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Monte Carlo Integration



Monte Carlo Integration

Example: Let X ∼ Γ(3/2, 1), i.e.

f (x) =
2√
π

√
xe−x I (x > 0).

Suppose we want to find

θ = E

[
1

(X + 1) log(X + 3)

]
=

∫ ∞
0

1

(x + 1) log(x + 3)

2√
π

√
xe−xdx .

The expectation (or integral) θ is intractable, we don’t know how
to compute it analytically.



Monte Carlo Integration

One possible solution is to approximate θ using
Monte Carlo integration. If Y1,Y2, . . . are i.i.d. with E|Y1| <∞
then

ȳ =
n∑

i=1

Yi
a.s.→ EY1 (SLLN).

Suppose X1,X2, . . . are i.i.d Γ(3/2, 1) and define
Yi = [(Xi + 1) log(Xi + 3)]−1. Then since E|Y1| <∞ we have

n∑
i=1

[(Xi + 1) log(Xi + 3)]−1
a.s.→ E

[
1

(X + 1) log(X + 3)

]
= θ.



Monte Carlo Integration

Thus is we had a way to “generate” or “simulate” or “draw”
Γ(3/2, 1) random variables, we could obtain a large number of
them and claim

n∑
i=1

[(Xi + 1) log(Xi + 3)]−1 ≈ θ.

An obvious question is how good is this approximation?



Monte Carlo Standard Error

Suppose Y1,Y2, . . . are i.i.d. with E|Y 2
1 | <∞ then the CLT says

√
n(ȳn − EY1)

σ

d→ N(0, 1).

That is, for sufficiently large n,

ȳn ∼ N(EY1, σ
2/n).

Further, we can estimate the standard error σ/
√
n with sn/

√
n

where sn is the sample standard deviation.



Monte Carlo Standard Error

We can also use the CLT form a confidence interval with

Pr(ȳn − 1.96sn/
√
n < EY1 < ȳn + 1.96sn/

√
n) ≈ 0.95.

Or we could simulate until a half-width (or width) of this
confidence interval is sufficiently small, say less than ε > 0. That
is, simulate until

1.96sn/
√
n < ε.



Toy Example

Example: Let X ∼ Γ(3/2, 1), i.e.

f (x) =
2√
π

√
xe−x I (x > 0).

Suppose we want to find

θ = E

[
1

(X + 1) log(X + 3)

]
=

∫ ∞
0

1

(x + 1) log(x + 3)

2√
π

√
xe−xdx .

Further, suppose we want to estimate this quantity such that a
95% CI length is less than 0.002.



Toy Example Code

set.seed(500)

########################################

## Monte Carlo Toy Example

########################################

n <- 1000

x <- rgamma(n, 3/2, scale=1)

mean(x)

y <- 1/((x+1)*log(x+3))

est <- mean(y)

est

mcse <- sd(y) / sqrt(length(y))

interval <- est + c(-1,1)*1.96*mcse

interval



Toy Example Code

## Implementing the sequential stopping rule

eps <- 0.002

len <- diff(interval)

plotting.var <- c(est, interval)

while(len > eps){

new.x <- rgamma(n, 3/2, scale=1)

new.y <- 1/((new.x+1)*log(new.x+3))

y <- cbind(y, new.y)

est <- mean(y)

mcse <- sd(y) / sqrt(length(y))

interval <- est + c(-1,1)*1.96*mcse

len <- diff(interval)

plotting.var <- rbind(plotting.var, c(est, interval))

}



Toy Example Code

## Plotting the results

temp <- seq(1000, length(y), 1000)

plot(temp, plotting.var[,1], type="l", ylim=c(min(plotting.var),

max(plotting.var)), main="Estimates of the Mean", xlab="Iterations",

ylab="Estimate")

points(temp, plotting.var[,2], type="l", col="red")

points(temp, plotting.var[,3], type="l", col="red")

legend("topright", legend=c("CI", "Estimate"), lty=c(1,1), col=c(2,1))



Toy Example

0 20000 40000 60000 80000 100000 120000 140000

0.
34

5
0.

35
0

0.
35

5
0.

36
0

0.
36

5

Estimates of the Mean

Iterations

E
st

im
at

e

CI
Estimate

Figure: Results from one simulation using a cut-off of ε = 0.002.



High-Dimensional Examples

Link FiveThirtyEight’s NBA Predictions

Link Vanguard’s Retirement Nest Egg Calculator

Link Minitab’s Monte Carlo Simulation Software for
Manufacturing Engineers

Link Fisher’s Exact Test in R

http://projects.fivethirtyeight.com/2016-nba-picks/
https://retirementplans.vanguard.com/VGApp/pe/pubeducation/calculators/RetirementNestEggCalc.jsf
http://blog.minitab.com/blog/adventures-in-statistics/understanding-monte-carlo-simulation-with-an-example
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/fisher.test.html


Bayesian Statistics



Bayesian Statistics

• Suppose X has a distribution parameterized by θ.

• Let f (θ) be a density assigned to θ before observing any data.
This density is call the prior distribution.

• Bayesian inference is driven by the likelihood, L(θ|x).



Bayesian Statistics

Starting with our prior, after observing data we can update our
beliefs to form a posterior distribution (via Bayes Rule), i.e.

f (θ|x) = cf (θ)L(θ|x)

where

c =
1∫

f (θ)L(θ|x)dθ
(which is often difficult to compute).

The posterior, f (θ|x) is used for Bayesian inference on θ.



Bayesian Statistics

Example: Suppose X1, . . . ,Xn are i.i.d. N(θ, σ2) where σ2 is
known. Suppose further we have a prior θ ∼ N(µ, τ2). Then the
posterior can be obtained as follows,

f (θ|x) ∝ f (θ)
n∏

i=1

f (xi |θ)

∝ exp

{
−1

2

(
(θ − µ)2

τ2
+

∑n
i=1(xi − θ)2

σ2

)}

∝ exp

−
1

2

(
θ − µ/τ2 + nx̄/σ2

1/τ2 + n/σ2

)2

1

1/τ2 + n/σ2

 .



Bayesian Statistics

Or f (θ|x) ∼ N(µn, τ
2
n ) where

µn =

(
µ

τ2
+

nx̄

σ2

)
τ2n and τ2n =

1

1/τ2 + n/σ2
.

Notice, this is a conjugate Bayes model. Also note a 95% credible
region for θ is given by (this is also the HPD, highest posterior
density)

(µn − 1.96τn, µn + 1.96τn) .

For large n, the data will overwhelm the prior.



Bayesian Statistics

• If f (θ) ∝ 1, an improper prior, then a 95% credible region for
θ is the same as a 95% confidence interval since
f (θ|x) ∼ N(x̄ , σ2/n) (try to show this at home).

• Usually, we specify a prior and likelihood that result in an
posterior that is intractable. That is, we can’t work with it
analytically or even calculate the appropriate normalizing
constant c .

• However, it is often easy to simulate a Markov chain with
f (θ|x) as its stationary distribution.



Markov Chain Basics

Consider discrete time, discrete state space Markov chains. If

P(Xt+1 = j |X0 = x0, . . . ,Xt = i) = P(Xt+1 = j |Xt = i) = pij

for all t, x0, . . . , xn ∈ S , i , j ∈ S , then {Xt} is a Markov chain (time
homogeneous). This is governed by a Markov transition matrix

P =


p00 p01 p02 . . . p0n
p10 p11 p12 . . . p1n

...
...

...
. . .

...
pn0 pn1 pn3 . . . pnn

 (rows sum to one).



Markov Chain Basics

Limit theory of Markov chains is important.

• A state the chain returns to w.p.1 is recurrent.
• If the expected time to return is finite, then non null.
• If the expected time to return is infinite, then null recurrent.

• A chain is irreducible if for all i , j pairs there exists m > 0
such that P(Xm+n = i |Xn = j) > 0.

• A chain is periodic if it can only visit portions of the state
space at regular intervals, d is the smallest divisor of the
times.

• A chain is aperiodic if d = 1.



Markov Chain Basics

• A Markov chain is ergodic if it is irreducible, aperiodic, and all
its states are non null and recurrent.

• Suppose π is such that πP = π, then π is the stationary (or
invariant) distribution for P.

• If {Xt} is irreducible and aperiodic, then π is unique and

lim
n→∞

P(Xt+n = j |Xt = i) = πj .

• And for any function h

1

n

n∑
i=1

h(xi )
a.s.→ Eπ [h(X )] .

This is the ergodic theorem, a generalization of the SLLN.



Markov Chain Monte Carlo



Markov Chain Monte Carlo

MCMC methods are used most often in Bayesian inference where f
or π is a posterior distribution. Challenge lies in construction of a
suitable Markov chain with f as its stationary distribution. A key
problem is we only get to observe t observations from {Xt}, which
are serially dependent.

Questions to Consider:

How good are my MCMC estimators?

How long to run my Markov chain simulation?

How to compare MCMC samplers?

What to do in high-dimensional settings?

...



Metropolis-Hastings Algorithm

Setting X0 = x0 (somehow), the Metropolis-Hastings algorithm
generates Xt+1 given Xt = xt as follows:

1 Sample a candidate value X ∗ ∼ g(·|xt) where g is the
proposal distribution.

2 Compute the MH ratio R(xt ,X
∗), where

R(xt ,X
∗) =

f (x∗)g(xt |x∗)
f (xt)g(x∗|xt)

.

3 Set

Xt+1 =

{
x∗ w.p. min{R(xt ,X

∗), 1}
xt otherwise.



Metropolis-Hastings Algorithm

• Irreducibility and aperiodicity depend on the choice of g , these
must be checked.

• Performance (finite sample) depends on the choice of g also,
be careful.



Independence MH Chains

Suppose g(x∗|xt) = g(x∗), this yields an independence chain since
the proposal does not depend on the current state. In this case,
the MH ratio is

R(xt ,X
∗) =

f (x∗)g(xt)

f (xt)g(x∗)
,

and the resulting Markov chain will be irreducible and aperiodic if
g > 0 where f > 0.

A good envelope function g should resemble f , but should cover f
in the tails.



Random Walk MH Chains

Generate X ∗ such that ε ∼ h(·) and set X ∗ = Xt + ε. Then
g(x∗|xt) = h(x∗ − xt). Common choices of h(·) are symmetric zero
mean random variables with a scale parameter, e.g. a
Uniform(−a, a), Normal(0, σ2), c ∗ Tν , . . .

For symmetric zero mean random variables, the MH ratio is

R(xt ,X
∗) =

f (x∗)

f (xt)
.

If the support of f is connected and h is positive in a neighborhood
of 0, then the chain is irreducible and aperiodic.



Markov Chain Basics

Exercise: Suppose f ∼ Exp(1).

1 Write an independence MH sampler with g ∼ Exp(θ).

2 Show R(xt ,X
∗) = exp {(xt − x∗)(1− θ)}.

3 Generate 1000 draws from f with θ ∈ {1/2, 1, 2}.
4 Write a random walk MH sampler with h ∼ N(0, σ2).

5 Show R(xt ,X
∗) = exp {xt − x∗} I (x∗ > 0).

6 Generate 1000 draws from f with σ ∈ {.2, 1, 5}.
7 In general, do you prefer an independence chain or a random

walk MH sampler? Why?



Metropolis Hastings Code

########################################

## Introduction to MH Samplers

########################################

## Independence Metropolis sampler with Exp(theta) proposal.

ind.chain <- function(x, n, theta = 1) {

## if theta = 1, then this is an iid sampler

m <- length(x)

x <- append(x, double(n))

for(i in (m+1):length(x)){

x.prime <- rexp(1, rate=theta)

u <- exp((x[(i-1)]-x.prime)*(1-theta))

if(runif(1) < u)

x[i] <- x.prime

else

x[i] <- x[(i-1)]

}

return(x)

}



Metropolis Hastings Code

## Random Walk Metropolis sampler with N(0,sigma) proposal.

rw.chain <- function(x, n, sigma = 1) {

m <- length(x)

x <- append(x, double(n))

for(i in (m+1):length(x)){

x.prime <- x[(i-1)] + rnorm(1, sd = sigma)

u <- exp((x[(i-1)]-x.prime))

u

if(runif(1) < u && x.prime > 0)

x[i] <- x.prime

else

x[i] <- x[(i-1)]

}

return(x)

}



Metropolis Hastings Code

## Simulations

trial0 <- ind.chain(1, 200, 1)

trial1 <- ind.chain(1, 200, 2)

trial2 <- ind.chain(1, 200, 1/2)

rw1 <- rw.chain(1, 200, .2)

rw2 <- rw.chain(1, 200, 1)

rw3 <- rw.chain(1, 200, 5)

## Plotting

par(mfrow=c(2,3))

plot.ts(trial0, ylim=c(0,6), main="IID Draws")

plot.ts(trial1, ylim=c(0,6), main="Independence with 1/2")

plot.ts(trial2, ylim=c(0,6), main="Independence with 2")

plot.ts(rw1, ylim=c(0,6), main="Random Walk with .2")

plot.ts(rw2, ylim=c(0,6), main="Random Walk with 1")

plot.ts(rw3, ylim=c(0,6), main="Random Walk with 5")

par(mfrow=c(1,1))



Metropolis Hastings Code

## Writing out a plot

pdf("MHPlot.pdf")

par(mfrow=c(2,3))

plot.ts(trial0, ylim=c(0,6), main="IID Draws")

plot.ts(trial1, ylim=c(0,6), main="Indepdence with 1/2")

plot.ts(trial2, ylim=c(0,6), main="Indepdence with 2")

plot.ts(rw1, ylim=c(0,6), main="Random Walk with .2")

plot.ts(rw2, ylim=c(0,6), main="Random Walk with 1")

plot.ts(rw3, ylim=c(0,6), main="Random Walk with 5")

par(mfrow=c(1,1))

dev.off()



Sampler Comparison
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Gibbs Sampling

Works with a univariate (or blocks) conditional distribution, which
are often available in closed form. Consider the following notation

X =
(
X (1), . . . ,X (p)

)T
and

X (−i) =
(
X (1), . . . ,X (i−1),X (i+1), . . . ,X (p)

)T
.

If f (x (i)|x (−i)) is available in closed form, then the Gibbs sampler
is as follows.



Gibbs Sampling

1 Select starting values x0 and set t = 0.

2 Generate in turn (deterministic scan Gibbs sampler)

x
(1)
t+1 ∼ f (x (1)|x (−1)

t )

x
(2)
t+1 ∼ f (x (2)|x (1)t+1, x

(3)
t , . . . , x

(p)
t )

x
(3)
t+1 ∼ f (x (3)|x (1)t+1, x

(2)
t+1, x

(4)
t , . . . , x

(p)
t )

...
x
(p)
t+1 ∼ f (x (p)|x (−p)

t+1 ) .

3 Increment t and go to Step 2.



Gibbs Sampling

• Common to have one or more components not available in
closed form. Then one can just use a MH sampler for those
components known as a Metropolis within Gibbs or Hybrid
Gibbs sampling.

• Common to “block” groups of random variables.



Capture-recapture Study

Exercise: Data from a fur seal pup capture-recapture study. Goal
is to estimate the number of pups in a fur seal colony using a
capture-recapture study.

1 2 3 4 5 6 7

Captured ci 30 22 29 26 31 32 35
Newly Caught mi 30 8 17 7 9 8 5

Table: Count of fur seal pup capture-recapture study for i = 7 census
attempts.



Capture-recapture Study

Let N be the population size, I be the number of census attempts
where ci were captured (I = 7 in our case), and r be the total
number captured (r =

∑I
i=1mi = 84).

We consider a separate unknown capture probability for each
census (α1, . . . , αI ) where the animals are equally “catchable”.
Then

L(N, α|c , r) ∝ N!

(N − r)!

I∏
i=1

αci
i (1− αi )

N−ci .



Capture-recapture Study

Assume N and α are apriori independent with

f (N) ∝ 1 and f (αi |θ1, θ2)
i .i .d .∼ Beta(θ1, θ2).

We use θ1 = θ2 = 1/2, which is the Jeffrey’s Prior. The resulting
posterior is proper when I > 2 and recommended when I > 5.



Capture-recapture Study

Then it is easy to show the posterior is

f (N, α|c, r) ∝ N!

(N − r)!

I∏
i=1

αci
i (1− αi )

N−ci
I∏

i=1

α
−1/2
i (1− αi )

−1/2.

Further, one can show

N − 84|α ∼ NB

(
85, 1−

I∏
i=1

(1− αi )

)
and

αi |N ∼ Beta (ci + 1/2,N − ci + 1/2) for all i .



Capture-recapture Study

Then we can consider the chain

(N, α)→
(
N ′, α

)
→
(
N ′, α′

)
or

(N, α)→
(
N, α′

)
→
(
N ′, α′

)
,

where both involve a “block” update of α.

The following R code implements the Gibbs sampler above along
with some measures of uncertainty for the resulting estimators.



Capture-recapture Code

set.seed(1)

########################################

## Capture-recapture Data

########################################

captured <- c(30, 22, 29, 26, 31, 32, 35)

new.captures <- c(30, 8, 17, 7, 9, 8, 5)

total.r <- sum(new.captures)



Capture-recapture Code

########################################

## Gibbs Sampler

########################################

gibbs.chain <- function(n, N.start = 94, alpha.start = rep(.5,7)) {

output <- matrix(0, nrow=n, ncol=8)

for(i in 1:n){

neg.binom.prob <- 1 - prod(1-alpha.start)

N.new <- rnbinom(1, 85, neg.binom.prob) + total.r

beta1 <- captured + .5

beta2 <- N.new - captured + .5

alpha.new <- rbeta(7, beta1, beta2)

output[i,] <- c(N.new, alpha.new)

N.start <- N.new

alpha.start <- alpha.new

}

return(output)

}



Capture-recapture Code

########################################

## Preliminary Simulations

########################################

trial <- gibbs.chain(1000)

plot.ts(trial[,1], main = "Trace plot for N")

for(i in 1:7){

plot.ts(trial[,(i+1)], main = paste("Trace plot for Alpha", i))

readline("Press <return to continue")

}

acf(trial[,1], main = "Lag Correlation plot for N")

for(i in 1:7){

acf(trial[,(i+1)], main = paste("Lag Correlation plot for Alpha", i))

readline("Press <return to continue")

}



Capture-recapture Code

########################################

## Simulations

########################################

sim <- gibbs.chain(10000)

N <- sim[,1]

alpha1 <- sim[,2]

hist(N, freq=F, main="Estimated Marginal Posterior for N")

hist(alpha1, freq=F, main ="Estimating Marginal Posterior for Alpha 1")

library(mcmcse)

ess(N)

ess(alpha1)

estvssamp(N)

estvssamp(alpha1)



Capture-recapture Code

mcse(N)

mcse.q(N, .05)

mcse.q(N, .95)

mcse(alpha1)

mcse.q(alpha1, .05)

mcse.q(alpha1, .95)



Capture-recapture Code

current <- sim[10000,] # start from here is you need more simulations

sim <- rbind(sim, gibbs.chain(10000, N.start = current[1],

alpha.start = current[2:8]))

N.big <- sim[,1]

hist(N.big, freq=F, main="Estimated Marginal Posterior for N")

ess(N)

ess(N.big)

estvssamp(N)

estvssamp(N.big)

mcse(N)

mcse(N.big)

mcse.q(N, .05)

mcse.q(N.big, .05)

mcse.q(N, .95)

mcse.q(N.big, .95)



MCMC Output Analysis

• Let π be a probability distribution having support X ⊆ Rd ,
d ≥ 1 we want to explore.

• When i.i.d. observations are unavailable, a Markov chain with
stationary distribution π can be utilized.

• Summarize π with expectations, quantiles, density plots ...



Target Features

• Consider estimating an expectation with respect to π denoted

θ = Eπg =

∫
X
g(x)π(dx),

where g : X → R.

• However, this expectation is often intractable.

• θ is an unknown quantity I would like to estimate using
simulated data.

• Let X =
{
X (0),X (1), . . .

}
be a Markov chain.

• Usually, X (j) ∼ Fj 6= π and Cov(g(X (j)), g(X (j+1))) > 0.



Monte Carlo Error

• We can often find a consistent estimator of θ, say

θn = ḡ(n) :=
1

n

n−1∑
j=0

g
(
X (j)

)
.

• Want θn − θ, the Monte Carlo error, to be small.

• Under regularity conditions, a Markov chain CLT holds,

√
n (θn − θ)

d→ N
(
0, σ2

)
where

σ2 = Varπ [g ] + 2
∞∑
k=1

Covπ
[
g(X (0)), g(X (0+k))

]
.



Monte Carlo Error

• Let σ̂(n) denote an estimator of σ. Then the CLT allows
construction of a 100(1− δ)% confidence interval with width

wn = 2zδ/2
σ̂(n)√

n
.

• Suppose ε > 0, then a fixed-width stopping rule terminates
the simulation the first time wn < ε.



AR(1) Model

Consider the Markov chain such that

Xi = ρXi−1 + εi

where εi
iid∼ N(0, 1).

• Consider X1 = 0, ρ = .95, and estimating EπX = 0.

• Run until

wn = 2z.975
σ̂(n)√

n
≤ 0.2

where σ̂(n) is calculated using batch means.



AR(1) Code

# The following will provide an observation from the MC 1 step ahead

ar1 <- function(m, rho, tau) {

rho*m + rnorm(1, 0, tau)

}

# Next, we will add to this program so that we can give it a Markov

# chain and the result will be p observations from the Markov chain.

ar1.gen <- function(mc, p, rho, tau, q=1) {

loc <- length(mc)

junk <- double(p)

mc <- append(mc, junk)

for(i in 1:p){

j <- i+loc-1

mc[(j+1)] <- ar1(mc[j], rho, tau)

}

return(mc)

}



AR(1) Code

set.seed(20)

library(mcmcse)

tau <- 1

rho <- .95

out <- 0

eps <- 0.1

start <- 1000

r <- 1000



AR(1) Code

out <- ar1.gen(out, start, rho, tau)

MCSE <- mcse(out)$se

N <- length(out)

t <- qt(.975, (floor(sqrt(N) - 1)))

muhat <- mean(out)

check <- MCSE * t

while(eps < check) {

out <- ar1.gen(out, r, rho, tau)

MCSE <- append(MCSE, mcse(out)$se)

N <- length(out)

t <- qt(.975, (floor(sqrt(N) - 1)))

muhat <- append(muhat, mean(out))

check <- MCSE[length(MCSE)] * t

}



AR(1) Code

N <- seq(start, length(out), r)

t <- qt(.975, (floor(sqrt(N) - 1)))

half <- MCSE * t

sigmahat <- MCSE*sqrt(N)

N <- seq(start, length(out), r) / 1000

plot(N, muhat, main="Estimates of the Mean",

xlab="Iterations (in 1000’s)")

points(N, muhat, type="l", col="red")

abline(h=0, lwd=3)

legend("bottomright", legend=c("Observed", "Actual"),

lty=c(1,1), col=c(2,1), lwd=c(1,3))



AR(1) Code

plot(N, sigmahat, main="Estimates of Sigma", xlab="Iterations (in 1000’s)")

points(N, sigmahat, type="l", col="red")

abline(h=20, lwd=3)

legend("bottomright", legend=c("Observed", "Actual"), lty=c(1,1),

col=c(2,1), lwd=c(1,3))

plot(N, 2*half, main="Calculated Interval Widths", xlab="Iterations

(in 1000’s)", ylab="Width", ylim=c(0, 1.8))

points(N, 2*half, type="l", col="red")

abline(h=0.2, lwd=3)

legend("topright", legend=c("Observed", "Cut-off"), lty=c(1,1), col=c(2,1),

lwd=c(1,3))



AR(1) Model
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Figure: Results from one simulation using a cut-off of ε = 0.2.



Asymptotically Valid Confidence Intervals

What requirements are necessary for asymptotically valid
confidence intervals?

1 Need a Markov chain CLT to hold.

2 Need σ̂2g to be a strongly consistent estimator of σ2g .

Does this work in practice with finite samples? How does it
compare to other methods?



Asymptotically Valid Confidence Intervals

Need σ̂2g to be a strongly consistent estimator of σ2g .

• Batch Means

• Overlapping Batch Means (Subsampling)

• Spectral Variance Estimators

• Regeneration



Batch Means

• Batch Means produces a strongly consistent estimator of σ2g .

• Let bn be the batch size, an = n/bn be the number of
batches, and define a batch mean as

Ȳk :=
1

bn

bn∑
i=1

g(Xkbn+i ) for k = 0, . . . , an − 1 .

Then

σ̂2BM =
bn

an − 1

an−1∑
k=0

(Ȳk − ḡn)2 .

• Requires bn →∞ and an →∞ as n→∞.



Gelman and Rubin Diagnostic

Gelman and Rubin Diagnostic — another stopping criteria.

• Most popular method for stopping the simulation, one of
many convergence diagnostics.

• Simulates m independent parallel Markov chains.

• Considers a ratio of two different estimates of Varπg , not σ2g
from the CLT.

• Argue the simulation should continue until the diagnostic
(R̂0.975) is close to 1.



Toy Example

• Let Y1, . . . ,Ym be i.i.d. N(µ, λ) and let the prior for (µ, λ) be
proportional to 1/

√
λ. The posterior density is characterized

by

π(µ, λ|y) ∝ λ−
m+1
2 exp

− 1

2λ

m∑
j=1

(yj − µ)2


which is proper as long as m ≥ 3.

• A Gibbs sampler requires the full conditionals:

µ|λ, y ∼ N(ȳ , λ/m) ,

λ|µ, y ∼ IG

(
m − 1

2
,
s2 + m(ȳ − µ)2

2

)
,

where ȳ is the sample mean and s2 =
∑

(yi − ȳ)2.



Toy Example

π(µ, λ|y) ∝ λ−
m+1
2 exp

{
− 1

2λ

∑
(yj − µ)2

}
Consider the Gibbs sampler that updates λ then µ.

(λ′, µ′)→ (λ, µ′)→ (λ, µ)

Jones and Hobert showed this sampler is geometrically ergodic.

1 Suppose m = 11, ȳ = 1, and s2 = 14.
• Then E (µ|y) = 1 and E (λ|y) = 2.

2 Consider estimating E (µ|y) and E (λ|y) with µ̄n and λ̄n.
• CLT holds!
• Using b = bn1/2c, BM Theorem holds!



Simulation Settings

Stopped the simulation when

BM : t.975,(a−1)
σ̂BM√

n
+ I (n < 400) < 0.04

GRD : R̂0.975 + I (n < 400) < 1.005

1 1000 independent replications
• Starting from ȳ for BM.
• Starting from draws from π for GRD.

2 Used 4 chains for GRD.



Simulation Results
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Figure: Plots of µ̄n vs. n for both stopping methods.



Simulation Results

BM GRD
MSE for E (µ|y) 3.73e-05 (1.8e-06) 0.000134 (9.2e-06)
MSE for E (λ|y) 0.000393 (1.8e-05) 0.00165 (0.00012)
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Figure: Histograms of µ̄n for both stopping methods.



Summary

• Monte Carlo and MCMC Simulations
• Include uncertainty estimates, e.g. a MCSE
• Useful for interpretation (mcmcse R package)

• Finding a good MCMC sampler is critical
• mcmc R package is a good starting point, but there are others
• Other software available; OpenBUGS, Stan, JAGS, packages

within Python ...



Other Topics in MCMC

• Convergence diagnostics, ESS, trace plots, ACF plots, ...

• Estimating quantiles, or endpoints of credible regions

• Fixed-width stopping rules
• Relative standard deviation fixed-width stopping rule

equivalent to stopping when ESS is large enough

• Multivariate estimation and output analysis

• Slice sampling, reversible-jump Metropolis, adaptive random
walk samplers, sequential Monte Carlo (particle filters),
simulated annealing algorithms, ...
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