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Monte Carlo Integration



Monte Carlo Integration

Example: Let X ~T1(3/2,1), i.e.

f(x) = Vxe *I(x > 0).

2
N

Suppose we want to find

1
b=E [(X+1)|og(x+3)

o0 1 2
:/0 (x—kl)log(x—k3)ﬁ\/}e .

The expectation (or integral) € is intractable, we don’t know how
to compute it analytically.




Monte Carlo Integration

One possible solution is to approximate 6 using
Monte Carlo integration. If Y7, Ya,... are i.i.d. with E|Y;| < oo
then

7=>_ Y;®EY; (SLLN).
i=1

Suppose Xi, Xp, ... arei.i.d '(3/2,1) and define
Y; = [(X; + 1) log(X; +3)] . Then since E|Y;| < co we have

1

Z [(Xi + 1) log(X; +3)] " 5 E {(X + 1) log(X + 3)

i=1




Monte Carlo Integration

Thus is we had a way to “generate” or “simulate” or “draw”
(3/2,1) random variables, we could obtain a large number of
them and claim

zn: [(Xi + 1) log(X; +3)] L ~ 0.
i=1

An obvious question is how good is this approximation?



Monte Carlo Standard Error

Suppose Y1, Y, ... arei.i.d. with E|Y?| < oo then the CLT says

\/E(}_/n - Eyl) i) N(

o

0,1).
That is, for sufficiently large n,
7n ~ N(EY1,02/n).

Further, we can estimate the standard error o/+/n with s,/\/n
where s, is the sample standard deviation.



Monte Carlo Standard Error

We can also use the CLT form a confidence interval with

Pr(, — 1.96s,/v/n < EY1 < Jn + 1.965,/+/n) ~ 0.95.

Or we could simulate until a half-width (or width) of this
confidence interval is sufficiently small, say less than ¢ > 0. That
is, simulate until

1.96s,//n < e.



Toy Example

Example: Let X ~1(3/2,1), i.e.

f(x) = j% xe (x> 0).

Suppose we want to find

1
0=E
[(X + 1) log(X + 3)

o0 1 2
:/0 (x—kl)log(x—k3)ﬁ\/}e .

Further, suppose we want to estimate this quantity such that a
95% Cl length is less than 0.002.




Toy Example Code

set.seed(500)

## Monte Carlo Toy Example

n <- 1000

x <- rgamma(n, 3/2, scale=1)

mean (x)

y <= 1/((x+1)*log(x+3))

est <- mean(y)

est

mcse <- sd(y) / sqrt(length(y))
interval <- est + c(-1,1)*1.96*mcse
interval



Toy Example Code

## Implementing the sequential stopping rule
eps <- 0.002

len <- diff(interval)

plotting.var <- c(est, interval)

while(len > eps){

new.x <- rgamma(n, 3/2, scale=1)

new.y <- 1/((new.x+1)*log(new.x+3))

y <- cbind(y, new.y)

est <- mean(y)

mcse <- sd(y) / sqrt(length(y))

interval <- est + c(-1,1)*1.96*mcse

len <- diff(interval)

plotting.var <- rbind(plotting.var, c(est, interval))

}



Toy Example Code

## Plotting the results

temp <- seq(1000, length(y), 1000)

plot(temp, plotting.var[,1], type="1", ylim=c(min(plotting.var),
max(plotting.var)), main="Estimates of the Mean", xlab="Iterations",
ylab="Estimate")

points(temp, plotting.var[,2], type="1", col="red")

points(temp, plotting.var[,3], type="1", col="red")

legend("topright", legend=c("CI", "Estimate"), lty=c(1,1), col=c(2,1))



Toy Example

Estimates of the Mean
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Figure: Results from one simulation using a cut-off of e = 0.002.



High-Dimensional Examples

FiveThirtyEight's NBA Predictions
Vanguard's Retirement Nest Egg Calculator

Minitab's Monte Carlo Simulation Software for
Manufacturing Engineers

Fisher's Exact Test in R


http://projects.fivethirtyeight.com/2016-nba-picks/
https://retirementplans.vanguard.com/VGApp/pe/pubeducation/calculators/RetirementNestEggCalc.jsf
http://blog.minitab.com/blog/adventures-in-statistics/understanding-monte-carlo-simulation-with-an-example
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/fisher.test.html

Bayesian Statistics



Bayesian Statistics

e Suppose X has a distribution parameterized by 6.

e Let () be a density assigned to 6 before observing any data.
This density is call the prior distribution.

e Bayesian inference is driven by the likelihood, L(6]|x).



Bayesian Statistics

Starting with our prior, after observing data we can update our
beliefs to form a posterior distribution (via Bayes Rule), i.e.

f(0]x) = cf(0)L(0]x)
where

c which is often difficult to compute).

_ 1
= TrOLExde

The posterior, f(0]x) is used for Bayesian inference on 6.



Bayesian Statistics

Example: Suppose Xi,..., X, are i.i.d. N(0,0?) where o2 is
known. Suppose further we have a prior 6 ~ N(u, 7). Then the
posterior can be obtained as follows,

f(0]x)  £(0 Hf xi|0)

con L(0-0P Tt o))
(oY
2 1
1/72 + n/o?

X exp



Bayesian Statistics

Or £(0|x) ~ N(un, 72) where

_ (o XY o 2 _ 1
un<7_2+02>7n and Tn—1/72+n/02.

Notice, this is a conjugate Bayes model. Also note a 95% credible
region for 6 is given by (this is also the HPD, highest posterior
density)

(pn — 19674, p + 1.967,) .

For large n, the data will overwhelm the prior.



Bayesian Statistics

e If f(0) o 1, an improper prior, then a 95% credible region for
0 is the same as a 95% confidence interval since
f(0|x) ~ N(x,02/n) (try to show this at home).

e Usually, we specify a prior and likelihood that result in an
posterior that is intractable. That is, we can't work with it
analytically or even calculate the appropriate normalizing
constant c.

e However, it is often easy to simulate a Markov chain with
f(0|x) as its stationary distribution.



Markov Chain Basics

Consider discrete time, discrete state space Markov chains. If
P(Xt+1 :J"XO = X0y, Xt = i) = P(Xt+1 :j‘Xt = i) = Pij

forall t, xo,...,xn € S, i,j € S, then {X;} is a Markov chain (time
homogeneous). This is governed by a Markov transition matrix

Poo pPo1 P02 --- Pon
pio P11 P12 ... PpP1
P= ] o ,n (rows sum to one).

Pn0 Pni Pn3 ... Pnn



Markov Chain Basics

Limit theory of Markov chains is important.
e A state the chain returns to w.p.1 is recurrent.
e |f the expected time to return is finite, then non null.
o If the expected time to return is infinite, then null recurrent.
e A chain is irreducible if for all 7, pairs there exists m > 0
such that P(Xmi+n = i| X, =j) > 0.
e A chain is periodic if it can only visit portions of the state
space at regular intervals, d is the smallest divisor of the
times.

e A chain is aperiodic if d = 1.



Markov Chain Basics

A Markov chain is ergodic if it is irreducible, aperiodic, and all
its states are non null and recurrent.

Suppose 7 is such that 7P = m, then 7 is the stationary (or
invariant) distribution for P.

If {X:} is irreducible and aperiodic, then 7 is unique and
And for any function h

T hx) 5 £ [A(X)].
i=1

This is the ergodic theorem, a generalization of the SLLN.



Markov Chain Monte Carlo



Markov Chain Monte Carlo

MCMC methods are used most often in Bayesian inference where f
or m is a posterior distribution. Challenge lies in construction of a
suitable Markov chain with f as its stationary distribution. A key
problem is we only get to observe t observations from {X;}, which
are serially dependent.

Questions to Consider:
How good are my MCMC estimators?
How long to run my Markov chain simulation?
How to compare MCMC samplers?
What to do in high-dimensional settings?



Metropolis-Hastings Algorithm

Setting Xo = xp (somehow), the Metropolis-Hastings algorithm
generates X;y1 given X; = x; as follows:

® Sample a candidate value X* ~ g(-|x¢) where g is the
proposal distribution.

® Compute the MH ratio R(x;, X*), where

F(x")g(xt|x")

RO X = F el )

© Set
{x* w.p. min{R(xe, X*),1}
Xey1 = .
X; otherwise.



Metropolis-Hastings Algorithm

e Irreducibility and aperiodicity depend on the choice of g, these
must be checked.

e Performance (finite sample) depends on the choice of g also,
be careful.



Independence MH Chains

Suppose g(x*|x:) = g(x*), this yields an independence chain since
the proposal does not depend on the current state. In this case,
the MH ratio is .
R(Xt,X*) —_ f(X )g(xt)’
f(xe)g(x*)
and the resulting Markov chain will be irreducible and aperiodic if
g > 0 where f > 0.

A good envelope function g should resemble f, but should cover f
in the tails.



Random Walk MH Chains

Generate X* such that € ~ h(:) and set X* = X; +¢€. Then
g(x*|x¢) = h(x* — x¢). Common choices of h(-) are symmetric zero
mean random variables with a scale parameter, e.g. a

Uniform(—a, a), Normal(0,02), c* T,,...

For symmetric zero mean random variables, the MH ratio is

R(x¢, X™*) =

If the support of f is connected and h is positive in a neighborhood
of 0, then the chain is irreducible and aperiodic.



Markov Chain Basics

Exercise: Suppose f ~ Exp(1).
@ Write an independence MH sampler with g ~ Exp(6).
® Show R(x¢, X*) = exp {(x — x*)(1 —0)}.
© Generate 1000 draws from f with 6 € {1/2,1,2}.
©® Write a random walk MH sampler with h ~ N(0, o).
@ Show R(xt, X*) = exp {xt — x*} I(x* > 0).
@ Generate 1000 draws from f with o € {.2,1,5}.

@ In general, do you prefer an independence chain or a random
walk MH sampler? Why?



Metropolis Hastings Code

## Introduction to MH Samplers

## Independence Metropolis sampler with Exp(theta) proposal.

ind.chain <- function(x, n, theta = 1) {
## if theta = 1, then this is an iid sampler
m <- length(x)
x <- append(x, double(n))
for(i in (m+1):length(x)){
x.prime <- rexp(1l, rate=theta)
u <- exp((x[(i-1)]-x.prime)*(1-theta))
if (runif (1) < u)
x[i] <- x.prime
else
x[1] <= x[@GE-D)]
}

return(x)



Metropolis Hastings Code

## Random Walk Metropolis sampler with N(O,sigma) proposal.

rw.chain <- function(x, n, sigma = 1) {
m <- length(x)
x <- append(x, double(n))
for(i in (m+1):length(x)){
x.prime <- x[(i-1)] + rnorm(1, sd = sigma)
u <- exp((x[(i-1)]-x.prime))
u
if (runif(1) < u &% x.prime > 0)
x[i] <- x.prime
else
x[i] <- x[(E-1)]
}
return(x)

}



Metropolis Hastings Code

## Simulations

trial0 <- ind.chain(1, 200, 1)
triall <- ind.chain(1, 200, 2)
trial2 <- ind.chain(1, 200, 1/2)
rwl <- rw.chain(1, 200, .2)

rw2 <- rw.chain(1, 200, 1)

rw3 <- rw.chain(1, 200, 5)

## Plotting

par (mfrow=c(2,3))

plot.ts(trialO, ylim=c(0,6), main="IID Draws")
plot.ts(triall, ylim=c(0,6), main="Independence with 1/2")
plot.ts(trial2, ylim=c(0,6), main="Independence with 2")
plot.ts(rwl, ylim=c(0,6), main="Random Walk with .2")
plot.ts(rw2, ylim=c(0,6), main="Random Walk with 1")
plot.ts(rw3, ylim=c(0,6), main="Random Walk with 5")

par (mfrow=c(1,1))



Metropolis Hastings Code

## Writing out a plot
pdf ("MHPlot.pdf")
par (mfrow=c(2,3))

plot.
plot.
plot.
plot.
plot.
plot.

ts(trialO, ylim=c(0,6), main="IID Draws")
ts(triall, ylim=c(0,6), main="Indepdence with 1/2")
ts(trial2, ylim=c(0,6), main="Indepdence with 2")
ts(rwl, ylim=c(0,6), main="Random Walk with .2")
ts(rw2, ylim=c(0,6), main="Random Walk with 1")
ts(rw3, ylim=c(0,6), main="Random Walk with 5")

par (mfrow=c(1,1))
dev.off ()
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Gibbs Sampling

Works with a univariate (or blocks) conditional distribution, which
are often available in closed form. Consider the following notation

X = (X(l),...,X(P)>T and

(1) _ (X(l), XU XD 7X(p)> T

If £(x()|x(=)) is available in closed form, then the Gibbs sampler
is as follows.



Gibbs Sampling

@ Select starting values xg and set t = 0.
@® Generate in turn (deterministic scan Gibbs sampler)
1 (-1)
xioh ~ F(xWl )

2 3
X§+)1 ~ P )LL)
) (2 (4
Xt+1 ~ f(x® t(+)1, t(+)1»X( )7"~7X§p))

X8, ~ (PP
© Increment t and go to Step 2.



Gibbs Sampling

e Common to have one or more components not available in
closed form. Then one can just use a MH sampler for those
components known as a Metropolis within Gibbs or Hybrid
Gibbs sampling.

e Common to “block” groups of random variables.



Capture-recapture Study

Exercise: Data from a fur seal pup capture-recapture study. Goal
is to estimate the number of pups in a fur seal colony using a
capture-recapture study.

|1 2 3 4 5 6 7
Captured ¢ 30 22 29 26 31 32 35
Newly Caught m; |30 8 17 7 9 8 b5

Table: Count of fur seal pup capture-recapture study for i = 7 census
attempts.



Capture-recapture Study

Let N be the population size, | be the number of census attempts
where ¢; were captured (/ =7 in our case), and r be the total
number captured (r = Zle m; = 84).

We consider a separate unknown capture probability for each
census (g, ..., a ) where the animals are equally “catchable”.
Then

N!

1
Ci 3 N—C,‘
L(N,aC,r)O((IV_r)!iI:[lOéi (l—Oél) .



Capture-recapture Study

Assume N and « are apriori independent with

F(N) oc 1 and f(aj|f1,62) "% Beta(6y, 6,).

We use 01 = 6, = 1/2, which is the Jeffrey’s Prior. The resulting
posterior is proper when [ > 2 and recommended when [/ > 5.



Capture-recapture Study

Then it is easy to show the posterior is

/

f(N,alc,r) o 'Hac'l—oz,N C’H _1/2

Further, one can show

I
N — 84|a ~ NB (85, 1-JJa- a,-)> and

i=1
aj|N ~ Beta(c;i +1/2, N — ¢; +1/2) for all /.

1/2'



Capture-recapture Study

Then we can consider the chain
(N, o) — (N/,oz) — (N’,o/)

(N,a) — (N,o/) — (N’,o/) ,

where both involve a “block” update of a.

The following R code implements the Gibbs sampler above along
with some measures of uncertainty for the resulting estimators.



Capture-recapture Code

set.seed (1)

## Capture-recapture Data

captured <- c(30, 22, 29, 26, 31, 32, 35)
new.captures <- c(30, 8, 17, 7, 9, 8, 5)
total.r <- sum(new.captures)



Capture-recapture Code

## Gibbs Sampler

gibbs.chain <- function(n, N.start = 94, alpha.start

output <- matrix(0, nrow=n, ncol=8)

for(i in 1:n){

neg.binom.prob <- 1 - prod(l-alpha.start)
N.new <- rnbinom(1l, 85, neg.binom.prob) + total.r
betal <- captured + .5

beta2 <- N.new - captured + .5

alpha.new <- rbeta(7, betal, beta2)
output[i,] <- c(N.new, alpha.new)

N.start <- N.new

alpha.start <- alpha.new

}

return(output)

}

rep(.5,7)) {



Capture-recapture Code

L S s s s S s T
## Preliminary Simulations

trial <- gibbs.chain(1000)

plot.ts(triall,1], main = "Trace plot for N")

for(i in 1:7){

plot.ts(triall, (i+1)], main = paste("Trace plot for Alpha", i))
readline("Press <return to continue")

}

acf(triall[,1], main = "Lag Correlation plot for N")

for(i in 1:7){

acf (triall, (i+1)], main = paste("Lag Correlation plot for Alpha", i))
readline("Press <return to continue")

}



Capture-recapture Code

## Simulations

sim <- gibbs.chain(10000)

N <- sim[,1]

alphal <- sim[,2]

hist(N, freq=F, main="Estimated Marginal Posterior for N")

hist(alphal, freq=F, main ="Estimating Marginal Posterior for Alpha 1")

library(mcmcse)

ess(N)
ess(alphal)

estvssamp (N)
estvssamp(alphal)



mcse (N)
mcse.q(N, .05)
mcse.q(N, .95)

mcse (alphal)
mcse.q(alphal, .05)
mcse.q(alphal, .95)

Capture-recapture Code



Capture-recapture Code

current <- sim[10000,] # start from here is you need more simulations
sim <- rbind(sim, gibbs.chain(10000, N.start = current[1],

alpha.start
N.big <- sim[,1]

current[2:8]))

hist(N.big, freq=F, main="Estimated Marginal Posterior for N")

ess(N)
ess(N.big)

estvssamp (N)
estvssamp(N.big)

mcse (N)
mcse(N.big)

mcse.q(N, .05)
mcse.q(N.big, .05)
mcse.q(N, .95)
mcse.q(N.big, .95)



MCMC Qutput Analysis

e Let 7 be a probability distribution having support X C R9,
d > 1 we want to explore.

e When i.i.d. observations are unavailable, a Markov chain with
stationary distribution 7 can be utilized.

e Summarize 7 with expectations, quantiles, density plots ...



Target Features

Consider estimating an expectation with respect to 7w denoted

0=E,g= /Xg(x)ﬂ(dx),

where g : X — R.
However, this expectation is often intractable.

@ is an unknown quantity | would like to estimate using
simulated data.

Let X = {X(@ XM .} be a Markov chain.
Usually, XU) ~ F; ;é 7 and Cov(g(XW)), g(XU+1)) > 0.



Monte Carlo Error

e We can often find a consistent estimator of , say

0, =g(n) = inzfg (X(j)) .
j=0

e Want 6, — 6, the Monte Carlo error, to be small.

e Under regularity conditions, a Markov chain CLT holds,

Vn (0, —0) 4 N (0,0%) where

o0

0% = Var, [g] + 2 Z Covr [g(X(O)), g(XOFkY I
k=1



Monte Carlo Error

e Let 5(n) denote an estimator of o. Then the CLT allows
construction of a 100(1 — 4)% confidence interval with width

&(n)

vn'

e Suppose € > 0, then a fixed-width stopping rule terminates
the simulation the first time w, < €.

Wn = 2257



AR(1) Model

Consider the Markov chain such that
Xi = pXi—1+ €

where ¢; N(0,1).
e Consider X; =0, p = .95, and estimating E;X = 0.
e Run until

A

wp = 22.9750—\(};) <02

where 6(n) is calculated using batch means.



AR(1) Code

# The following will provide an observation from the MC 1 step ahead

arl <- function(m, rho, tau) {
rho*m + rnorm(1, O, tau)

}

# Next, we will add to this program so that we can give it a Markov
# chain and the result will be p observations from the Markov chain.

arl.gen <- function(mc, p, rho, tau, g=1) {
loc <- length(mc)

junk <- double(p)

mc <- append(mc, junk)

for(i in 1:p){

j <= i+loc-1

mc[(j+1)] <- ari(mc[jl, rho, tau)
}

return(mc)

}



set.seed(20)
library(mcmcse)

tau <- 1

rho <- .95
out <- 0

eps <- 0.1
start <- 1000
r <- 1000

AR(1) Code



out <- arl.gen(out, start, rho, tau)
MCSE <- mcse(out)$se

N <- length(out)

t <- qt(.975, (floor(sqrt(N) - 1)))
muhat <- mean(out)

check <- MCSE * t

while(eps < check) {

out <- arl.gen(out, r, rho, tau)
MCSE <- append(MCSE, mcse(out)$se)
N <- length(out)

t <- qt(.975, (floor(sqrt(N) - 1)))
muhat <- append(muhat, mean(out))
check <- MCSE[length(MCSE)] * t

}

AR(1) Code



AR(1) Code

N <- seq(start, length(out), r)

t <- qt(.975, (floor(sqrt(N) - 1)))
half <- MCSE * t

sigmahat <- MCSExsqrt (N)

N <- seq(start, length(out), r) / 1000

plot (N, muhat, main="Estimates of the Mean",
xlab="Iterations (in 1000’s)")

points(N, muhat, type="1", col="red")

abline(h=0, 1lwd=3)

legend("bottomright", legend=c("Observed", "Actual"),
1ty=c(1,1), col=c(2,1), lwd=c(1,3))



AR(1) Code

plot(N, sigmahat, main="Estimates of Sigma", xlab="Iterations (in 1000’s)")

points(N, sigmahat, type="1", col="red")

abline (h=20, 1lwd=3)

legend("bottomright", legend=c("Observed", "Actual"), lty=c(1,1),
col=c(2,1), lwd=c(1,3))

plot(N, 2xhalf, main="Calculated Interval Widths", xlab="Iterations
(in 1000°s)", ylab="Width", ylim=c(0, 1.8))

points(N, 2*half, type="1", col="red")

abline(h=0.2, 1lwd=3)

legend("topright", legend=c("Observed", "Cut-off"), lty=c(1,1), col=c(2,1),
lwd=c(1,3))
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Figure: Results from one simulation using a cut-off of ¢ = 0.2.



Asymptotically Valid Confidence Intervals

What requirements are necessary for asymptotically valid
confidence intervals?

® Need a Markov chain CLT to hold.
® Need &2 to be a strongly consistent estimator of ag.

Does this work in practice with finite samples? How does it
compare to other methods?



Asymptotically Valid Confidence Intervals

Need 62 to be a strongly consistent estimator of 02.

e Batch Means
e Overlapping Batch Means (Subsampling)
e Spectral Variance Estimators

e Regeneration



Batch Means

e Batch Means produces a strongly consistent estimator of aé.

e Let b, be the batch size, a, = n/b, be the number of
batches, and define a batch mean as

b
_ 1
Yk ::bni:Elg(Xka_i) forkzO,...,a,,—l.

Then .
R by = .o
U2BM = . Z(Yk - gn)2 .
a, —1 pard

e Requires b, — oo and a, — oo as n — oo.



Gelman and Rubin Diagnostic

Gelman and Rubin Diagnostic — another stopping criteria.

e Most popular method for stopping the simulation, one of
many convergence diagnostics.

e Simulates m independent parallel Markov chains.

e Considers a ratio of two different estimates of Var,g, not ag,
from the CLT.

e Argue the simulation should continue until the diagnostic
(Ro.975) is close to 1.



Toy Example

e Let Yi,..., Yy, beiid. N(u, A) and let the prior for (1, A) be
proportional to 1/\5 The posterior density is characterized
by

m 1 &
(1, Aly) o< A7 exp ~5x ;()/j — p)?

which is proper as long as m > 3.

e A Gibbs sampler requires the full conditionals:

plAy ~ N(7,A/m),

m—1 s2+m(y— p)?
Mﬂ,yNIG(Z, (2 M)>7

where ¥ is the sample mean and s = > (y; — ).




Toy Example

(s Aly) o A~ exp { =& Sy — 1)}

Consider the Gibbs sampler that updates A then pu.
(X)) = i) = (A )

Jones and Hobert showed this sampler is geometrically ergodic.
® Suppose m=11, y =1, and s? = 14.
e Then E(uly) =1 and E(A]y) = 2.
® Consider estimating E(u|y) and E(\|y) with fi, and X,,.

e CLT holds!
e Using b = |n'/2], BM Theorem holds!



Simulation Settings

Stopped the simulation when

~

BM : t_9757(a_1)05% +1(n < 400) < 0.04
GRD : Ro.075 + 1(n < 400) < 1.005

@ 1000 independent replications
e Starting from y for BM.
e Starting from draws from 7 for GRD.

® Used 4 chains for GRD.
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Figure: Plots of ji, vs. n for both stopping methods.



Simulation Results
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Figure: Histograms of [i, for both stopping methods.




Summary

e Monte Carlo and MCMC Simulations

e Include uncertainty estimates, e.g. a MCSE
o Useful for interpretation (mcmcse R package)
e Finding a good MCMC sampler is critical

e mcmc R package is a good starting point, but there are others
e Other software available; OpenBUGS, Stan, JAGS, packages
within Python ...



Other Topics in MCMC

Convergence diagnostics, ESS, trace plots, ACF plots, ...
Estimating quantiles, or endpoints of credible regions

Fixed-width stopping rules

o Relative standard deviation fixed-width stopping rule
equivalent to stopping when ESS is large enough

Multivariate estimation and output analysis

Slice sampling, reversible-jump Metropolis, adaptive random
walk samplers, sequential Monte Carlo (particle filters),
simulated annealing algorithms, ...
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