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Experimental Procedures 
 
Subject Recruitment and Sampling  
To expand our previous metagenomic survey, we re-sampled 12 healthy volunteers from our original study (Oh et 
al., 2014). Recruitment criteria, sampling procedure, and sample processing were as described previously. Briefly, 7 
males and 5 females adults <45 years without chronic skin diseases were sampled three times between June 2011 
and May 2014. Sample collection was approved by the Institutional Review Board of the National Human Genome 
Research Institute (http://www.clinicaltrials.gov/ct2/show/NCT00605878) and all subjects provided informed 
consent. Longitudinal samples were collected such that the span between time 1 and time 2 was 10-30 months, while 
5-10 weeks separated time 2 and time 3 (Figure S1B). This study design allowed the comparison of stability over a 
long and short time span. Individuals with a history of chronic medical conditions, including chronic dermatologic 
diseases, were excluded. 3 patients did report use of oral antibiotics between timepoint 1 and timepoint 2. However, 
in this study, antibiotic usage did not appear to induce discernible shifts in the overall diversity or structures of skin 
communities. Separate studies are necessary to fully understand the effects of oral antibiotics on the skin. Full 
sample characteristics are available in Table S1.  
 
17 sites were sampled to represent the diverse physiological characteristics of skin and the sites of predilection for 
certain dermatologic disease (Figure S1A): dry (hypothenar palm, volar forearm), moist (antecubital crease, inguinal 
crease, interdigital web space, popliteal crease), sebaceous (alar crease, back, cheek, external auditory canal, 
glabella, manubrium, occiput, retroauricular crease), and foot (plantar heel, toenail, toe web space). To obtain 
sufficient DNA for metagenomic sequencing, most sites were sampled using a swab-scrape-swab procedure, 
exceptions include the external auditory canal where only a swab was used and the toenail where a clipping was 
taken. All samples were stored in lysis buffer at -80C until DNA extraction.  
 
Sample Sequencing 
Procedures for library generation, sequencing, and processing of longitudinal samples were as previously described 
(Oh et al., 2014). Briefly, Nextera library kits were used to generate Illumina libraries per manufacturer's 
instructions with the exception of increasing from 6 to 10 PCR cycles. Libraries were sequenced on an Illumina 
HiSeq at the NIH Intramural Sequencing Center to a target of 15 to 50 million clusters of 2 x 100bp reads. In total, 
for 12 individuals, 3 timepoints, we obtained 594 samples or 8.4 trillon reads (722 Gbp) of non-human, quality-
filtered paired-end and singleton reads (median 17.9 million reads (1.4 Gbp) per sample). After human removal 
based on mapping to the hg19 human reference genome, all samples were processed to trim bases with quality score 
below 20 and remove reads less than 50 bp. To reduce computational burden, post quality control, samples with >20 
million reads were subsampled to 10 million paired end reads, and singletons were discarded. 
 
Taxonomic classification of skin species and diversity estimates.  
Taxonomic classifications were performed as previously described (Oh et al., 2014), except we updated the viral 
database, incorporating all Refseq viral genomes as of 06.2015. The microbial reference genome database in total 
included 2342 bacterial, 389 fungal, 6009 viral, and 67 archaeal. Reads not matching hg19 + hg19 rRNA were 
mapped to this genome collection using bowtie2’s —very-sensitive parameter retrieving the top 10 hits (Langmead 
and Salzberg, 2012). Reads mapping to multiple genomes were then reassigned using Pathoscope v1.0 (Francis et 
al., 2013), which uses a Bayesian framework to examine each read’s sequence and mapping quality within the 
context of a global reassignment. Read hit counts were then normalized by genome length and scaled to sum to one. 
Coverages were calculated using the genomeCoverageBed tool in the Bedtools suite (Quinlan and Hall, 2010). 
Because very low abundance organisms are represented by few reads, they are more susceptible to misclassification 
than more abundant genomes. To reduce the effects of low abundance misclassifications, we used genome coverage 
cutoffs for relative abundance and diversity calculations; genomes were binned with coverage cutoffs of ≥ 1, 0.1, 
0.01 or 0.001. A coverage cutoff of ≥ 1 was used for major analyses, a conservative number that produced 
classifications that most closely corresponded with the results from other common metagenomic classifiers (e.g., 
Metaphlan (Truong et al., 2015) or analysis using other methodologies like 16S rRNA and ITS gene sequencing (Oh 
et al., 2014). This number typically accounts for >99.9% of the community abundance. We used the Shannon 
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diversity index as well as species observed for diversity comparisons for bacterial classifications. All taxonomies 
were reconstructed to the species level, combining hits to multiple strain subtypes to reduce the potential for 
erroneous strain-calling (Table S2).  
 
Strain tracking of dominant skin species 
Strain tracking of the dominant skin commensals Propionibacterium acnes (Table S3) and Staphylococcus 
epidermidis (Table S5) was accomplished as described previously (Oh et al., 2014). Briefly, reference databases for 
P. acnes and S. epidermidis were compiled from all complete and draft genomes available on NCBI, 78 and 61, 
respectively. Whole genome alignment, with nucmer, was then used to identity the "core" region shared between all 
sequenced strains for a species. SNVs identified in these core regions were subsequently used to generate 
dendograms with PhyML 3.0. We then grouped strains into subtypes based on phylogenic distance, 12 for P. acnes 
and 14 for S. epidermidis (Figures S4B and S6B). Metagenomic reads were mapped to each species database with 
bowtie2 (-score-min L,-0.6,0.006, -k number of genomes) (Langmead and Salzberg, 2012) with zero tolerance for 
mismatches. The resulting alignment file was then processed with Pathoscope (-theta_prior 10 x 10^88) (Francis et 
al., 2013) to deconvolute multiple mapping reads. Accuracy of this strain-tracking approach was previously 
validated with extensive simulations (Oh et al., 2014).  
 
Identification of SNVs in the P. acnes core 
For each sample, coverage of the P. acnes core was calculated with samtools (Li, 2011) and genomecoveragebed 
(Quinlan and Hall, 2010). High average coverage nicely related to percent coverage of the P. acnes core (Figure S4). 
Back and manubrium samples had the highest P. acnes sequencing depth, so were selected for more extensive SNV 
analysis (Figure S4). Because P. acnes strains are shared across sites of an individual, these results can be 
extrapolated to the rest of the body. For SNV analysis, metagenomic reads were first mapped against the P. acnes 
core genome using bowtie2 (--very-sensitive). The resulting alignment file was sorted by samtools and then 
processed with GATK's IndelRealigner (McKenna et al., 2010) to minimize mismatches resulting from insertions or 
deletions in the reads with respect to the reference genome. The corrected alignment file was then analyzed with 
samtools and bcftools to identify possible variants (samtools mpileup -uD -q30 -Q30, bcftools view -Abvcg, 
vcfutils.pl varFilter -D99percentileofcoverage -d4 -1 .00001 -4 .00001). Parameters were selected to filter false 
positive polymorphisms that were a result of sequencing error, recent sequence duplications not found in the draft 
genome, strand bias, or end distance bias. Possible variants were then filtered with custom scripts to meet criteria 
previously described (Lieberman et al., 2014). Briefly, an alternate allele was only considered if it was supported by 
>2 reads with a minimum mapping quality of 30, had an allele frequency >3%, and fewer than 20% of reads 
supporting the SNV also mapped to an indel. With rarefaction curves of SNVs discovered over increasing read 
depths (Figure 5C), we found that 1 million reads, 40X coverage of the P. acnes core, was sufficient for variant 
discovery. Thus, to reduce computational burden only subsamples of 1 million reads were used for further analysis.  
 
Pangenome analyses of dominant skin species  
To identify the functional capacity of dominant species in our metagenomic samples, we followed the procedure 
illustrated in Figures S5A. First, 196,083 P. acnes nucleotide-coding sequences were downloaded from NCBI and 
147,257 S. epidermidis sequences were extracted from Manatee annotations of the genomes. The IGS Analysis 
Engine was used for structural and functional annotation of the sequences. 
(http://ae.igs.umaryland.edu/cgi/index.cgi, Galens et al., 2011). Manatee was used to view annotations 
(http://manatee.sourceforge.net/). Genes were then clustered into non-redundant orthologs with usearch (-
cluster_fast -id 0.80 -centroids) (Edgar, 2010). To validate accuracy of the clustering, we verified the presence of 13 
single copy marker genes (Greenblum et al., 2015). Singletons, clusters composed of a single sequence, were then 
filtered based on previously established criteria (Lefebure and Stanhope, 2007). Briefly, singletons were excluded if 
they 1) were shorter than 150 nucleotides, 2) were flagged as low complexity by Prinseq (Schmieder and Edwards, 
2011), or 3) overlapped the beginning or end of a contig. 4) had a blast hit to a cluster at -e 1e-10. Based on this 
criteria 359 P. acnes and 874 S. epidermidis singletons were removed, leaving 3,774 and 5,627 gene clusters 
respectively (Table S4 and Table S5, respectively). Gene accumulation curves for these clusters mirrored previous 
pangenome studies for P. acnes (Tomida et al., 2013) and S. epidermidis (Conlan et al., 2012). The curves showed 
that new genes discovered with additional genomes and the pangenome followed a power law curve, while core 
genome size fit an exponential decay curve (Figure S5B,C, Figure S6C,D). These gene clusters were then annotated 
by BLASTx against the KEGG database. To identify the functional capacity of a sample, reads were mapped to each 
of the gene cluster databases using bowtie2 (--very-sensitive). A gene was subsequently considered present only 
when 40% of its length was covered with reads. This criteria reduces gene calling due to spuriously mapped reads or 
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reads from orthologs of closely related species (Zhu et al., 2015). Average coverage of each gene was calculated 
with samtools (Li, 2011) and then normalized by the average coverage of 13 single copy marker genes (Greenblum 
et al., 2015) to yield a copy number estimate. 
 
Statistics 
All statistical analyses were performed in the R software. Data are represented as mean ± standard error of the mean 
unless otherwise indicated. Spearman correlations of non-zero values were used for all correlation coefficients. Site 
characteristics were treated as separate groups where indicated based on spatial physiological differences between 
these different body niches (Grice et al., 2009). Supervised random forest models to identify discriminatory taxa and 
modules were implemented with the randomForest package in R (Liaw and Wiener, 2002). For all boxplots, black 
center lines represent the median and box edges the first and third quartiles. The nonparametric Wilcoxon rank-sum 
test was used to determine statistically significant differences between microbial populations. Unless otherwise 
indicated, P-values were adjusted for multiple comparisons using the p.adjust function in R using method = “fdr”. 
Statistical significance was ascribed to an alpha level of the adjusted P-values ≤ 0.05. Similarity between samples 
was assessed using the Yue–Clayton theta or Jaccard similarity index with relative abundances of species, sub-
strains, or shared genomic variants. The theta coefficient assesses the similarity between two samples based on (1) 
number of features in common between two samples, and (2) their relative abundances with θ = 0 indicating totally 
dissimilar communities and θ = 1 identical communities (Yue and Clayton 2005). As θ takes into account species 
abundance, it is less susceptible to low-abundance species whose classifications are less robust. The Jaccard 
similarity index is a metric defined by the union of the species occurring between two samples. To avoid repeated 
measures, samples belonging to an individual were averaged before statistical comparisons between site 
characteristic when using summary metrics such as means, diversity, or theta indices.  
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