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Genome-wide analyses have identified thousands of long noncoding RNAs (lncRNAs). Malat1 (metastasis-
associated lung adenocarcinoma transcript 1) is among the most abundant lncRNAs whose expression is altered
in numerous cancers. Here we report that genetic loss or systemic knockdown of Malat1 using antisense
oligonucleotides (ASOs) in the MMTV (mouse mammary tumor virus)-PyMT mouse mammary carcinoma
model results in slower tumor growth accompanied by significant differentiation into cystic tumors and a reduction
in metastasis. Furthermore, Malat1 loss results in a reduction of branching morphogenesis in MMTV-PyMT-
and Her2/neu-amplified tumor organoids, increased cell adhesion, and loss of migration. At the molecular level,
Malat1 knockdown results in alterations in gene expression and changes in splicing patterns of genes
involved in differentiation and protumorigenic signaling pathways. Together, these data demonstrate for
the first time a functional role of Malat1 in regulating critical processes in mammary cancer pathogenesis. Thus,
Malat1 represents an exciting therapeutic target, andMalat1ASOs represent a potential therapy for inhibiting breast
cancer progression.
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The majority of the mammalian genome encodes for non-
coding RNAs (ncRNAs) (Derrien et al. 2012; Djebali et al.
2012; The ENCODE Project Consortium 2012). Long
ncRNAs (lncRNAs) represent a class of ncRNAs that are
>200 nucleotides (nt) and have been shown to participate
in diverse cellular functions (for review, see Wilusz et al.
2009; Rinn and Chang 2012; Bergmann and Spector
2014). Over 16,000 lncRNAs have been annotated in the
human genome, and, thus far, 8000 have been annotated
in the mouse genome (Harrow et al. 2012). Several
lncRNAs have been implicated in various types of cancer
(for review, see Costa 2007; Prasanth and Spector 2007;
Prensner and Chinnaiyan 2011). For example, HOTAIR
is overexpressed in metastatic breast tumors and induces
genome-wide repositioning of gene silencing complexes
(Gupta et al. 2010). Multiple other lncRNAs such as
DD3/PCA3, PCAT-1, and SChLAP1 are overexpressed in

prostate tumors (Bussemakers et al. 1999; Prensner et al.
2011, 2013), while the lncRNA PVT1 was shown to regu-
late Myc protein levels in tumors with a 8q24 gain (Tseng
et al. 2014).

MALAT1 (metastasis-associated lung adenocarcinoma
transcript 1) is a highly conserved lncRNA that was first
identified as being up-regulated in lung tumors that had
a higher propensity to metastasize (Ji et al. 2003), and
was subsequently shown to be up-regulated in a broad
spectrum of tumor types (Yamada et al. 2006; Lin et al.
2007; Guffanti et al. 2009). MALAT1 is among the most
highly abundant lncRNAs, and, interestingly, its primary
transcript is processed (Wilusz et al. 2008) into a long 6.7-
kb transcript, which localizes to nuclear speckles (Hutch-
inson et al. 2007; Clemson et al. 2009; Bernard et al. 2010),
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and a 61-nt tRNA-like small RNA, which localizes to the
cytoplasm (Wilusz et al. 2008). MALAT1 has been impli-
cated in regulating alternative pre-mRNA splicing, and
its knockdown was shown to result in cell cycle arrest
(Tripathi et al. 2010). MALAT1 has also been shown to
be required to activate E2F target genes by repositioning
them from polycomb bodies to transcriptionally active
nuclear sites in a serum-dependent manner (Yang et al.
2011). More recently, two genome-wide studies have indi-
cated that MALAT1 binds to the transcription start sites
(TSSs) and gene bodies of actively transcribing genes to-
gether with another lncRNA, NEAT1 (West et al. 2014).
In addition, a genome-wide RNA–RNA binding study
has shown that Malat1 can also bind to nascent pre-
mRNAs indirectly via protein partners (Engreitz et al.
2014). Despite these functional insights derived from var-
ious cell lines, Malat1 knockout mice developed in our
laboratory and others (Eissmann et al. 2012; Nakagawa
et al. 2012; Zhang et al. 2012) exhibit a normal phenotype.
The mice are born in expected Mendelian ratios, and no
major alterations have been observed in tissue histology,
gene expression, or pre-mRNA splicing.
Although Malat1 knockout mice have no overt pheno-

type, MALAT1 loss in a lung cancer xenograft model re-
sulted in reduced homing of human lung cancer cells to
the lungs compared with control cells with wild-type lev-
els ofMALAT1 (Gutschner et al. 2013), and knockdown of
MALAT1 in lung cancer cells in vitro impaired cellular
motility (Tano et al. 2010; Gutschner et al. 2013). In addi-
tion, MALAT1 gene mutations have been found to fre-
quently occur in luminal-type breast tumors (Ellis et al.
2012). Based on these findings, we were interested in pur-
suing whether Malat1 has a direct causative in vivo func-
tion in breast cancer progression.
Here we examined the role of Malat1 in mammary tu-

mor progression using the MMTV (mouse mammary tu-
mor virus)-PyMT mouse mammary tumor model of
human luminal B breast cancer (Guy et al. 1992; Lin
et al. 2003; Herschkowitz et al. 2007). We found that
genetic knockout of Malat1 or knockdown upon subcu-
taneous delivery of antisense oligonucleotides (ASOs)
resulted in significant differentiation of the primary tu-
mors and a reduction in lung metastases. In addition,
knockdown ofMalat1 inMMTV-PyMT andHer2/neu-am-
plified mammary tumor organoids inhibited branching
morphogenesis ex vivo. Detailed molecular analyses by
RNA sequencing (RNA-seq) revealed significant changes
in gene expression and pre-mRNA splicing of protumori-
genic and differentiation-related genes. These findings
identify Malat1 as a therapeutic target in breast cancer
and the utility of Malat1 ASOs as a therapeutic for inhib-
iting breast cancer progression.

Results

Mammary tumor progression is impaired upon
genetic loss of Malat1 lncRNA

Human luminal B breast cancer is one of the most preva-
lent subtypes of breast cancer, affecting nearly 15%–20%

of individuals diagnosed with this disease (for review, see
Schnitt 2010; Ades et al. 2014). In order to investigate the
potential in vivo role of Malat1 in mammary tumor pro-
gression, we used theMMTV-PyMTmouse mammary tu-
mor model of human luminal B breast cancer (Guy et al.
1992; Lin et al. 2003; Herschkowitz et al. 2007). In this
model, the polyomamiddle-T antigen is under the control
of the MMTV promoter, resulting in highly penetrant
mammary tumors and lung metastasis (Lin et al. 2003).
Malat1 homozygous knockout (Malat1−/−) femalemice

previously generated in our laboratory (Zhang et al. 2012)
were crossed to MMTV-PyMT males (C57Bl/6) to obtain
MMTV-PyMT;Malat1+/+, PyMT;Malat1+/−, and PyMT;
Malat1−/− mice. Individuals of all three genotypes were
born in expectedMendelian ratioswith a normal gestation
period and postnatal development. In accord with pub-
lished data (Lin et al. 2003), tumor onset in MMTV-
PyMTmice began soon after puberty, and palpable tumors
developed within 12–16 wk of birth in >90% of the mice.
Tumor onset did not differ significantly in the presence
or absence ofMalat1 (Fig. 1A). Prior to 5 mo of age, nearly
90%of themice developed palpablemultifocal mammary
gland lesions, demonstrating that loss of Malat1 does
not affect the initiation of PyMT-induced mammary
gland tumors. Although the tumors that developed in
the Malat1−/− background initially exhibited a relatively
slower tumor growth rate compared with control mice
(Fig. 1B), this difference was not found to be significant,
especially at the later time points. Surprisingly, the
MMTV-PyMT;Malat1−/−mice developedhighly cystic liq-
uid-filled tumors (Fig. 1C, right panel), in contrast to the
control mice, which developed poorly differentiated solid
carcinomas (Fig. 1C, left panel). Hematoxylin and eosin
(H&E) staining of tumor sections from MMTV-PyMT;
Malat1−/− mice demonstrated that nearly 90% of the tu-
mors thatwere>1cmindiameterexhibited acysticpheno-
type, with >75% of the tumor area showing encapsulated
well-differentiated cystic histopathology (Fig. 1D, bottom
panels), in stark contrast to the poorly differentiated solid
carcinomas observed in the control tumors (Fig. 1D, top
panels).
In the MMTV-PyMT model, nearly 80% of the mice

develop lung micro- and macrometastases. Therefore,
we examined the impact of Malat1 loss on lung metasta-
ses.MMTV-PyMT;Malat1−/− mice exhibited a significant
reduction in lung macrometastases, where only three of
12 mice had macro lesions as compared with seven of
eight mice in control MMTV-PyMT;Malat1+/+ mice
(Fig. 1E,F). The lungs were further examined for the inci-
dence of micrometastases (Fig. 1G), and the majority of
MMTV-PyMT;Malat1−/− animals did not showanymicro-
metastasis (nine of 12). Next, we calculated the total met-
astatic burden as a percentage of lung volume (Fig. 1H) and
found that the MMTV-PyMT;Malat1−/− animals showed
a significantly decreased metastatic burden (3%–5%)
as compared with the control MMTV-PyMT;Malat1+/+

mice, for which the metastatic burden reached up to
40% of the total lung volume. These results clearly dem-
onstrate a role for the lncRNAMalat1 inmammary tumor
progression.
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MALAT1 is up-regulated in human breast
cancer metastases

To understand the significance of MALAT1 in human
breast cancer, we evaluated its expression in human

breast tumors by RNA-FISH on matched primary tumor
andmetastases tissue sections from the same individuals.
MALAT1 was generally expressed at a low level in the
primary lesions (Fig. 2A, top panels) of breast tumors irre-
spective of the ER/PR status. However, very high levels of

Figure 1. Impaired tumor progression and metastasis in MMTV-PyMT mice lacking Malat1. (A) Kaplan-Meier curves for tumor-free
survival in MMTV-PyMT;Malat1+/+ (n = 18) and MMTV-PyMT;Malat1−/− (n = 24) mice. (B) Total tumor burden in MMTV-PyMT;
Malat1+/+ (n = 8) andMMTV-PyMT;Malat1−/− (n = 12) mice from the detection of tumors (∼6 mm) over a period of 9 wk. Error bars repre-
sent SEM. (C ) Surgically removed tumors fromMMTV-PyMT;Malat1+/+ (left panel) andMMTV-PyMT;Malat1−/− (right panel) mice. Bar, 2
mm. (D) H&E-stained sections of primary tumors fromMMTV-PyMT;Malat1+/+ andMMTV-PyMT;Malat1−/−mice. The entire tumor sec-
tion and a higher magnification of a small region are shown from both genotypes. Bars: 2 mm and 200 µm for the differentmagnifications,
respectively. (E) Whole-lung images showing lung metastatic nodules in MMTV-PyMT;Malat1+/+ (left panel) compared with MMTV-
PyMT;Malat1−/− (right panel). Bar, 5 mm. (F ) Quantitation of number of macrometastatic nodules per lungs (total nodules/2). Error
bars represent standard deviation (SD). (∗∗∗) P < 0.001 by Wilcoxon signed rank test. (G) H&E-stained lung sections showing regions of
micrometastasis inMMTV-PyMT;Malat1+/+ lungs (left panel) andMMTV-PyMT;Malat1−/− lungs (right panel). Bar, 2 mm. (H) Percentage
of lungmetastatic burden over total lung area ofMMTV-PyMT;Malat1+/+mice (n = 7) andMMTV-PyMT;Malat1−/− mice (n = 4). Error bars
represent SD. (∗∗∗) P < 0.001 by Wilcoxon signed rank test.
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MALAT1 were observed in the lung metastases from the
same individuals (Fig. 2A, bottom panels). Interestingly,
higher levels of MALAT1 expression were confined only
to the tumor cells, while the adjacent stromal cells
showed a veryweak signal forMALAT1 in both the prima-
ry tumor and the metastatic lesions (Supplemental Fig.

S1A). Some primary tumors showed elevated MALAT1
expression in only a small fraction of the cancer cells or
cell clusters, while neighboring cancer cells remained
very low in MALAT1 expression, suggesting that these
highMALAT1-expressing cancer cells may escape the pri-
mary tumors preferentially to establish metastasis or that

Figure 2. Efficient knockdown ofMalat1 in tumors using ASOs. (A) RNA-FISH using aMALAT1-specific probe on matched human pri-
mary tumor and lung metastases from breast cancer patients. Bar, 200 µm. Magnification scale is 15× using Aperio Scanscope. (B) Quan-
titation ofMALAT1 FISH signal in primary tumor and lung metastasis tissue array samples from breast cancer patients. (C ) Schematic of
the ASO treatment protocol in MMTV-PyMT mice. (D) RT-qPCR of Malat1 knockdown in tumors of mice treated with scrambled ASO
compared with Malat1 ASO1 or ASO2. Relative fold change calculated based on the geometric mean of Gapdh, β-actin, and Hprt RNA
levels. Error bars represent SD. (∗∗) P < 0.01 by Student’s t-test. (E) RNA-FISH of tumor sections using aMalat1-specific probe. Bar, 100 µm.
Magnification scale is 20× using Aperio Scanscope. (F ) Normalized tumor growth curve ofMMTV-PyMTmice treatedwith control scram-
bledASO (ScASO) (n = 12),Malat1ASO1 (n = 11), orMalat1ASO2 (n = 7). Error bars represent SEM. (∗) P < 0.05; (∗∗) P < 0.01 byANOVA. (G)
Percentage of Ki-67-positive cells in ScASO-treated tumors orMalat1ASO1- or ASO2-treated tumors. n = 3 tumors from each group, with
at least two sections from each tumor. Error bars represent SD. (∗) P < 0.05; (∗∗) P < 0.01 by Student’s t-test.
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potentially microenvironmental cues may influence
MALAT1 expression levels (Supplemental Fig. S1B,C).
To determine the extent of occurrence of high MALAT1
expression in human samples, we obtained a breast cancer
tissue array and lungmetastasis tissue array and evaluated
MALAT1 expression level using RNA-FISH. MALAT1
transcript levels were increased between 1.5-fold and
threefold in >60% of the lung metastases compared with
the primary tumor sections (Fig. 2B). The lung metastasis
array was generated from primary breast cancer patients.
While only some of the primary tumor samples and
lung metastases were matched, we could detect high
MALAT1 expression in the majority of the lung metasta-
sis samples, confirming our matched sample data. High
MALAT1 expression was also observed in sections of hu-
man breast cancer brainmetastatic lesions (Supplemental
Fig. S1D). Interestingly, the MMTV-PyMT tumors also
displayed a similar expression pattern for Malat1, where
higherMalat1 expression was confined to a small fraction
of cells (Supplemental Fig. S2A–E). Furthermore, more
higher Malat1-expressing cells were found in advanced
carcinomas comparedwith adenomas or hyperplasia (Sup-
plemental Fig. S2A–E). This observation suggests that
MALAT1 likely plays a crucial role in human breast can-
cer pathogenesis, prompting us to further evaluate its po-
tential as a therapeutic target.

Knockdown of Malat1 results in mammary
tumor differentiation

Next, we were interested in determining whether we
could recapitulate the phenotype observed by genetic
knockout upon systemically knocking down Malat1
levels in established tumors in a more therapeutic sett-
ing. Since Malat1 is a nuclear retained lncRNA, we used
ASOs to achieve knockdown. Malat1-specific ASOs
(16mers) were synthesized using a next-generation design
comprised of phosphorothioate-modified short S-cEt
(S-2′-O-Et-2′,4′-bridged nucleic acid) gapmer chemistry
(Teplova et al. 1999). We used two independent Malat1-
specific ASOs targeting two different regions of the
Malat1 transcript as well as a control scrambled ASO
(ScASO).

Three-month-old to 4-mo-old mice were divided into
three cohorts (seven to 12 mice each) and randomized
based on their age, tumor size, and number of tumors.
Each mouse in the cohort received either ScASO or
Malat1-specific ASO1 or ASO2 via subcutaneous injec-
tions of 25 mg/kg per day (125 mg/kg per week) for 5 d
with a rest period of 2 d (Fig. 2C). The injections were car-
ried out for a period of 8 wk, upon which at least one tu-
mor from most of the control mice reached 2 cm in size.
During the course of the treatment, tumors were mea-
sured twice per week. At the end of the treatment period,
the animals were euthanized, and the primary tumors and
lungs were collected. An average Malat1 knockdown of
∼60% was achieved in the mammary tumor tissue in
mice treated with either ASO1 or ASO2 as compared
with ScASO-treated control mice (Fig. 2D). Knockdown
efficiencywas also confirmed byRNA-FISH on tumor sec-

tions (Fig. 2E). Different regions of the treated tumors
showed varying knockdown efficiencies ranging from
20% to 80% knockdown (data not shown).

Interestingly, when tumor growth was monitored over
the course of treatment, the Malat1 ASO-treated group
showed a 50% slower tumor growth rate than tumors
treated with ScASO (Fig. 2F). The decrease in growth
ratewas observed as early asweek 3 into the treatment pe-
riod, and, by the end of the treatment, the tumor volume
was reduced by 50% in Malat1 ASO-treated mice com-
pared with the ScASO-treated group. Consistent with
the slower tumor growth rate, Ki-67 labeling of the tumor
sections showed a marked decrease in Ki-67-positive nu-
clei. The proliferative index of Malat1 ASO1- or ASO2-
treated tumors, calculated as a measure of Ki-67 positivi-
ty, was found to be 22% and 26%, respectively, compared
with 51% in the control tumors treated with ScASO (Fig.
2G). Although this was in contrast to the knockout exper-
iment, where there was no significant difference in prima-
ry tumor growth rate, we reason that this was due to the
fact that the Malat1 knockout tumors were extensively
cystic, and, when we measured the tumor volume, it is
likely that the cyst growth contributed significantly to
the total volume rather than actual tumor mass.

The primary tumors from each group were analyzed
for histopathological changes. Notably, the Malat1 ASO-
treated tumors were cystic, liquid-filled, encapsulated,
well-differentiated primary tumors closely resembling
those from theMMTV-PyMT;Malat1−/− animals, whereas
the tumors in the ScASO-treated control animals re-
mained poorly differentiated, as in tumors from MMTV-
PyMT;Malat1+/+mice (Fig. 3A).Also, similar to theknock-
out phenotype, a single layer of epithelial cells lined
the enlarged ducts in the Malat1 ASO-treated mice.
There was a significant increase in cystic/ductular tu-
mors (31% in ASO1-treated and 22% in ASO2-treated)
(Fig. 3B), whereas only 4% of the ScASO-treated mice
developed cystic tumors similar in morphology to the
Malat1 ASO-treated groups. Furthermore, there was a
twofold decrease in the number of solid carcinomas, char-
acterized by poorly differentiated cells, in Malat1 ASO-
treated mice. Quantitation of the cystic area of Malat1
ASO-treated tumors showed that, on average, 40% of the
total tumor area contained cystic/ductular histopathology
(Fig. 3C).

Given that Malat1 ASO-treated tumors display a
remarkable histological differentiation phenotype, we as-
sayed for differentiation markers by immunofluorescence
on sections of primary tumors. E-cadherin, amajor cell ad-
hesion protein present on the cell membrane of differenti-
ated epithelial cells, exhibited increased labeling on the
cell membrane of Malat1 ASO-treated tumors (Fig. 3D,
bottom panels), whereas the control tumors showed lower
levels to undetectable levels of E-cadherin in several re-
gions within the tumors of the control mice (Fig. 3D,
top panels). Surprisingly, intense β-casein localization
was observed in the enlarged ducts ofMalat1ASO-treated
tumors (Fig. 3E, bottompanels), consistentwith the differ-
entiation phenotype. In contrast, β-casein was absent in
the control tumor sections (Fig. 3E, top panels).
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Malat1 ASO treatment significantly reduces
lung metastasis

Given the reduction of metastasis seen in the MMTV-
PyMT;Malat1−/− animals (Fig. 1E–H), it was important

to determine whether Malat1 knockdown could also re-
sult in a reduction in the incidence of lung metastasis in
this therapeutic setting. Indeed, Malat1 ASO treatment
resulted in a significant reduction in lung metastatic inci-
dence (Fig. 4A). A small fraction of Malat1 ASO-treated

Figure 3. Malat1 knockdown results in differentia-
tion of MMTV-PyMT tumors. (A) Representative
H&E-stained primary tumor sections from mice
treated with ScASO (top panels) or Malat1 ASO1 or
ASO2 (bottom panels). Bar, 100 µm. (B) The frequency
of occurrence of different histologic grades in scram-
bled versus Malat1 ASO-treated tumor sections
stained with H&E. n≥ 20 tumors from each group.
(∗)P < 0.05 by Fisher’s exact test. (C ) Percentage of cys-
tic area in the tumor sections from scrambled (n = 4)
versusMalat1ASO1-treated (n = 6) and ASO2-treated
(n = 4) mice. Error bars represent SD. (∗∗) P < 0.01 by
Wilcoxon signed rank test. (D) Representative E-cad-
herin immunolabeling on cryosections of tumors
from ScASO- or Malat1 ASO2-treated mice. Bars,
100 µm. (E) Representative β-casein immunolabeling
on cryosections of tumors from ScASO-treated mice
or Malat1 ASO1-treated mice. Bars, 100 µm.
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animals (six of 18) developed macrometastatic nodules
as compared with the control mice (10 of 12) (Fig. 4B).
Furthermore, the lungs were serial-sectioned to deter-
mine the incidence of micrometastases and obtain the
total metastatic burden for a given lung volume. Con-
sistent with data obtained from genetic loss of Malat1
(Fig. 1E–H), the Malat1 ASO-treated group showed
a significantly reduced metastatic burden (<10%) (Fig.
4C,D) compared with the larger metastatic burden
(>30%) observed in the ScASO-treated group. Micrometa-
stases were also not observed in lungs that were free of
macrometastatic nodules in mice treated with Malat1
ASOs. The livers and brains from theMalat1ASO-treated
groups and control groups were also analyzed for meta-
static incidence, and no evidence of macrometastatic le-
sions was found in those organs (data not shown).
Thus, we conclude thatMalat1 loss impairs the metastat-
ic progression of the disease. As suchMalat1 ASOs repre-
sent a potent therapeutic approach for metastatic breast
cancer.

Malat1 loss affects branching morphogenesis
in tumor-derived organoids

Three-dimensional (3D) organotypic culture systems al-
low studies of physiologically relevant cellular processes
as well as disease states under defined culture conditions
(Ewald et al. 2008; for review, see Sato and Clevers 2013;
Sachs and Clevers 2014). Mammary gland organoids
preserve the gland characteristics and undergo various
morphogenetic changes upon growth factor stimulus
that recapitulate normal physiological processes such as
branching morphogenesis (Ewald et al. 2008; Cheung
et al. 2013). To investigate the role ofMalat1 in these pro-
cesses, organoids were prepared from MMTV-PyMT tu-
mors <1 cm in size. These tumor organoids were grown

on Matrigel for up to 6 d in the presence or absence of
Malat1 ASOs, allowing us to track growth, dynamics,
and branching morphogenesis of the organoids (Fig. 5A).

TheMalat1ASOswere taken up “freely” by the organo-
ids without the use of transfection reagents, and an ∼90%
knockdown of theMalat1 transcriptwas achievedwith ei-
ther Malat1 ASO relative to the ScASO control (Fig. 5B).
After 6 d in culture, mock-treated organoids or ScASO-
treated organoids underwent extensive branching mor-
phogenesis (Fig. 5C [top panels], D). In contrast, organoids
treated with Malat1 ASO1 or ASO2 failed to undergo
branching morphogenesis (Fig. 5C [bottom panels], D)
and remained as spherical acini that were smaller than
the branched control organoids. The loss of branching
was found to be specific for ASOs targeting Malat1, as
knockdown of Neat1, another nuclear lncRNA encoded
in the same chromosomal region as Malat1, resulted in
organoids with branching morphogenesis similar to con-
trol PyMT tumor organoids (Supplemental Fig. S3A). Fur-
thermore, detailed time-lapse differential interference
contrast (DIC) imaging showed that control organoids un-
derwent active remodeling throughout the imaging win-
dow (4 d), displaying extensive movement within the
Matrigel (Supplemental Movie S1). The mock-treated or
ScASO-treated organoids expanded rapidly, forming lu-
mens, and, as early as 72 h, initiated the branching process
(Supplemental Movie S1). Numerous cells migrated with-
in the organoids, and these cells could be followed using
organoids developed from MMTV-PyMT;CAG::H2B-GFP
bitransgenic mice treated with ScASO (Supplemental
Movie S3). In contrast, Malat1 ASO1- or ASO2-treated
organoids remained in the same position over the 84-h
time course of imaging and did not show collective cell
migration within the Matrigel (Supplemental Movie S2).
Most importantly, cells within individual Malat1 ASO-
treated organoids also lacked cellular motility, and the

Figure 4. Lung metastasis is impaired in
Malat1 knockdown mice. (A) Representa-
tive lungs with metastatic nodules from
ScASO-treated and Malat1 ASO1- or
ASO2-treated mice. (B) Quantitation of
lung metastatic nodules from ScASO-treat-
ed and Malat1 ASO1- or ASO2-treated
mice. Each dot represents one mouse. (∗)
P < 0.05; (∗∗) P < 0.01 by Wilcoxon signed
rank test. (C ) Representative H&E-stained
lung sections from ScASO-treated and
Malat1ASO1-treatedmice. Arrowheads in-
dicate representativemicrometastases. Bar,
2mm. (D) Quantitation of the percentage of
lung metastatic burden from ScASO-treat-
ed and Malat1 ASO1- or ASO2-treated
mice. n = 5 lung sections from each group.
Error bars represent SD. (∗) P < 0.05 by Wil-
coxon signed rank test.
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Figure 5. Malat1 knockdown affects branching morphogenesis in the tumor-derived organoids. (A) Schematic of preparation of tumor-
derived organoids. (B) qRT–PCR of relative Malat1 RNA level in MMTV-PyMT tumor-derived organoids mock-treated or treated with
ScASO orMalat1ASO1 or ASO2. n = 4 independent experiments. Error bars represent SD. (C ) Differential interference contrast (DIC) im-
ages of organoids that were mock treated or treated with ScASO or Malat1 ASO1 or ASO2 after 6 d of culturing. Mock represents PBS-
treated organoids. Bar, 125 µm. (D) Percentage of branched organoids from PyMT tumors subjected to mock, ScASO, or Malat1 ASO1
or ASO2 treatments. n =≥ 200 organoids from four biological replicates. Error bars represent SD. (E) Representative transmission electron
microscopy (TEM) images of a ScASO-treated PyMT organoid showing loosely opposed tumor cells with prominent internal deposit of
Matrigel material (MG) and a Malat1 ASO1-treated PyMT organoid showing closely opposed polarized tumor cells with tight junctions
(TJs) and evidence of secretory dense-core granules (DCGs) and lipid droplets (LDs). The insets are higher-magnification images of tight
junctions, dense-core granules, and lipid droplets. Bars, 1 µm. (F ) DIC images of tumor organoids fromMMTV-PyMT;Malat1+/+ (top panel)
and MMTV-PyMT;Malat1−/− (bottom panel). Bar, 100 µm. (G) RT-qPCR of relative Malat1 RNA level in MMTV-Cre;FL-neo-NeuNT tu-
mor-derived organoids. n = 3 biological replicates. Error bars represent SD. (H) DIC image ofMMTV-Cre;FL-neo-NeuNT organoids treated
withmock, ScASO, andMalat1ASO1 andASO2 after 6 d of culturing. Bar, 125 µm. (I ) Percentage of branched organoids fromMMTV-Cre;
FL-neo-NeuNT tumors subjected to treatment. n =≥80 organoids from three biological replicates. Error bars represent SD.
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organoids appeared highly compact (Supplemental Movie
S4). Interestingly, organoids treated with Malat1 ASOs
showed increased apoptotic cell death and a significant
reduction in the number of dividing cells (Supplemental
Fig. S3B).

To further characterize the distinct morphological
change induced upon Malat1 ASO treatment, transmis-
sion electron microscopic analysis was performed on the
organoids to evaluate ultrastructural differences (Fig. 5E;
Supplemental Fig. S3C). Consistent with the differentia-
tion phenotype observed in the tumors treated with
Malat1 ASOs, the organoids also showed well-differenti-
ated subcellular structures, such as the presence of secre-
tory lipid droplets and dense core granules that were
absent in the control organoids treated with ScASO or
PBS. Importantly, Malat1 ASO-treated organoids exhibit-
ed tight cell–cell contacts with little to no intercellular
spaces. An increase in cell–cell junctional complexes
such as desmosomeswas observed inMalat1ASO-treated
organoids compared with the control branched organoids
(Supplemental Fig. S3C). Consistent with this observa-
tion, desmosomes have previously been shown to nega-
tively regulate branching morphogenesis (Basham et al.
2013). The cells within theMalat1ASO-treated organoids
were aligned adjacent to each other in a polarized man-
ner with intercellular ducts that are present in normal
mammary glands; these ducts are one of the distinct fea-
tures of differentiated epithelial cells (Zhan et al. 2008;
Watson andCampbell 2009). The ScASO- ormock-treated
PyMT organoids lacked polarity, and the vast majority of
the organoids contained Matrix proteins within the orga-
noids, which reflected the active extracellular matrix
(ECM) remodeling necessary for migration (Supplemental
Fig. S3C). Last, organoids derived from MMTV-PyMT;
Malat1−/− tumors did not undergo branching morphogen-
esis and remained as spherical tightly packed acini
(Fig. 5F), whereas the MMTV-PyMT;Malat1+/+ organoids
were extensively branched. The loss of branching pheno-
type observed in the MMTV-PyMT;Malat1−/− organoids
could be rescued by full-length mouse Malat1 that was
nucleofected into those organoids (Supplemental Fig.
S4A–D). We observed ∼30% branching in MMTV-PyMT;
Malat1−/− organoids that were nucleofected with full-
length mouse Malat1. In contrast, 5% of organoids dis-
played branching in mock transfected or GFP transfected
organoids (Supplemental Fig. S4D). The nucleofection ef-
ficiency ranged between 35% and 45% (data not shown).
The effect ofMalat1 knockdown was also studied in orga-
noids derived from MMTV-cre;Flox-neo-neuNT mice, a
model that phenocopies the HER2-amplified subtype of
human breast cancer. Here, the first exon of endogenous
neu (mouse homolog of HER2/ERBB2) has been replaced
withCre-inducible activated neu-cDNA, resulting in con-
stitutively active Neu protein transcribed from its endog-
enous promoter in mammary epithelial cells (Andrechek
et al. 2000). Control organoids derived from thismodel un-
derwent branching morphogenesis, while the Malat1
ASO-treated organoids failed to undergo branching mor-
phogenesis, resulting in the formation of tightly packed
spherical acinar structures (Fig. 5G–I).

Malat1 knockdown in tumors disrupts protumorigenic
signaling pathways

Next, we sought to investigate the gene expression chang-
es that are triggered upon Malat1 knockdown in both tu-
mor organoids and primary tumors byRNA-seq. RNAwas
isolated from day 6 organoids that were either untreated
mock control or treated with ScASO or Malat1 ASO1 or
ASO2. We used tumors from four MMTV-PyMT mice to
prepare organoids that were subjected to different ASO
intervention. The differentially expressed genes inMalat1
ASO1- or ASO2-treated organoids or tumor sections were
compared with ScASO- or mock-treated controls. When
we subjected the entire organoid data set to pathway anal-
ysis using the Kyoto Encyclopedia of Genes and Genomes
(KEGG), several tumorigenic signaling pathways were en-
riched. Interestingly, enrichment of genes belonging to
the ECM receptor, focal adhesion, and cell adhesion path-
ways was observed (false discovery rate [FDR] < 0.1) (Sup-
plemental Table S1). These pathway changes are highly
consistent with the phenotypic changes observed in the
organoids upon Malat1 ASO treatment; i.e., loss of cellu-
lar migration and increased adhesion observed by the loss
of branching morphogenesis.

RNA-seq analysis was also carried out from tumors de-
rived fromMalat1ASO1- or ASO2-treatedmice that were
compared with tumors from ScASO-treated mice, and 52
genes were affected upon Malat1 ASO treatment, with a
significance threshold of FDR < 0.1 (Supplemental Fig.
S5A). Additionally, 478 genes were found to be differen-
tially expressed; these genes were filtered based on fold
change cutoff from both ASO1- and ASO2-treated tumors
and exhibited a significant change in one or the other
treated tumors (Supplemental Table S2). The sample cor-
relation plot also reflected the heterogeneity between the
tumors. Nevertheless, the top 10 up-regulated and down-
regulated genes from the tumors were indeed very inter-
esting candidates (Fig. 6A,B). Of the up-regulated genes,
the casein gene family was significantly enriched. This
included Csn2 that encodes for the β-casein protein, the
major milk protein, and Csn1s2a, a member of the α-
casein family. Additionally, Wap (whey acidic protein),
Lao, and Cel, which are also constituents of mammalian
milk, were also up-regulated in many of the tumors. In
light of the significant differentiation phenotype that
was observed in theMalat1ASO-treated tumors, it was re-
assuring to observe that these genes were also up-regulat-
ed >20-fold in these tumors. Additionally, up-regulation of
the Pip gene is a confirmation of the cystic phenotype, as
Pip (also known as gross mammary gland cystic fluid) is a
protein that is secreted in cystic mammary gland lesions
(Collette et al. 1986). Many of the lactation-related genes
were validated by RT-qPCR from the ASO-treated tumors
as well as Malat1 knockout tumors (Supplemental Fig.
S5B). Interestingly, none of the genes genomically adja-
cent to Malat1 showed significant expression change ex-
cept Cdc42ep2, which showed 1.3-fold up-regulation in
the ASO-treated tumors. We subjected the entire data
set to gene set enrichment analysis (GSEA) (Subramanian
et al. 2005; Luo et al. 2009), and, interestingly, significant
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enrichment of several gene sets involved in mammary tu-
mor progression was observed (Fig. 6C), indicating that
loss of Malat1 inhibits several gene expression programs
involved in tumor progression. Detailed pathway analysis
using KEGG also resulted in enrichment of genes belong-
ing to the ECM signaling, focal adhesion, and cell adhe-
sion pathways (Fig. 6D). Nearly 90% of the tumor RNA-
seq enriched pathways (eight of nine) were also enriched

in the organoid RNA-seq data analysis. One of the most
significantly affected pathways was integrin signaling,
with many of the protumorigenic integrins (Itga2b and
Itga5b3) being down-regulated inMalat1-depleted tumors
(Fig. 6E). To identify the transcription factors potentially
cooperating with Malat1, we performed both known and
de novo motif analysis of the promoter region (−900,
+100 in relation to the TSS) of the differentially expressed

Figure 6. Knockdown of Malat1 affects tumor progression by altering many signaling pathways. (A) Top 10 significantly up-regulated
genes. (B) Top 10 significantly down-regulated genes. (C ) GSEA of tumor data sets showing enrichment of genes that affect tumor progres-
sion uponMalat1 knockdown. (D) List of pathways that were significantly affected in tumors afterMalat1ASO1 or ASO2 treatment com-
pared with a ScASO-treated control. Highlighted in gray are common pathways that are affected in both organoids and tumors. (E)
Representative example of the integrin pathway that was significantly altered in Malat1 ASO-treated tumors versus the control. (F ) De
novo and known motif analyses of the promoters of differentially expressed genes.
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genes, and they showed significant enrichment in the
Sox5-, Tcfcp2l1-, and E2A-bindingmotifs in their promot-
er regions (Fig. 6F). In addition, we took a sequence-inde-
pendent approach by searching for overlaps between
Malat1 putative targets and >359 ChIP-seq (chromatin
immunoprecipitation [ChIP] combined with deep se-
quencing) and ChIP–ChIP experiments annotated in the
ChIP Enrichment Analysis (ChEA) database. From a total
of 140 transcription factors, Sox9 was identified as a top
scorer (P = 0.0002). Sox9 is a HMG protein that shares
the similar DNA-binding element that was predicted for
Sox5 in our motif analysis (data not shown). Interestingly,
when comparing differentially expressed genes upon
Malat1 knockdown to CHART-seq (West et al. 2014) per-
formed in MCF7 cells, we found that 11% of our differen-
tially expressed genes possessed MALAT1 peaks
(Supplemental Table S3), suggesting that Malat1 could
directly regulate gene expression by physically binding
to regulatory regions of those genes. Interestingly, one of
the up-regulated genes, Tnxb (Tenascin Xb), an ECM pro-
tein that has been shown to have anti-metastatic proper-
ties (Matsumoto et al. 2001), had five Malat1-binding
peaks with high peak scores (Supplemental Table S3).

Malat1 knockdown affects multiple splicing events

As Malat1 has been implicated in alternative pre-mRNA
splicing regulation in several cell lines (Tripathi et al.
2010) and in modulating the recruitment of splicing fac-
tors to an actively transcribing transgene reporter (Bernard
et al. 2010), we investigated whether Malat1 knockdown
also resulted in changes in the in vivo splicing pattern of
genes involved in tumorigenesis. The SpliceTrap/Splice-
Duo pipeline (Wu et al. 2011) was applied to the RNA-
seq data sets generated from the tumors and organoids.
SpliceTrap performs probabilistic inference of the extent
to which an exon is included in the mature transcript, is
skipped, or is subjected to size variations due to alterna-
tive 3′/5′ splice sites or intron retention. SpliceDuo imple-
ments a noise-based methodology to identify statistically
significant alternative splicing events across two condi-
tions (see Supplemental Fig. S6A for splicing analysis
pipeline). Interestingly, numerous alternative splicing
changes were observed in both the Malat1 ASO-treated
tumors and organoids when compared with the ScASO-
treated samples (Fig. 7A,B; Supplemental Table S4). We
detected a total of 1351 splicing changes spanning the
four major classes of alternative splicing patterns in at
least two biological replicates, resulting in a 60% overlap
betweenASO1 andASO2 treatment (Fig. 7B). This finding
suggests an involvement ofMalat1 in alternative splicing
ofmany important genes. Interestingly, Esr1 coding for es-
trogen receptor α (ERα) was found to be alternatively
spliced in its 5′ untranslated region (UTR) in Malat1
ASO-treated samples compared with ScASO-treated tu-
mors (Fig. 7C; Supplemental Table S4). When we looked
at ERα protein expression using immunoblot analysis
(Supplemental Fig. S6B), we observed that the control tu-
mors showed lower ERα expression compared with
Malat1 ASO-treated tumors. It is known that the

MMTV-PyMT tumors lose ER expression in the advanced
carcinoma stage. Since most of the Malat1 ASO-treated
tumors did not progress to advanced carcinomas, it is pos-
sible that they retained ERα expression. It remains to be
further investigated whether the switch in the ER isoform
confers stability to the protein.

Of particular note, Sox5 was alternatively spliced, giv-
ing rise to an isoform that lacked the exon that encodes
for a loop domain of this HMG transcription factor (Sup-
plemental Fig. S6C,D). This finding was exciting, as motif
analysis of differentially regulated genes upon Malat1
knockdown also showed enrichment of Sox5-binding
motifs in their promoters (Fig. 6F). Furthermore, many
members of ECM signaling were also alternatively
spliced, and Itga2b (Fig. 7D; Supplemental Fig. S6E) be-
longing to the integrin signaling pathway showed alter-
nate 3′ splice site utilization that resulted in retention
of part of an intron. This transcript was shown to be
down-regulated in our gene expression analysis as well
by qRT–PCR analysis.

Overall, Malat1 knockdown affects both gene expres-
sion and alternative splicing of numerous protumorigenic
signaling molecules and differentiation-related genes, re-
sulting in a dramatic shift inmammary tumors to a highly
differentiated less aggressive state.

Discussion

Malat1, a nuclear-localized lncRNA, is not required for
normal development (Eissmann et al. 2012; Nakagawa
et al. 2012; Zhang et al. 2012). Here, using a mouse model
and 3D organotypic cultures, we demonstrate for the first
time a functional role for Malat1 in breast cancer pro-
gression. Malat1 loss results in a dramatic differentiation
of the primary tumor and a significant reduction inmetas-
tasis. These findings demonstrate a critical role forMalat1
loss in redirecting the program of a poorly differentiated
carcinoma to that of a highly differentiated “tissue.” Im-
portantly, systemic knockdown of Malat1 using ASOs
phenocopies genetic loss, thereby providing an exciting
future avenue for exploring the use of Malat1 ASOs in a
therapeutic setting.

Malat1 level increases upon cancer progression

Consistent with our findings that Malat1 plays a role in
tumor progression, RNA-FISH analysis of paired human
breast tumor samples andmetastases indicated that while
the level of Malat1 is higher in the primary tumor than
in the surrounding stroma, its level is further increased
in the lung metastases (Fig. 7E). Of particular interest is
the fact that some cells in the primary tumor exhibit a
higher level ofMalat1, andwe suggest that itmay be these
cells that escape from the primary tumor and metastasize
to the lungs. The up-regulation ofMalat1may be triggered
by physiological stress and/or oncogene activation. Inter-
estingly, several previous studies in other cancers have
found a correlation of Malat1 levels with EMT transcrip-
tion factors such as Zeb1 and Snail. Although we did not
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observe changes in the expression of EMT transcription
factors in our data sets, it is possible that Malat1 expres-
sion could increase in cells that are undergoing EMT,
and that may correlate well with those cells preferentially
metastasizing. In this context, it has been shown previ-
ously that hypoxia-inducible factor HIF1A regulates
MALAT1 expression (Choudhry et al. 2014; Michalik
et al. 2014).Hif1a is a major transcription factor that gov-
erns oxidative stress and regulates tumor progression and
has also been shown to play a role in EMT (Semenza et al.
2003). In a number of cell culture studies, Malat1 was
found to be up-regulated upon stress such as serum starva-
tion, hypoxia, and genotoxic stress, all of which are linked
to tumor progression (Yang et al. 2011; Mizutani et al.

2012; Choudhry et al. 2014). Consistent with this, our
findings demonstrated that Malat1 loss in dedifferentiat-
ed primary tumors results in extensive alteration in
gene expression, activating pathways that are involved
in morphogenesis and differentiation.
Mammary gland differentiation has been shown to be

regulated by GATA3 (Kouros-Mehr et al. 2008) and Stat
signaling (Liu et al. 1997). Although we found that the
Jak–Stat signaling pathway is altered in tumor organoids
upon loss of Malat1, this change was not captured in the
primary tumors, and Gata3 was not differentially ex-
pressed in our data sets. Thus, additional factors likely
regulate mammary tumor differentiation upon Malat1
loss. Consistent with this possibility, ECM proteins and

Figure 7. Malat1 knockdown impacts alternative pre-mRNA splicing of the pre-mRNAs. (A) Venn diagram showing the total number of
splicingchanges inASO1- andASO2-treated tumorsand tumororganoidswith respect to scrambled-treatedcontrols.Nearly60%of chang-
es overlap between ASO1- and ASO2-treated groups in at least two biological replicates. (B) Different types of splicing changes that are af-
fected and the number of genes that are alternatively spliced uponMALAT1ASO treatment in each of them. (C ) University of California at
SantaCruz (UCSC) screenshot showing an example of an alternatively spliced exon in theEsr1 transcript. (D) UCSCscreenshot showing an
example of alternatively spliced exons in the Itga2b transcript resulting in partial intron retention. (E) Schematic of a working model of
Malat1 RNA levels. Malat1 is expressed at a lower level in the differentiated mammary gland (normal) and early lesions (hyperplasia).
Malat1 up-regulation inmammary tumors (carcinoma) is concomitant with dedifferentiation andmetastasis of the tumors. (F ) Schematic
of the proposed molecular mechanism. The lncRNA Malat1 (green squiggles) shuttles between nuclear speckles and TSSs (arrowhead),
where it can serve as a scaffold to regulate efficient transcription and alternative pre-mRNA splicing (red line).
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integrin signaling are altered upon loss ofMalat1, and dif-
ferentiation markers of the mammary gland, such as ca-
sein genes, are up-regulated several-fold, resulting in
secretion of these proteinswithin the cysts and thereby re-
storing a functional activity of the mammary gland. Inter-
estingly, ECM proteins and integrin signaling have been
previously shown to play a crucial role in the regulation
of casein genes (Streuli et al. 1991, 1995; Pontier andMul-
ler 2009), and prior studies have indicated that lactation
confers cancer protection to the mammary gland due to
differentiation of epithelial cells (Kotsopoulos et al. 2012).

Poorly differentiated primary tumors are often associat-
ed with a poor outcome and higher incidence of metasta-
sis (for review, seeMedema 2013). Therefore, the ability to
differentiate primary tumors by loss or knockdown of
Malat1 significantly reduces the possibility that they
will undergo EMT-like processes and become invasive.
Multiple lines of evidence converge on this aspect of
Malat1 function, as its loss has been previously shown
to reduce motility in cell lines and the homing behavior
of lung cells in xenograft mouse models (Tano et al.
2010; Gutschner et al. 2013). Our findings add signifi-
cantly to these prior observations by showing that loss
of Malat1 in tumor-bearing mice results in a 70% reduc-
tion in lungmetastasis. We also found thatMalat1 loss in-
hibited branching morphogenesis in tumor organoids,
consistent with its requirement for migration and local
ECM remodeling of the organoids in Matrigel, a process
that is similar to invasion and matrix degradation ob-
served in vivo in malignant tumors (Ewald et al. 2008;
Cheung et al. 2013). In addition, Malat1 loss in both
MMTV-PyMT and Her2/neu-amplified MMTV-cre;Flox-
neo-neuNT tumor organoids resulted in increased epithe-
lial cell adhesion and loss ofmigration of cells, resulting in
tightly packed spherical acinar structures. Given that the
branching phenotype could be restored by addition of
mouse full-lengthMalat1,Malat1 is essential for this pro-
cess, and the phenotype observed is specific for Malat1.
Our data add significant support to the concept that orga-
noids can provide a rapid means of assessing therapeutic
potential in a patient-specific manner (Boj et al. 2015).

Malat1 functions as a cotranscriptional splicing scaffold

Although Malat1 knockout mice exhibit no phenotype
(Eissmann et al. 2012; Nakagawa et al. 2012; Zhang
et al. 2012), upon Malat1 knockout or knockdown in the
MMTV-PyMT mammary cancer model, we observed
changes in gene expression and pre-mRNA splicing of nu-
merous cancer-relevant genes. Lack of significant overlap
of differentially expressed genes upon Malat1 loss among
various studies supports a role forMalat1 in a context-de-
pendent manner. Based on cross-linking studies, it has
been shown that Malat1 is bound to either chromatin
(West et al. 2014) or pre-mRNAs (Engreitz et al. 2014).
Since it is well documented that transcription and pre-
mRNA splicing are coupled processes (for review, see
Bentley 2014), our data suggest that Malat1 may act as
a scaffold to coordinate these processes in a gene- and
context-specific manner (Fig. 7F). The presence ofMalat1

in nuclear speckles, domains that are commonly found
near actively transcribing genes and are also enriched in
splicing and transcription factors (for review, see Spector
and Lamond 2011), could facilitate the function ofMalat1
at sites of transcription. Interestingly, based on compari-
sons between a CHART-seq data set from MCF7 cells
that identified directMALAT1-binding sites across the ge-
nome and our gene expression data set, we identified
∼11% of our differentially expressed genes to be potential
direct targets ofMalat1, which is consistent with the pos-
sibility of Malat1 coordinating expression of these genes.
In linewith this, we previously showed that loss ofMalat1
impairs the recruitment of SR splicing factors to a stably
integrated transgene array (Bernard et al. 2010). It has
also been previously shown that numerous splicing
changes occur during tumor progression, giving rise to
novel oncogenic splice variants (Venables et al. 2008;
Eswaran et al. 2013). In this regard, SRSF1, a SR protein-
splicing factor, can act as an oncoprotein that promotes
breast cancer (Anczukow et al. 2012). During tumor pro-
gression, Malat1 may facilitate efficient transcription
and splicing of protumorigenic genes such as integrins,
ECM proteins, and genes involved in migration and me-
tastasis, leading to a more favorable outcome for the tu-
mor. Thus, loss of Malat1 results in altered transcription
and pre-mRNA splicing events more consistent with the
differentiated phenotype of the impacted tissue. Given
the importance of estrogen signaling in luminal breast
cancer and our observation that the estrogen receptor
(Esr1) transcript was alternatively spliced in its 5′ UTR
uponMalat1 loss, it will be important in follow-up studies
to determine whether Esr1 isoform switching plays a role
in the observed differentiation phenotype.

It is presently unclear whether Malat1 binds to certain
proteins or transcription factors to elicit its regulatory
role. Previously published CLIP-seq (cross-linking immu-
noprecipitation [CLIP] combined with deep sequencing)
and RNA pull-down studies from several groups have
shown that Malat1 binds to splicing factors such as
SRSF1, TDP43, and PRC2 components, including EZH2
(Tripathi et al. 2010; Tollervey et al. 2011; Yang et al.
2011; Guil et al. 2012). Detailed motif analysis of the pro-
moters of the differentially expressed genes in our data
sets show them to be enriched for TCFCP2L1, SOX5,
and E2A transcription factor-binding sites, which have es-
tablished roles in tissue differentiation and pluripotency
(Chen et al. 2008; Kamachi and Kondoh 2013; Ye et al.
2013). Therefore, we suggest that the specificity of the
Malat1-responsive genes may be context-dependent and
arise from the transcription factors that primarily regulate
those genes. For example, TCFCP2L1 has been shown to
cooperate with the estrogen receptor family of transcrip-
tion factors such as ESRRB (Boroviak et al. 2014) and
has been shown to be associatedwith breast cancermetas-
tasis to the lungs (Landemaine et al. 2008).

Malat1 ASOs are a promising therapeutic

Of potential clinical impact, we employed antisense-
mediated knockdown using Malat1-specific ASOs in a
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mouse model of metastatic mammary cancer. ASOs are
currently in clinical trials for many diseases, including
spinal muscular atrophy and Duchenne muscular dystro-
phy (Aartsma-Rus et al. 2004; Rigo et al. 2012). The in vivo
efficacies of Malat1 ASOs have been tested in primates,
where >80% knockdown efficiency was achieved (Koller
et al. 2011; Hung et al. 2013). Here we show that Malat1
knockdown results in slower tumor proliferation and
differentiation and significant reduction in metastasis,
all recapitulating the phenotype of the MMTV-PyMT;
Malat1−/− genetic model, thus confirming the specificity
of these ASOs. Future studies using patient-derived xeno-
graft models as well as patient-derived tumor organoids
will enable us to further study the efficacy of Malat1
ASOs as a therapeutic to induce differentiation of primary
human breast tumors and significantly reduce tumor
progression.

Materials and methods

Animals

Animal experiments were carried out in the Cold Spring Harbor
Laboratory Animal Shared Resource in accordance with Institu-
tional Animal Care and Use Committee-approved procedures.
Malat1 knockout (C57BL/6) mice were generated as described
previously (Zhang et al. 2012) and bred with MMTV-PyMT
(C57BL/6) mice (Guy et al. 1992).CAG::H2B-EGFPmice (Hadjan-
tonakis and Papaioannou 2004) were obtained from Jackson Lab-
oratory and bred with MMTV-PyMT mice. MMTV-Cre and Fl-
neo-neu-NT mice were obtained from Dr. William Muller (Mc-
Gill University, Montreal) and were bred to generate MMTV-
Cre;Fl-neo-neu-NT.

RNA in situ hybridization

RNA in situ hybridization was performed on formalin/PFA-fixed
paraffin-embedded tissue sections using specific probes against
human ormouseMalat1 purchased fromAffymetrix. The human
tissue sections were obtained fromDr. Edi Brogi (Memorial Sloan
KetteringCancer Center). Bothmatched primary tumor sections/
metastasis and unmatched array samples were scored for
MALAT1 level. The in situ hybridization protocol using View-
RNA technology was performed according to the manufacturer’s
instructions (Affymetrix). Slides were scanned using an Aperio
scanner, and the images were analyzed using Leica Scanscope
software. Alternatively, nick-translated Malat1 probes labeled
with fluorescently conjugated dUTPs were used for RNA-FISH
as described previously (Zhang et al. 2012). Images were captured
using a DeltaVision microscope (GE). For all of the quantitative
analysis, the fluorescent intensity profiles were obtained from
at least five different random fields. When array spots were used
for intensity measurement, the total intensity of the spot with
ROImarkupwas used to estimate the signal intensity. The inten-
sity values were binned to obtain the range, which was then used
for plotting.

Organoid culture

Organoids from MMTV-PyMT and MMTV-Cre;Flox neo-neu NT
tumors were prepared and cultured as described previously
(Ewald 2013). Organoids were mixed with Matrigel and plated
in 24-well Mat-Tek dishes. For ASO treatment, 500 nM Malat1
ASO or scASO was added to 1 mL of organoid culture medium.

Images were acquired using a Zeiss Axio-Observer light micro-
scope. For live-cell imaging, organoids from MMTV-PyMT or
MMTV-PyMT;CAG::H2B-EGFP mice were treated with Malat1
or ScASOs. At least five organoids per well were imaged in three
dimensions over a period of 4 d at 15- or 30-min intervals using a
Perkin-Elmer spinning-disc confocal microscope. Time-lapse im-
ages were processed using Volocity (PerkinElmer) and ImageJ
(National Institutes of Health) software.

Electron microscopy

Organoids grown inMatrigel in 12-well culture dishes were fixed
overnight with 2% glutaraldehyde and 2% paraformaldehyde in
PBS. While in the multiwell dish, the samples were rinsed with
distilled water and then post-fixed with 1% osmium tetroxide
in 1.5% potassium ferrocyanide for 1 h. After a distilled water
rinse, discs of Matrigel containing embedded organoids were lift-
ed out of the culture dishes, cut into 2-mm× 10-mm× 4-mmpiec-
es, and transferred into 20-mL glass scintillation vials. Samples
were dehydrated in a graded series of ethanol and then rinsed in
100%acetone. Resin embeddingwas donewith continuous agita-
tion in 50% epon-araldite resin in acetone for 1 h and overnight
incubation in 100% epon-araldite with agitation. Samples were
then placed into BEEM capsules (placed flat into the cap end of
a conical capsulemade by cutting off the conical end), and the res-
in was polymerized overnight at 60°C in a vented oven. Samples
were sectioned at 100 nm, collected on butvar-coated nickel
slot grids (1-mm× 2-mmopening; ElectronMicroscopy Sciences),
and counterstained with lead citrate. Sections were examined
in a Hitachi H-7000 transmission electron microscope operated
at 75 kV. Representative images were recorded on Kodak 4489
film. Images were scanned at 2400 dpi with an Epson Perfection
VP750 Pro.

ASO treatment and tumor studies

Themice selected for ASO treatment were grouped based on age,
initial tumor size, and separation of siblings into three cohorts.
The ASOs against Malat1 or ScASO were reconstituted at a con-
centration of 5 mg/mL in PBS and injected subcutaneously every
day at a concentration of 25mg/kg per day in a volume of∼125 μL
for 5 d with a rest period of 2 d. Tumor growth was measured
twice perweek using calipers in a nonblinded fashion. Tumor vol-
ume was calculated based on the formula volume =width2 ×
length/2. Mice were sacrificed after 8 wk of treatment, and tu-
mors were removed and fixed in 4% PFA. Upon sacrifice, the
lungswere also removed, and themacronodules were counted us-
ing a dissection microscope. Other internal organs, including the
spleen, liver, kidney, and brain, were examined for metastasis or
abnormalities using a dissection microscope.

Histology

Primary tumors and lungswere fixed in 4%PFA for up to 24 h and
washed in PBS. Primary tumors were embedded in paraffin, sec-
tioned, and stained with H&E. Slides were scanned using an
Aperio slide scanner. The pathologist performed blind analyses
to assess the histologic grade. The cystic area calculation was
done using Aperio Scanscope software. After fixation, lungs
were incubated in 20% sucrose overnight and embedded in
OCT, and the lungs were cross-sectioned 2 mm apart. The lung
sections were embedded horizontally to obtain serial sections
of the entire lung, and H&E-stained sections were scanned with
an Aperio image scope. The lungmetastatic burden was calculat-
ed using Aperio Scanscope and ImageJ (National Institutes of
Health) software.
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Immunofluorescence

Immunofluorescence on the tumor cryosections was performed
as described previously. Briefly, sections were washed in PBS
and permeabilized for 5 min in 0.05% Triton X. The sections
were blocked using 1% goat serum followed by incubation with
primary antibody (Ki-67 from Vector Laboratories, E-cadherin
from BD; β-casein was a gift fromDr. Mina Bissel) for 4 h to over-
night at 4°C. Subsequently, the slides were washed with PBS +
0.01% Triton X. Finally, the sections were incubated in Alexa
fluor-conjugated secondary antibodies (Jackson ImmunoRe-
search) followed by washes with PBS. The sections were stained
with DAPI and mounted in 90% glycerol and 10% PBS plus
PPD (paraphynelediamine). Images were acquired using a Zeiss
LSM 710 or Zeiss Axio-Observer microscope. Ki-67 was quanti-
fied by counting the number of positive nuclei for every 100 nu-
clei from multiple fields on the slide to obtain the percentage of
positive cells.

RNA-seq and analysis

Organoids generated from fourMMTV-PyMTmicewere cultured
in 3DMatrigel domes in the presence of FGF2 for 6 d. The organo-
ids were treated with 500 nM mock, ScASO, or Malat1 ASOs.
In addition, tumors were removed from MMTV-PyMT mice
that had undergone injections with ScASO (threemice) orMalat1
ASO1 (threemice) or ASO2 (fourmice). Total RNAwas extracted
using TRIzol (Life Technologies) fromboth organoids and homog-
enized tumor tissue. Libraries for polyA+ RNA-seq were prepared
from 1 μg of RNA per sample using TruSeq chemistry (Illumina),
multiplexed, and sequenced to obtain paired-end 101-base-pair
(bp) reads on an Illumina HiSeq 2000 platform, resulting in 20
million to 86 million reads per library.
The quality of the raw data was evaluated using FastQC

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc),
and reads were mapped to mm9 using STAR (Dobin et al.
2013), resulting in an overall mapping efficiency of >90%. The
Gencode mV1 annotation set was used as a reference, and the
reads per gene record were counted using the HTSeq package
(Anders et al. 2015). Replicate analysis was carried out using
edgeR (Robinson et al. 2010). Differential gene expression was
performed with DESeq2 (Love et al. 2014). Functional analysis
of KEGG pathways and gene ontology (GO) terms was carried
out with the R/Bioconductor packages GAGE (Luo et al. 2009)
and Pathview (Luo and Brouwer 2013). Motif analyses were per-
formed using Homer (http://homer.salk.edu/homer; Heinz et al.
2010).

Splicing analysis

Alternative splicing, including cassette exons, alternative 3′/5′

splice site, and intron retention events, were identified and quan-
tified using the SpliceTrap/SpliceDuo pipeline (Wu et al. 2011).
This tool combinesRNA-seq datawith prebuilt transcriptmodels
to quantify the level of inclusion of every exon in a transcript. The
transcript models are exon trios composed of alternative exon
candidates with their annotated flanking exons. These were de-
rived from the mm9 TXdb database, which accounts for a total
of >230,000 exon trio models describing the alternative splicing
of ∼190,000 mouse exons in ∼44,000 transcripts. SpliceTrap
uses the Bowtie read aligner to align reads against TXdb. Biologi-
cal replicates were analyzed independently, and alternative splic-
ing events that were reproduced in at least two samples were
selected (SpliceDuo FDR < 0.1). Inconsistent splicing events
showing opposite splicing directions (skipping versus inclusion)
were further removed.

RT-qPCR

Onemicrogram of RNAwas used tomake cDNAs using oligo-dT
primers. One-tenth the volume of the cDNA reaction mixture
was used in the qPCR reaction containing 1× SYBRGreenmaster
mix (Applied Biosystems) and specific forward and reverse
primers. The relative fold change was calculated using the ΔΔCt

method. The primers used were as follows: Malat1 F (AACC
AGTTTCCCCAGCTTTT) and Malat1 R (CTACATTCCCA
CCCAGCACT).

Accession number

RNA-seq data presented in this study have been submitted to the
NCBI Gene Expression Omnibus (GEO; http:// http://www.ncbi.
nlm.nih.gov/geo) under accession number GSE67647
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