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Supplementary Note to Qin et al. (2021) “Combined effects of host genetics 
and diet on human gut microbiota and incident disease in a single 

population cohort”. 
 
Due to space constraints, details about various parts of the results and methods were added to 
this associated Supplementary Note. 
 
Supplementary Results 
 
Replication of previous microbiome GWAS signals 
 
We assessed whether previously reported association signals were replicated in FINRISK02. 
Briefly, our replication approach was almost identical to that of Rotschild et al. (2018)1, in 
which we examined whether matched associations between our results and previous work 
surpassing a Bonferroni-corrected significance threshold also involved identical microbial taxa 
or equivalent GTDB-NCBI taxon synonyms. In total, we considered 547 SNPs reported 
associated with gut microbial features in 8 studies1–8, regardless of their passing genome-wide 
significance, or their proxies in high LD (r2>0.8). We observed frequent phylum-level 
replication of previously reported variants (Supplementary Table 3), indicating that statistical 
power of microbiome GWAS is a key issue. In particular, 150 previously reported associations 
and the same or proxy SNPs in FINRISK02 surpassed Bonferroni-corrected significance 
(p<9.12×10-5); these encompassed the LCT locus as well as 20 other loci.  
 
Supplementary Methods 
 
Taxonomic profiling, quality filtering and data transformation (detailed section) 
 
Taxonomic profiling of FR02 metagenomes was performed as follows: briefly, raw shotgun 
metagenomic sequencing reads were mapped using the k-mer-based metagenomic 
classification tool Centrifuge9 to an index database custom-built to encompass reference 
genomes that followed the taxonomic nomenclature introduced and updated in the GTDB 
release 8910–12. This implies that unless specified otherwise, all taxonomic names in our study 
refer to their nomenclature in GTDB, which can be related to the original NCBI nomenclature 
using the GTDB database server: https://gtdb.ecogenomic.org/taxon_history/. The same 
profiling approach has also been used and described in recent studies from our consortium3,4,13. 
 
Gut microbial composition was represented as the relative abundance of taxa. For each 
metagenome at phylum, class, order, family, genus and species levels, the relative abundance 
of a taxon was computed as the proportion of reads assigned to the clade rooted at this taxon 
among total classified reads. The relative abundance of a taxon with no reads assigned in a 
metagenome was considered as zero in the corresponding profile. For the purpose of this 
association study and because of reduced accuracy and power when considering rare taxa, we 
focused on common and relatively abundant microbial taxa, defined as prevalent in >25% 
studied individuals, and defined with at least 10 mapped reads per individual. For the purpose 
of association, and as previous studies have reported that only some microbial taxa are 
inheritable14, we also removed taxa with zero SNP-heritability. This filtering resulted in a 
microbial dataset composed of a total of 2,801 taxa, including 59 phyla, 95 classes, 187 orders, 
415 families, 922 genera and 1,123 species.  
 



Taxonomic profiles derived from sequencing data are by nature compositional because of an 
arbitrary total imposed by the instrument15. The compositional data of microbial taxa is not 
independent and can lead to inappropriate use of linear regression. To overcome this artificial 
bias, all relative abundance values were transformed by centre-log-ratio (CLR)16. CLR 
transformed data can vary in real space and better fit the normality assumption of linear 
regression. To minimize the impact of zeros, the reads count profiles were shifted by +1 before 
the transformation. The choice of zero modification method depends on our understanding of 
what would constitute a “zero” in our data. As we stringently focus on taxa present in >25% 
individuals, it is reasonable to assume that a lot of the taxa below this threshold could likely be 
detected if sequencing depth was higher than our study. We conceptually used the +1 shift of 
matrix as a proxy for the effect of increasing sequencing effort, which would affect all taxa. 
This process was performed using the R package compositions.  
 
When visually comparing relative abundances in groups of individuals throughout the 
manuscript, we used untransformed relative abundances, for better interpretability. Alpha 
(Shannon index) and beta (Bray-Curtis distance) diversity were calculated at genus level used 
functions in the R package vegan. We did not find a correlation between sequencing depth and 
Shannon diversity index (Spearman’s ⍴=-0.001598, p=0.90) in n=5,959 samples (Extended 
Data Figure 9). Additionally, to define CLR-transformed abundances of higher taxonomic 
levels than species, we summed the raw abundances of all taxa (e.g. species) belonging to a 
specific higher taxonomic taxon (e.g. genus), and then applied a CLR transformation. 
 
Additionally, we observed that Eastern and Western Finnish populations did not have different 
microbiome diversity, despite having overall slightly different lifestyles, and mortality rates. 
To further investigate this, we visualised potential geographical effects using a PCoA plot on 
beta-diversity (Bray-Curtis dissimilarity) from metagenomic profiles of samples used in the 
GWAS from our study (n=5,959; Extended Data Figure 10). 
 
Our study presents results involving the bacterium Faecalicatena lactaris, a taxonomic 
definition introduced in GTDB release 89, and which was used throughout this study. F. 
lactaris was reclassified in the latest (to date) release of GTDB (release 95) as 
Mediterraneibacter lactaris, a new taxonomic definition. Future taxonomic reclassifications of 
bacterial species according to the GTDB taxonomic system can be checked on the GTDB 
website at: https://gtdb.ecogenomic.org/. 
 
Note on GTDB nomenclature of Faecalicatena lactaris 
 
Our study presents results involving the bacterium Faecalicatena lactaris, which was used 
throughout this study. Reference genomes from NCBI used to define this taxa were initially 
belonging to a Candidate Ruminococcus lactaris species and as such, F. lactaris was initially 
called Ruminococcus_B lactaris in GTDB releases 80, 83 and 86. Release 89 (used in our 
study) introduced the F. lactaris nomenclature, which was finally reclassified in GTDB 
releases 95 and 202 as Mediterraneibacter lactaris. Future taxonomic reclassifications of 
bacterial species according to the GTDB taxonomic system can be checked on the GTDB 
website at: https://gtdb.ecogenomic.org/. 
 
Replication of previously reported associations (detailed section) 
 
To evaluate the reproducibility of our results with previously reported associations, we 
collected GWAS summary results from 8 studies published in peer-reviewed journals at the 



time of this work14,24–30. These studies reported associations between 548 SNPs and microbial 
features. ANNOVAR was used to annotate the reported SNPs to the hg38 human reference 
genome23 and we used GCTA31 to identify a further 15,427 SNPs in high LD (r2>0.8, within 5 
Mbp) with any of these 548 SNPs. To assess replication, we first examined whether previously 
reported associations could be matched in our results to identical or linked SNPs, with an 
association below the Bonferroni-corrected suggestive significance threshold, which was set 
to 0.05/548 = 9.124×10-5. Our study follows the GTDB taxonomic system10,11, implying 
inherent taxonomic inconsistencies with microbial taxa named according to their NCBI 
taxonomic nomenclature. Similarly to the approach undertaken in previous microbiome 
GWAS studies28, we then compared whether matched associations between previous studies 
and this work also involved microbial taxa belonging to phylogenetically related taxa, i.e. the 
same GTDB phyla, which we then considered as replicated below the suggestive significance 
threshold. As all previous studies followed the NCBI taxonomic nomenclature, we identified 
the most probable corresponding GTDB phylum using the Taxon History tool from the GTDB 
website (https://gtdb.ecogenomic.org/taxon_history/). 
 
Bidirectional two-sample Mendelian randomization (MR) analysis (detailed section) 
 
Causal relationships between diseases and gut microbiota were investigated at genus and 
species levels only to maximise interpretability. In total, 213 species and 148 genera associated 
with at least one variant at genome-wide significant level (p<1´10-8) were included. GWAS 
summary results were collected for 46 diseases from MR-Base36 (Supplementary Table 4). 
These included 12 autoimmune or inflammatory diseases, 9 cardiometabolic diseases, 13 
psychiatric or neurological diseases, cardiovascular diseases, 4 bone diseases and 8 cancers. 
For disease with more than one GWAS records, the record with the largest sample size was 
kept. 
 
Bi-directional causal inference was performed as follows to infer causal effects of microbial 
abundance variation (exposure) on disease risk (outcome), and of disease (exposure) on 
microbial abundance levels (outcome). To select the SNP instruments for microbial exposures 
in our study (Supplementary Table 7), we followed recommendations from a previous study 
showing that associated SNPs below a significance threshold of p<1´10-5 had the largest 
explained variance on microbial features37. For each taxon, GCTA-COJO was used to perform 
a conditional analysis to select independently associated SNPs at p<1´10-5. F-statistics were 
calculated to estimate the strength of instruments for each variable, and were found to be all 
>10 (Supplementary Table 5). SNP instruments for disease exposures were selected at 
genome-wide significant threshold (p<5´10-8). Subsequently LD-clumping with a strict 
threshold (r2<0.001 in 1000G EUR within 10 Mb windows) was conducted to select 
independent instruments with the lowest p values for taxa and diseases, respectively. 
 
Effective alleles of all genetic variants were oriented to the risk-increasing alleles of exposures. 
For each inference, five different MR methods were used to estimate the causal effect: (1) 
inverse variance weighted (IVW)38, (2) weighted median39, (3) simple mode40, (4) weighted 
mode40 and (5) MR-Egger41. IVW is the most sensitive method which requires all instruments 
are valid. But in reality, it is hard to verify that no any genetic instrument violates any 
instrumental assumptions. Weighted median only requires at least half of the instruments are 
valid, making its inference robust to the cases where some instruments violating the 
assumptions. Simple mode and weighted mode rely on the largest group of similar instruments, 
reducing the effects of other instruments especially outliers. MR-Egger allows instruments 
having non-zero pleiotropy and provides way to test and estimate the pleiotropy effect in 



addition to causal estimate. As these methods are based on different assumptions, the 
consistency among them indicates a credible estimate42, even if discrepancy in these methods 
does not necessarily suggest the absence of causality. A predicted causal estimate was deemed 
interesting in our study if: (1) it reached a nominal p<0.05 for at least three of the five tested 
methods, (2) directionality testing supported the causal direction, and (3) no significant casual 
effect in the reverse direction. In addition, MR-PRESSO43 was used to formally detect and 
correct for the pleiotropic outliers. Analyses were conducted using the R package 
TwoSampleMR36.  
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