 6.9 (0.8)
Triglycerides 0.18 0.0 1.2 (0.1), 1.0 4.4 (0.3) 0.00014 0.4 (1.0) 3.1 (1.2)
Height 0.47 1.9 7.7 (0.4), 6.4 9.5 (0.3) 1.9E–6 6.4 (1.3) 7.6 (1.4)
BMI 0.23 0.0 1.6 (0.1), 1.5 2.1 (0.1) 8.5E–5 1.3 (1.4) 1.3 (1.5)
SystolicBP 0.17 0.2 1.0 (0.1), 0.8 1.0 (0.1) 0.00014 3.6 (2.2) 3.6 (2.2)
DiastolicBP 0.14 0.0 0.7 (0.0), 0.5 0.7 (0.0) 0.00017 2.9 (1.7) 2.7 (1.6)

We report relative power of different association tests using two roughly equivalent metrics:
comparison of χ2 statistics at known loci, a direct but noisy approach, and out-of-sample
prediction R2 based on the underlying model (both plotted in Figure 3. For reference, we also
report the heritability parameter hg

2 estimated by BOLT-LMM and expected prediction R2 for
LMM [34]. Methods: PCA, linear regression using 10 principal components; LMM, standard
(infinitesimal) mixed model; BOLT, BOLT-LMM Gaussian mixture model. Actual prediction R2

values are from 5-fold cross-validation: predictions for each left-out fold were computed by fitting
all SNP effects simultaneously (for mixed model methods) or estimating covariate effects (for
PCA) using the training folds. Note in particular that for PCA, only covariate effects, not SNP
effects, were used for prediction. Standard errors are across folds. Expected prediction R2 for
LMM was computed using N = 23, 294× 4/5 (taking into account the 5-fold cross-validation),
M eff = 60,000, and hg

2 estimated by BOLT-LMM, given that the WGHS data set contains little
relatedness. (Note that for height, actual prediction R2 for LMM is slightly higher than expected
because PCs explain a non-negligible amount of variance.) Significance for BOLT-LMM>PCA
prediction R2 was assessed using a one-sided paired t-test across folds. Percent increases in
χ2 statistics computed by various methods across known loci are comparisons between sums of
χ2 statistics over typed SNPs in highest LD with published associated SNPs from the largest
GWAS to date (Supplementary Table 8). Standard errors are jackknife estimates.
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Supplementary Table 10. Effect size mixture parameters chosen by BOLT-LMM for WGHS
phenotypes

Phenotype hg
2 f2 p

ApoB 0.24 0.1 0.01
LDL 0.18 0.1 0.01
HDL 0.22 0.1 0.01
Cholesterol 0.20 0.1 0.01
Triglycerides 0.18 0.1 0.01
Height 0.47 0.3 0.02
BMI 0.23 0.5 0.01
SystolicBP 0.17 0.5 0.5
DiastolicBP 0.14 0.5 0.01

We report the best-fit mixture-of-Gaussians prior on SNP effect sizes determined by BOLT-LMM
using cross-validation to optimize out-of-sample prediction R2. The spike and slab mixture of
Gaussians is parameterized by the total variance attributed to the combined Gaussian mixture
along with two mixture parameters: f2, the proportion of variance allotted to the spike component
(small-effect SNPs), and p, the probability that a SNP effect is drawn from the slab component
(large-effect SNPs). Note that f2 = 0.5, p = 0.5 corresponds to the infinitesimal model: when
f2 = 1− p, the two Gaussians are identical and the mixture is degenerate.
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Supplementary Table 11. Calibration of χ2 statistics computed by various methods for
WGHS phenotypes

Mean χ2 λGC
Phenotype LR PCA LMM BOLT-LMM LR PCA LMM BOLT-LMM
ApoB 1.110 1.098 1.103 1.109 1.061 1.049 1.055 1.054
LDL 1.100 1.079 1.084 1.091 1.055 1.039 1.042 1.045
HDL 1.108 1.096 1.100 1.100 1.073 1.066 1.068 1.065
Cholesterol 1.108 1.087 1.090 1.094 1.063 1.044 1.045 1.046
Triglycerides 1.098 1.092 1.089 1.090 1.069 1.059 1.058 1.057
Height 1.565 1.212 1.227 1.232 1.503 1.159 1.170 1.169
BMI 1.104 1.101 1.099 1.099 1.105 1.101 1.100 1.098
SystolicBP 1.102 1.063 1.076 1.076 1.102 1.061 1.074 1.074
DiastolicBP 1.073 1.056 1.062 1.062 1.074 1.058 1.061 1.062

Mean χ2 test statistics across all SNPs (left columns) and genomic inflation factors λGC (right
columns) using four methods: LR, linear regression; PCA, linear regression using 10 principal
components as covariates; LMM, BOLT-LMM-inf; and BOLT-LMM. In all cases, both mean
χ2 and λGC exceed 1 because of polygenicity. PCA, LMM, and BOLT-LMM are consistently
calibrated, whereas uncorrected linear regression suffers inflation due to population stratification,
especially for height. Standard errors for differences in mean χ2 statistics between pairs of
methods are all at most 0.001, with the exception of uncorrected linear regression vs. other
methods in the height analysis, for which the standard error is 0.003. Standard errors of the mean
χ2 statistics themselves are 0.003–0.004.
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Supplementary Table 12. Control for stratification: Height p-values at lactase computed by
various methods

LR PCA LMM BOLT-LMM
χ2 statistic 33.09 3.66 6.56 6.07
p-value 9× 10−9 0.06 0.01 0.01

We report χ2 statistics and p-values computed at rs2011946, the SNP typed in WGHS with
highest LD (R2 = 0.64 in 1000 Genomes reference samples) to lactase-associated SNP
rs4988235. Methods: LR, linear regression; PCA, linear regression using 10 principal
components as covariates; LMM, BOLT-LMM-inf; and default BOLT-LMM.
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Supplementary Table 13. Power of mixed model association vs. linear regression for
simulated case-control ascertained traits

(a) h2g = 0.25 (for liabilities underlying case-control phenotype)
Case prevalence

Method 50% 10% 5% 1% 0.1%
Linear regression 2.828 (0.010) 3.723 (0.015) 4.401 (0.015) 6.206 (0.020) 9.179 (0.026)
BOLT-LMM-inf 2.862 (0.010) 3.739 (0.015) 4.384 (0.015) 5.965 (0.018) 8.212 (0.023)
BOLT-LMM 2.887 (0.011) 3.767 (0.015) 4.397 (0.014) 5.859 (0.022) 7.869 (0.025)

(b) h2g = 0.5 (for liabilities underlying case-control phenotype)
Case prevalence

Method 50% 10% 5% 1% 0.1%
Linear regression 4.661 (0.014) 6.452 (0.021) 7.756 (0.023) 11.360 (0.030) 17.290 (0.043)
BOLT-LMM-inf 4.904 (0.016) 6.582 (0.022) 7.662 (0.021) 10.202 (0.025) 13.252 (0.033)
BOLT-LMM 5.165 (0.018) 6.798 (0.026) 7.826 (0.024) 9.816 (0.034) 12.326 (0.037)

We compare mean χ2 statistics over causal SNPs for linear regression, BOLT-LMM-inf, and
BOLT-LMM analysis of simulated case-control traits with prevalences ranging from 50%–0.1%.
We simulated genotypes by generating individuals as mosaics of up to 100 random “ancestors”
from the WTCCC2 data set, resampling ancestors every 500 SNPs. We restricted the SNP set to
the first 2,500 SNPs on each autosome, for a total of M = 55,000 SNPs (so that M effective ≈
10,000 independent SNPs). We simulated case-control phenotypes using a liability threshold
model in which we first generated continuous phenotypes with (a) h2g = 0.25 or (b) h2g = 0.5
explained by M causal = 1,000 markers and then defined cases as individuals with phenotypes
exceeding a threshold corresponding to the desired prevalence. In each simulation, we ascertained
5,000 cases and 5,000 controls for a total of N = 10,000 simulated individuals. We then ran
association analysis on the ascertained samples. Errors, s.e.m. over 100 simulations.
The results show that for non-ascertained traits, power of linear regression < BOLT-LMM-inf <
BOLT-LMM, consistent with our findings for quantitative traits. This trend reverses for
ascertained traits at a prevalence near 5%. For the infinitesimal mixed model vs. linear regression,
this result is consistent with the findings of ref. [12], which also observes that the relative
reduction in test statistics increases with h2g and the ratio N / M effective in addition to ascertainment
severity. In our simulations, N ≈M effective, so these simulations correspond to N ≈ 60,000 in real
data sets, which have M effective ≈ 60,000 [12]. For data sets with fewer than 60,000 samples,
case-control ascertainment will present less of a problem for mixed model methods than indicated
above.
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Supplementary Table 14. Precision of infinitesimal mixed model statistic calibration

Phenotype Mean prospective stat Mean retrospective stat Calibration factor
at 30 random SNPs (pre-calib.) at same SNPs cinf, equation (9)

ApoB 1.285 1.281 0.996 (0.001)
LDL 1.013 1.011 0.998 (0.000)
HDL 1.026 1.024 0.997 (0.001)
Cholesterol 0.989 0.986 0.997 (0.000)
Triglycerides 0.881 0.879 0.998 (0.000)
Height 0.783 0.777 0.993 (0.001)
BMI 0.900 0.897 0.997 (0.001)
Systolic BP 0.853 0.849 0.996 (0.001)
Diastolic BP 0.770 0.769 0.998 (0.001)

We report the BOLT-LMM-inf calibration factor for the nine analyzed WGHS phenotypes. This
calibration is similar to GRAMMAR-Gamma [10] but is estimated by computing statistics at only
30 SNPs. The standard errors (jackknife estimates) show that 30 SNPs are enough to achieve high
calibration precision.
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Supplementary Table 15. LD Score calibration factors in BOLT-LMM analyses of WGHS
phenotypes

Phenotype Calibration factor c, equation (11)
ApoB 1.004 (0.003)
LDL 1.001 (0.002)
HDL 1.001 (0.002)
Cholesterol 0.999 (0.002)
Triglycerides 1.000 (0.001)
Height 0.997 (0.001)
BMI 0.998 (0.001)
Systolic BP 0.996 (0.000)
Diastolic BP 0.998 (0.000)

We report the BOLT-LMM calibration factor for the nine analyzed WGHS phenotypes, which
equals the ratio of the LD Score intercepts of the uncalibrated BOLT-LMM statistic to that of the
BOLT-LMM-inf statistic. Standard errors are jackknife estimates leaving out each chromosome in
turn.
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