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Aneuploidy, an imbalanced karyotype, is awidely observed feature of cancer cells that has long been hypothesized to
promote tumorigenesis. Herewe evaluate the fitness of cellswith constitutional trisomyor chromosomal instability
(CIN) in vivo using hematopoietic reconstitution experiments. We did not observe cancer but instead found that
aneuploid hematopoietic stem cells (HSCs) exhibit decreased fitness. This reduced fitness is due at least in part to the
decreased proliferative potential of aneuploid hematopoietic cells. Analyses of mice with CIN caused by a hypo-
morphic mutation in the gene Bub1b further support the finding that aneuploidy impairs cell proliferation in vivo.
Whereas nonregenerating adult tissues are highly aneuploid in thesemice, HSCs and other regenerative adult tissues
are largely euploid. These findings indicate that, in vivo, mechanisms exist to select against aneuploid cells.
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More than 90% of human solid tumors are aneuploid
(Rajagopalan and Lengauer 2004). It was initially hypothe-
sized in 1914 that aneuploidy may play a causal role in
tumorigenesis (Boveri 1914), and recent analyses of tumor
genomes support this idea, finding that aneuploidies
observed in cancer can be explained in part by loss of
tumor suppressor genes and gain of oncogenes (Davoli
et al. 2013). Despite the prevalence of imbalanced karyo-
types in cancer, in vitro studies of aneuploid cells have
not provided decisive evidence that aneuploidy alone
can promote tumorigenesis. Trisomic human (Segal and
McCoy 1974; Stingele et al. 2012) and mouse (Williams
et al. 2008) cells exhibit decreased proliferation, and cells
harboring mutations that promote chromosomal instabil-
ity (CIN) proliferate either normally (Babu et al. 2003;
Jeganathan et al. 2007; Weaver et al. 2007) or more slowly,
indicating that aneuploidy is, at best, fitness-neutral. Fur-
thermore, studies inmousemodels of CIN andDown syn-
drome (DS) have demonstrated that these conditions can
both promote and inhibit tumorigenesis in vivo (Pfau
and Amon 2012). These observations make clear the
need for additional experimental systems to assess the
effects of aneuploidy per se on cell proliferation in vivo.
However, systematic evaluation of aneuploid cell fitness

in vivo is difficult because most autosomal aneuploidies
are embryonic-lethal in mammals.
To bypass the embryonic lethality of aneuploidy in

mice, we performed transplantation experiments with
hematopoietic stem cells (HSCs) isolated from mouse
embryos. HSCs provide a cellular system that is amenable
for systematic study of the effects of aneuploidy in vivo
because HSCs give rise to all differentiated blood cell
types (Kondo et al. 2003). Whereas HSCs reside in the
bone marrow of adult mice, they can be found in the fetal
liver between embryonic day 12.5 (E12.5) and E15.5
(Orkin and Zon 2008), allowing the isolation of HSCs
from fetal livers of aneuploid embryos that survive to
this embryonic age.
High doses of irradiation ablate the hematopoietic func-

tion of HSCs; however, transplantation of HSCs from a
nonirradiated donor can reconstitute the hematopoietic
system of an irradiated recipient. Thus, aneuploid fetal
liver HSCs (FL-HSCs) can be used to reconstitute the
blood of a lethally irradiated wild-type recipient, giving
rise to an otherwise wild-type mouse with aneuploid
blood. Hematopoietic reconstitutions performed with
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FL-HSCs derived fromeuploidwild-type littermates allow
for direct comparison of aneuploid and euploid HSC fit-
ness. Thus, the hematopoietic compartment represents
an ideal in vivo system to assess the fitness of aneuploid
karyotypes that cause embryonic lethality. Analyzing
HSC fitness in vivo not only permits evaluation of aneu-
ploid cell proliferative capacity but also provides insight
into how aneuploidy affects stem cell potential, as pre-
vious studies have demonstrated that aneuploidy can per-
turb stem cell viability and differentiation (Adorno et al.
2013; Gogendeau et al. 2015). Finally, this system also
offers a unique model for studying aneuploid cells in the
context of an otherwise euploid environment, a setting
typical of tumorigenesis in vivo.

We chose threemousemodels of aneuploidy to evaluate
the fitness of aneuploid HSCs: constitutional trisomy 16,
constitutional trisomy 19, andmice harboring a hypomor-
phic allele of the gene Bub1b, which encodes the spindle
assembly checkpoint protein BUBR1 (Bub1bH/H) (Baker
et al. 2004). Mouse chromosome 16 is the closest whole-
chromosome homolog to human chromosome 21 and
thus a model of DS. This model is of particular interest
because individuals with DS often show perturbations in
the hematopoietic lineage (Henry et al. 2007; Choi 2008)
and have a greatly increased risk of developing childhood
leukemia (Satge et al. 1998). Mouse chromosome 19 is the
smallest mouse autosome, with homology mainly with
human chromosomes 9, 10, and 11.Whilemouse chromo-
some 19 is not known to harbor genes typically associated
with acute myeloid leukemia (AML), activating muta-
tions in JAK2 (encoded by mouse chromosome 19) are fre-
quently associated with myeloproliferative neoplasms
(Kiladjian 2012). The Bub1bH/H CIN model produces
aneuploid cells with mostly single-chromosome gains or
losses, thus representing a variety of aneuploid chromo-
somes due to random missegregation events (Baker et al.
2004). Bub1bH/H mice survive to adulthood, permitting
comparison of both fetal liver and adult bone marrow
Bub1bH/H HSCs with constitutional trisomic FL-HSCs.
Bub1bH/H mice develop progeria-like symptoms and
have a decreased life span but do not develop cancer (Baker
et al. 2004).

A comparison of HSCs from these three models has
revealed a range of responses to aneuploidy in the blood
and permitted differentiation between chromosome-spe-
cific and general effects of aneuploidy in vivo. We found
that while some aneuploidies can be well tolerated in
the hematopoietic lineage, aneuploidy generally causes
a decrease in HSC fitness. This decreased fitness is at
least partially due to the decreased proliferative potential
of aneuploid hematopoietic cells. Additional analyses
of Bub1bH/H CIN mice show that aneuploidy is tolerated
in this strain during periods of rapid hematopoietic
population expansion. However, single-cell sequencing
of tissues from adult Bub1bH/H mice revealed that aneu-
ploidy is not uniformly tolerated across different adult tis-
sue types. While tissues that are largely nonproliferative
in the adult display high levels of aneuploidy, regenerative
tissues harbor few, if any, aneuploid cells. These data pro-
vide evidence that aneuploidy-selective mechanisms

eliminate aneuploid cells during adult hematopoiesis
and likely in other tissues that regenerate during
adulthood.

Results

Aneuploidy decreases HSC competitive fitness in vivo

To determine the effect of aneuploidy on cell fitness in
vivo, we first used competitive reconstitution assays to
evaluate the fitness of aneuploid FL-HSCs. In this assay,
two populations of HSCs were coinjected into a lethally
irradiated recipient, and the relative contributions of
each population to the hematopoietic compartment
were evaluated over time by analysis of the peripheral
blood. To ensure that equal numbers of cells were being
competed, we first measured HSC levels. Quantification
by flow cytometry revealed no significant differences in
the HSC levels in trisomy 16 or trisomy 19 fetal livers
(Fig. 1A). Because Bub1bH/H animals are viable, we quan-
tifiedHSC levels in the adult and found them to be similar
to those of their wild-type littermates (Supplemental Fig.
S5I). Thus, we concluded that HSC levels are similar in
aneuploid and euploid donors.

To assess the fitness of aneuploid HSCs, we injected
equal numbers of live aneuploid or euploid littermate con-
trol fetal liver cells into a lethally irradiated euploid recip-
ient together with the same number of live fetal liver cells
from a common euploid competitor of the same embry-
onic age (referred to here as common wild type) (Fig. 1B).
To distinguish between experimental HSCs and the com-
monwild-type competitor, each donorwas trackedusing a
different isoform of the pan-leukocyte cell surface marker
CD45, which can be distinguished by isoform-specific
antibodies (CD45.1 and CD45.2). Aneuploid donors and
their wild-type littermates expressed the CD45.2 isoform,
whereas the common wild-type competitor expressed the
CD45.1 isoform.Wechose touse aCD45.1 commondonor
because previous studies had shown that CD45.1 HSCs
exhibit decreased fitness when compared with CD45.2
HSCs in competition assays (Waterstrat et al. 2010), thus
giving the CD45.2 aneuploid donors a slight advantage in
these experiments. Additionally, we used CD45.1 recipi-
ents to unambiguously quantify the contribution from
aneuploid and euploid wild-type littermate donors. We
further note that, in this experimental setup, a small pop-
ulation of recipient-derivedmemoryT cells remains in the
recipient peripheral blood after reconstitution despite
lethal irradiation (Frasca et al. 2000). This recipient-
derived memory cell population is evident in our data
3 wk after transfer (Fig. 1C–E). In these samples, an
increased proportion of the blood is comprised of
CD45.1-positive cells because donor-derived peripheral
blood cells are present at low levels at this early stage of
reconstitution, making the contribution from recipient-
derived memory cells more prominent.

Evaluation of competitive reconstitution assays over
time revealed a range of aneuploid cell fitness pheno-
types. Trisomy 16 FL-HSCs were much less fit than
FL-HSCs from their wild-type littermates and were nearly
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completely outcompeted by the commonwild-type donor
(Fig. 1C,F). Trisomy 19 FL-HSCs exhibited slightly
reduced relative fitness (Fig. 1D,F). Bub1bH/H FL-HSCs
showed no relative fitness defects in this assay (Fig. 1E,F).
Because we did not observe decreased fitness in

Bub1bH/H competitive reconstitutions, we assessed the
level of aneuploidy in these CIN cells. We isolated periph-
eral white blood cells derived from Bub1bH/H FL-HSC
donor cells from a recipient mouse 16 wk after transfer.
Bub1bH/HCD45.2 cells were collected by FACS, and their
karyotype was determined by single-cell sequencing.
Analysis of 18 cells revealed seven to be aneuploid
(∼38.9%) (Fig. 1G; Supplemental Fig. S7A). This level of

aneuploidy is on par with previously reported levels of
aneuploidy for the brain (38.1%) and the liver (18.8%)
(Knouse et al. 2014) as well as for stimulated splenocytes
(3%–33%) in adult Bub1bH/H mice (Baker et al. 2004).
Therefore, Bub1bH/H FL-HSCs show fitness similar to
that of euploid wild-type controls in this assay despite
the prevalence of aneuploid cells in the peripheral blood.
In summary, when comparedwith the average fitness of

euploid wild-type littermates after 18 wk, the average rel-
ative fitness of trisomy 16, trisomy 19, and Bub1bH/H

FL-HSCs was 0.08, 0.84, and 1.06, respectively (Fig. 1F).
Thus, in this assay, some aneuploidies confer decreased
HSC fitness, whereas others are fitness-neutral. These

Figure 1. Aneuploidy decreases HSC competitive fit-
ness in vivo. (A) The percentage of HSCs (CD150+

CD48− Sca-1+ lin− cells) found in trisomy 16 and tris-
omy 19 fetal livers was quantified by flow cytometry.
Data are shown as mean ± standard deviation. (B) Sche-
matic of competitive reconstitution experiments. (C–

E) CD45.2 fetal liver cells from wild-type or aneuploid
E14.5 littermates were coinjected into a lethally irradi-
ated CD45.1 recipient with an equal number of fetal
liver cells from a CD45.1 common wild-type donor of
the same age derived from a separate mating. Peripheral
blood was sampled at the indicated times. The percent-
age of the white blood cell population contributed by
each donor was quantified by flow cytometry with iso-
form-specific antibodies against CD45.1 and CD45.2
for recipients of common wild-type cells and trisomy
16 fetal liver cells (C, left graph) (n = 17), trisomy 19 fetal
liver cells (D, left graph) (n = 10), and Bub1bH/H fetal
liver cells (E, left graph) (n = 10). (C–E, right graphs)
The contribution of wild-type littermates when com-
peted to the common wild type for all aneuploidies
was quantified at the same time in C (right graph)
(n = 20), D (right graph) (n = 8), and E (right graph)
(n = 6). Data are represented as mean ± standard devia-
tion for each time point. (F ) Ratios of the average per-
centage of the peripheral blood reconstituted by the
aneuploid fetal liver cells to the average percentage of
the peripheral blood reconstituted by wild-type litter-
mate fetal liver cells at the indicated times are shown.
(G) Single-cell sequencing of white blood cells from a
mouse competitively reconstituted with CD45.2
Bub1bH/H and CD45.1 euploid FL-HSCs at 16 wk after
transplantation (Fig. 1E) revealed that seven of 18
CD45.2 Bub1bH/H cells analyzed (∼39%) were aneu-
ploid. Karyotypes of the seven aneuploid cells are shown
with chromosome gains in red, chromosome losses in
blue, and euploidy in black. Segmentation plots of all
sequenced cells are shown in Supplemental Figure S7A.
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findings suggest either that the observed fitness decreases
are due to chromosome-specific effects or that a certain
level of aneuploidy is tolerated in the blood.

Decreased fitness of aneuploid HSCs is due to decreased
proliferation

To determine why trisomy 16 and trisomy 19 FL-HSCs
exhibited decreased relative fitness in competitive recon-
stitution assays, we first evaluated the ability of hemato-
poietic cells from each aneuploid donor to home to the
bone marrow niche, a property that is essential to restore
hematopoiesis during HSC transplantation (Lapidot
2005). Fetal liver cells were labeled with a fluorescent
cell surface dye and injected into irradiated recipients.
The number of labeled cells in the bonemarrowwas quan-
tified after 24 h. We observed no significant decrease in
the homing efficiency of trisomy 16, trisomy 19, and
Bub1bH/H fetal liver cells (Student’s t-test) (Fig. 2A), sug-
gesting that a defect in homing is not responsible for the
decreased ability of aneuploid FL-HSCs to reconstitute
the hematopoietic system of lethally irradiated recipients.

We next performed colony-forming unit spleen (CFU-S)
assays to determine whether the proliferation of aneu-
ploid FL-HSC-derived progenitor cells was impaired dur-
ing early stages of hematopoietic reconstitution (Purton
and Scadden 2007). Irradiated mice were injected with
fetal liver cells, and spleens were analyzed 7 or 8 d later
(Fig. 2B; Till andMcCulloch 1961). Aneuploid and euploid
fetal liver cells formed similar numbers of colonies in the
spleen (Fig. 2C). However, quantification of the area of
each CFU-S colony revealed that the average size of the
colonies produced by trisomy 16 and trisomy 19 donor
cells was reduced compared with colonies formed by cells
from their wild-type littermates (Fig. 2D). The average
size of Bub1bH/H CFU-S colonies was similar to those
formed by wild-type littermate fetal liver cells (Fig. 2D).

To further evaluate the proliferative potential of aneu-
ploid FL-HSCs, we measured EdU incorporation in the
bone marrow of irradiated recipient mice reconstituted
with trisomy 16 FL-HSCs. The number of EdU-positive
donor-derived cells was significantly reduced compared
with wild-type controls 6 d after reconstitution (Fig. 2E),
indicating that trisomy 16 interferes with proliferation
of FL-HSCs and progenitor cells. Consistent with this
finding is the observation that trisomy 16 and trisomy
19 fetal livers were significantly smaller than fetal livers
of their wild-type littermates (Supplemental Fig. S1).
Interestingly, Bub1bH/H fetal liver-derived cells did not
exhibit decreased proliferation as evaluated by EdU incor-
poration 6 d after reconstitution; rather, there appeared to
be a (not statistically significant) trend toward increased
proliferation in these cells compared with wild-type con-
trol cells (Fig. 2E). The analyses of aneuploidy levels in
Bub1bH/H tissues described below provide a potential
explanation for this observation. Taken together, our
data demonstrate that aneuploid FL-HSCs can home effec-
tively but, in the cases of trisomies 16 and 19, show
impaired proliferative potential.

Figure 2. Proliferation but not homing ability is reduced in tris-
omy 16 and trisomy 19 reconstitutions. (A) DiI-labeled fetal liver
cells were injected into irradiated recipient mice. The percentage
of DiI-positive cells in the bone marrow of recipient mice was
measured 24 h after injection. Data are shown asmean ± standard
deviation. (B) Representative images of sections of spleens iso-
lated frommice transferredwithwild-typeor trisomy16 fetal liver
cells 8 d after reconstitution. Bar, 1mm. (C ) Quantification of col-
ony-forming unit spleen (CFU-S) colonies from spleen sections of
recipient mice of trisomy 16 or wild-type littermate fetal liver
cells 8 d after injection and trisomy19,Bub1bH/H, orwild-type lit-
termate fetal liver cells 7 d after injection. The bar represents the
meanvalue foreachcondition. (D)Quantificationof themeansize
of each colony in C as determined by the percent of total spleen
area. Measurements from all individuals for each condition were
pooled. The bar represents the mean value for each population.
Populations were compared by Student’s t-test. (∗) P < 0.05. (E)
Trisomy 16 or Bub1bH/H fetal liver cells or cells from their wild-
type littermates were injected into lethally irradiated recipients.
Micewere injected with EdU 6 d later, and the level of EdU incor-
poration inCD45.2-positive donor-derived bonemarrowcellswas
evaluated by flow cytometry 24 h later. The bar represents the
mean value for each population. (∗) P < 0.05 by Student’s t-test.
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Trisomy 16 recipients exhibit peripheral blood defects
and decreased survival

Whereas trisomy 16 FL-HSCs exhibited a severe fitness
defect in competitive reconstitution experiments, the fit-
ness decrease was more subtle for trisomy 19 FL-HSCs
and not evident for Bub1bH/H FL-HSCs. This suggests
either that low levels of aneuploidy do not strongly impair
HSC fitness or that HSCswere not challenged sufficiently
in these assays to reveal decreased cellular fitness. To
address the latter possibility, we evaluated the long-term
fitness of HSCs from each aneuploid strain individually
by serially transferring HSCs from primary to secondary
and, in some cases, to tertiary and quaternary recipients
(Fig. 3A). Serial transfer poses a significant challenge to
the replicative potential of HSCs and their progeny, caus-
ing the eventual exhaustion of even wild-type HSCs
(Harrison and Astle 1982). Trisomy 16 and trisomy 19
FL-HSCs have been evaluated previously in primary trans-
plantation (Herbst and Winking 1991); however, these
studies were not performed on an isogenic background,
and it is therefore difficult to determine whether the
observed phenotypes were due to aneuploidy or factors
such as graft rejection (Gropp et al. 1983).

We transferred either CD45.2 trisomy 16 or CD45.2
euploid wild-type littermate fetal liver cells into lethally
irradiated CD45.1 primary recipient mice (Fig. 3A).
Peripheral blood analyses of primary recipients performed
periodically between 4 and 16 wk after transfer revealed
that trisomy 16 FL-HSCs harbor significant fitness defects
when transferred individually (Fig. 3; Supplemental Fig.
S2). These defects are consistent with decreased prolifera-
tion in the hematopoietic lineage. For example, trisomy
16 FL-HSCs contributed relatively fewer peripheral white
blood cells than wild-type HSCs (Fig. 3B). Trisomy 16 pri-
mary recipients also exhibited leukopenia (reduced white
blood cell counts) when compared with primary recipi-
ents reconstituted with cells from their euploid litter-
mates (Fig. 3C). This seemed to be largely due to low
numbers of B cells (Supplemental Fig. S2A,B,I). Further-
more, complete blood cell counts showed that trisomy
16 primary recipients have comparatively fewer red blood
cells and macrocytic anemia, a reduced red blood cell
count accompanied by increased red blood cell volume
and decreased blood hemoglobin concentration (Fig. 3D;
Supplemental Fig. S2C–G,J). These results are in line
with previous in vivo characterizations of trisomy
16 FL-HSCs (Herbst and Winking 1991). In addition to

Transfer 106 fetal 
liver cells

CD45.1
Primary

Recipient

CD45.1
Secondary
Recipient

Transfer 106 bone
marrow cells

WTAneuploid

or

CD45.2
Donor

CD45.1
Tertiary

Recipient

Transfer 106 bone
marrow cells

A

E

0 20 40 60 80 100 120 140 160
0

20

40

60

80

100

time (days)

P
er

ce
nt

su
rv

iv
al Wild Type (n = 9)

Trisomy 16 (n = 7)

0 20 40 60 80 100 120 140 160
0

20

40

60

80

100

time (days)

P
er

ce
nt

su
rv

iv
al Wild Type 1 (n=5)

Wild Type 2 (n=5)
Wild Type 3 (n=5)
Trisomy 16 1 (n=5)
Trisomy 16 2 (n=5)

F

B Hematocrit

4 6 8 12 16 4 6 8 12 16
0

20

40

60

80

%
pa

ck
ed

ce
ll

vo
l u

m
e Wild Type

Trisomy 16

time (weeks)

White blood cell count

4 6 8 12 16 4 6 8 12 16
0
5

10
15
20
25
30
35

K
/µ

L

Wild Type
Trisomy 16

time (weeks)

Frequency of donor-type cells

4 6 8 12 16 4 6 8 12 16
0

20

40

60

80

100

%
C

D
45

.2

Wild Type
Trisomy 16

time (weeks)

Primary RecipientsPrimary RecipientsPrimary Recipients

Survival Primary Recipients Survival Secondary Recipients

C D

* * * * * * * * * * *

Figure 3. Trisomy 16 causes peripheral blood defects and decreases HSC reconstitution potential. (A) Schematic of serial reconstitution
experiments. (B–D) For primary reconstitutions, fetal liver cells from a CD45.2 trisomic embryo or its wild-type littermate were injected
into lethally irradiated CD45.1 recipients. Bone marrow cells from primary recipients were injected into secondary CD45.1 recipients to
assess serial reconstitution capacity. Peripheral blood of primary recipients of trisomic fetal liver cells or their wild-type littermates was
sampled at the indicated times. The percentage of CD45.2-positive cells in the blood of trisomy 16 or wild-type primary recipients was
determined by flow cytometry (B), and white blood cell count (C ) and hematocrit (D) were determined by complete blood cell counts.
The bar represents the mean, and asterisks indicate that the trisomy 16 values are significantly different from the values of wild-type lit-
termates at the indicated time by Student’s t-test. P < 0.05. (E) Survival of recipients of trisomy 16 or wild-type fetal liver cells after trans-
fer. (F ) Survival of secondary recipients of trisomy 16 or wild-type bone marrow cells from primary recipients.

Aneuploidy impairs cellular fitness in vivo

GENES & DEVELOPMENT 1399

 Cold Spring Harbor Laboratory Press on September 5, 2024 - Published by genesdev.cshlp.orgDownloaded from 

http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.278820.116/-/DC1
http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.278820.116/-/DC1
http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.278820.116/-/DC1
http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.278820.116/-/DC1
http://genesdev.cshlp.org/
http://www.cshlpress.com


peripheral blood defects, trisomy 16 primary recipients
exhibited decreased survival compared with primary
recipient mice reconstituted with HSCs from their
euploid wild-type littermates (Fig. 3E).

As the ultimate test of HSC potential, secondary trans-
fers were performed with bonemarrow cells from trisomy
16 primary recipients that survived to 16 wk. Although
long-term reconstituted primary recipients had compara-
ble HSC levels in the bone marrow (Supplemental Fig.
S2K), transfer of wild-type primary recipient bonemarrow
cells efficiently reconstituted secondary recipients, while
trisomy 16 primary recipient HSCs failed to reconstitute
secondary recipients (Fig. 3F). We conclude that trisomy
16 FL-HSCs have a substantial fitness defect that is at
least in part due to decreased proliferative potential, lead-
ing to HSC exhaustion upon secondary transfer.

Trisomy 19 is better tolerated in the blood than
trisomy 16

In contrast to trisomy 16 FL-HSCs, trisomy 19 FL-HSCs
contributed effectively to the white blood cell lineages
in primary recipients (Fig. 4A; Supplemental Fig. S3A–J).
Recipients reconstituted with trisomy 19 FL-HSCs
showed normal white blood cell counts when compared
with recipients reconstituted with wild-type littermate
FL-HSCs (Fig. 4B), exhibited normal hematocrit levels
(Fig. 4C), and did not show either red blood cell defects
(Supplemental Fig. S3C–G) ormacrocytic anemia (Supple-
mental Fig. S3J). However, trisomy 19 primary recipients
harbored fewer platelets compared with wild-type pri-
mary recipients at early time points (Supplemental Fig.
S3H). Furthermore, the proportion of the blood comprised
of each white blood cell type in trisomy 19 primary recip-
ients was not significantly perturbed (Supplemental Fig.

S3A,B,I). Consistent with trisomy 19 having little or no
effect on HSC fitness in primary reconstitutions, we
found that all mice transplanted with trisomy 19 HSCs
survived both primary transfer of fetal liver cells and
secondary transfer of bone marrow cells isolated from pri-
mary recipients (data not shown). Furthermore, secondary
recipient mice showed no obvious peripheral blood
defects (Supplemental Fig. S3K–U) except for a slightly
weaker initial engraftment after 4wk.However, this delay
did not persist. In fact, the engraftment at 8 wk was stron-
ger in the trisomy 19 HSC secondary recipients than in
wild-type recipients (Student’s two-tailed t-test, P < 0.05)
(Fig. 4D). Upon tertiary transfer, however, we began to
see evidence of decreased fitness in some recipients of tris-
omy 19 bone marrow cells (Fig. 4E) even though HSC lev-
els were similar in the bone marrow of trisomy 19 and
wild-type long-term reconstituted secondary recipients
(Supplemental Fig. S3V). While there were no obvious
peripheral blood defects when compared with wild-type
tertiary recipients (Supplemental Fig. S4A–K), weaker
engraftment of trisomy 19 cells was evident in some terti-
ary recipients (Fig. 4E), and long-term survival of tertiary
recipients was slightly decreased (Supplemental Fig.
S4L). Trisomy 19 fitness defects became even more pro-
nounced in quaternary transfers (Fig. 4F). This defect
was not due to fewer HSCs being transferred. Trisomy
19 and wild-type long-term reconstituted tertiary recipi-
ents had comparable levels of HSCs (Supplemental Fig.
S4M), but the majority of trisomy 19 quaternary recipient
mice showed very low levels of engraftment compared
with wild-type quaternary recipients (Fig. 4F). Lethality
was high in both wild-type and trisomy 19 quaternary
recipients (Supplemental Fig. S4O). Sequencing of the
CD45.2 cells in two trisomy 19 quaternary recipients
14 wk after transfer confirmed that the trisomic
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chromosome was retained through all serial transfers
(Supplemental Fig. S4N). We conclude that trisomy 19 is
better tolerated in the hematopoietic lineage than trisomy
16, with no difference in survival and little difference in
peripheral blood cell counts in both primary and secon-
dary recipient mice. However, decreased reconstitution
potential in tertiary and quaternary recipients indicates
that aneuploidy of even the smallest mouse autosome
will eventually lead to reduced fitness.

Bub1bH/HHSCs undergo stem cell exhaustion upon serial
transplantation

We next sought to evaluate the fitness of the Bub1bH/H

CIN model, a model in which random combinations of
whole chromosomal aneuploidies can be continuously
generated by chromosome missegregation. To evaluate
the long-term regenerative potential of Bub1bH/H HSCs,
we used bone marrow HSCs (BM-HSCs) (Fig. 5A) because
Bub1bH/H mice survive to adulthood (Baker et al. 2004)
and show no obvious peripheral blood defects (Supple-
mental Fig. S5A–H). Like Bub1bH/H FL-HSCs, Bub1bH/H

BM-HSCs showed no fitness defects in competitive recon-
stitution assays and were found at levels similar to their
wild-type littermates (Supplemental Fig. S5I–L). As BM-
HSCs have already migrated from the fetal liver to popu-
late the bone marrow of an adult mouse, we considered
bone marrow transfer a more significant proliferative
challenge than transfer of fetal liver cells. Also, FL-
HSCs have been shown to reconstitute irradiated recipi-
ents more effectively than BM-HSCs (Morrison et al.
1995; Harrison et al. 1997; Ema and Nakauchi 2000).
However, Bub1bH/H BM-HSCs contributed most of the
peripheral white blood cells in primary recipient mice
(Fig. 5B). The animals were mildly leukopenic but exhib-
ited no other obvious blood defects (Supplemental Fig.
S6A–I).

To further challenge Bub1bH/H HSCs, we performed
serial bone marrow transfers (Fig. 5A). Despite similar
total HSC levels in the bone marrow of long-term recon-
stituted Bub1bH/H and wild-type primary recipients (Sup-
plemental Fig. S6J), bone marrow cells from primary
Bub1bH/H recipients repopulated the hematopoietic com-
partment of secondary recipients less efficiently than
wild-type primary recipient bone marrow cells (Fig. 5C).
While the donor contributed most of the peripheral white
blood cells in mice transferred with wild-type cells (on
average, 87.3% at 12 wk; n = 10), variable contribution
was observed in Bub1bH/H secondary recipients.
Although complete blood cell counts of Bub1bH/H secon-
dary recipients were similar to those of wild-type secon-
dary recipients (Supplemental Fig. S6K–S), some
Bub1bH/H secondary recipientmice had strong donor con-
tribution (∼88% at 12 wk; n = 6), one recipient mouse had
weak donor contribution (18.2% at 12 wk), and some
recipient mice had an intermediate level of donor contri-
bution (∼70% at 12 wk; n = 3). Peripheral blood analyses
revealed that the blood of the animal with a weak contri-
bution of Bub1bH/H HSCs was largely comprised of
CD45.1 cells, presumably descendants from rare recipient
HSCs that survived irradiation (Fig. 5C). These data indi-
cate that Bub1bH/H BM-HSCs lose their regenerative
potential with serial transfer. To test this further, we per-
formed a tertiary transfer with bone marrow cells derived
from secondary recipients with high, intermediate, and
low peripheral blood contribution from Bub1bH/H HSCs.
Despite similar total HSC levels in the bone marrow of
long-term reconstituted Bub1bH/H and wild-type secon-
dary recipients (Supplemental Fig. S6T), mice that
received bone marrow from secondary recipient donors
with high Bub1bH/H peripheral blood contribution did
not survive the tertiary transfer (0% survival after 4 wk;
n = 10). Mice that received bone marrow from donors
with intermediate or low Bub1bH/H peripheral blood
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contribution showed increased survival (60% and 80%,
respectively, after 16 wk; n = 5 for each condition). How-
ever, peripheral blood analyses of all mice that survived
tertiary transfer revealed that virtually no cells originated
from the original CD45.2 Bub1bH/H donor; rather, cells
were derived from some surviving CD45.1 HSCs from
the recipients (Fig. 5D). This is in contrast to the tertiary
recipients that received bone marrow from secondary
recipients reconstituted with wild-type bone marrow,
which, on average, had a 71.6% contribution from the
wild-type donor after 16 wk (n = 7) (Fig. 5D). Thus,
Bub1bH/H BM-HSCs lose the potential to reconstitute
hematopoiesis upon serial transfer.

Bub1bH/H blood cells become progressively less
aneuploid during hematopoietic reconstitution

Initial characterization of the Bub1bH/H mouse model
hypothesized that the aging-associated phenotypes ob-
served in thismouseweredue toprogressive accumulation
of aneuploid cells in adult tissues (Baker et al. 2004). Thus,
Bub1bH/H BM-HSCs could be losing the potential to
reconstitute the hematopoietic system upon serial trans-
fer because the Bub1bH/H HSC pool becomes progres-
sively more aneuploid with each successive proliferative
challenge such that the level of aneuploidy in Bub1bH/H

HSCs is too high to support effective proliferation. To
test this possibility, we determined the karyotype of
donor-derived peripheral white blood cells from one
Bub1bH/H secondary recipient by single-cell sequencing
(57 wk after transfer; 72% CD45.2 at time of sequencing).
Surprisingly, all 17 cells sequenced were euploid (Fig. 6A,
black triangle; Supplemental Fig. S7B). Thus, the failure
of Bub1bH/H BM-HSCs to reconstitute a tertiary recipient
was not simply due to increased aneuploidy in blood cells
derived from Bub1bH/H HSCs. Rather, the absence of
aneuploid descendants of Bub1bH/H BM-HSCs suggests
that aneuploid cells derived from theseHSCs cannot effec-
tively contribute to the peripheral blood of secondary
recipients and that aneuploid cells are selected against.
This inability of Bub1bH/H aneuploid BM-HSCs to con-
tribute to the peripheral blood makes them unable to
reconstitute tertiary recipients.

The lack of aneuploidy observed in the peripheral
blood of a secondary recipient mouse of Bub1bH/H BM-
HSCs is in contrast to what we observed when we
sequenced peripheral blood cells of a recipient mouse
from a competitive reconstitution assay in which
38.9% of Bub1bH/H FL-HSC-derived peripheral blood
cells or 19.45% of the total peripheral blood was aneu-
ploid (Figs. 1G, 6A; Supplemental Fig. S7A, gray triangle).
We hypothesized that differences in either the source of
the HSCs (fetal liver or adult bone marrow) or the time
of sampling could be responsible for the different levels
of aneuploidy observed in the two analyses. Single-cell
sequencing of Bub1bH/H FL-HSCs and BM-HSCs revealed
that both of these cell types do not harbor any aneuploi-
dies (n = 19 cells each) (Supplemental Fig. S7C,D), sug-
gesting that the latter possibility was more likely
responsible for the differences in aneuploidy observed.

The sample from the competitive reconstitution assay
that revealed high levels of aneuploidy was obtained 16
wk after transfer of fetal liver donor cells, at a time during
the reconstitution process when long-term hematopoie-
sis is just being established after a period a rapid expan-
sion (Purton and Scadden 2007). In contrast, the sample
from the secondary bone marrow recipient mouse that
harbored euploid peripheral blood was obtained about a
year after transfer of donor cells, when the bone marrow
more closely resembled the steady state observed in an
adult mouse.

The hypothesis that time after HSC transplantation can
affect the degree of aneuploidy in the peripheral blood of
recipient mice was informed by an evolutionary principle
known as the “population flush” effect (Carson 1968).
This principle states that, in rapidly expanding popula-
tions (as occurs immediately following transfer of donor
HSCs to a lethally irradiated recipient), purifying selec-
tion is relaxed such that less-fit individuals can survive
and significantly contribute to the population. A predic-
tion of this hypothesis is that aneuploidBub1bH/H periph-
eral blood cells would be more readily observed earlier
during hematopoietic reconstitution, when the donor
HSCs are rapidly proliferating to establish stable, long-
term hematopoiesis, and less-fit cells—such as those gen-
erated by random chromosome missegregation in the
Bub1bH/H adult mouse—would be tolerated. However,
when populations reach steady state once long-term hem-
atopoiesis has been established (as at 57 wk after secon-
dary transplantation), purifying selection forces become
relatively stronger, selecting against less-fit aneuploid
cells. The observation that BM-HSCs are not aneuploid
(0% aneuploidy) is consistent with this principle. BM-
HSCs divide rarely, relying more on the division of pro-
genitor cells to produce blood cells (Busch et al. 2015;
Sun et al. 2015). Thus, in steady state, BM-HSCs likely
experience strong purifying selection. FL-HSCs proliferate
at E14.5, but this cell population remains relatively small
even after expansion (Morrison et al. 1995; Ema and
Nakauchi 2000). Additionally, FL-HSCs must still home
to their niches before adult hematopoiesis commences
(Orkin and Zon 2008), making it likely that this stem
cell population is also under relatively strong purifying
selection.

To directly test whether the population flush hypothe-
sis can explain the degrees of aneuploidy observed in he-
matopoietic reconstitutions, we performed a time course,
transferring Bub1bH/H fetal liver or bone marrow cells
into lethally irradiated recipient mice and performing sin-
gle-cell sequencing of peripheral blood cells 3, 6, 13, and
36 wk after transfer to determine the levels of autosomal
aneuploidy at these times. Single-cell sequencing of
Bub1bH/H FL-HSCs and BM-HSCs, where no aneuploidy
was observed, was used as the baseline level of aneuploidy
in each population (0 time point in Fig. 6A; Supplemental
Fig. S7C,D). In Bub1bH/H FL-HSC recipients, we found
8.3% of peripheral blood cells to be aneuploid 3 wk after
transplantation (n = 12 cells) (Fig. 6A; Supplemental Fig.
S8A). This percentage increased to 24% aneuploid cells
6 wk after transplantation (n = 25 cells) (Fig. 6A;
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Supplemental Fig. S8B). At 13wk, 25%of peripheral blood
cells were aneuploid (n = 16 cells) (Fig. 6A; Supplemental
Fig. S8C). However, 36 wk after transplantation, the pro-
portion of aneuploid peripheral blood cells dropped to
8.3% (n = 12 cells) (Fig. 6A; Supplemental Fig. S8D). Sim-
ilar results were obtained in Bub1bH/H BM-HSC recipi-
ents. We found 5.6% of peripheral blood cells to be
aneuploid 3 wk after transplantation (n = 18 cells) (Fig.
6A; Supplemental Fig. S8E). At 6 wk, 24% of peripheral
blood cells were aneuploid (n = 25 cells) (Fig. 6A; Supple-
mental Fig. S8F), and, at 13 wk, 18.8% of peripheral blood
cells were aneuploid (n = 16 cells) (Fig. 6A; Supplemental

Fig. S8G). However, 34 wk after transplantation, the pro-
portion of aneuploid peripheral blood cells dropped to
15.4% (n = 13) (Fig. 6A; Supplemental Fig. S8H).
Taken together, our findings indicate that a higher level

of aneuploidy is tolerated in the peripheral blood of
Bub1bH/H recipient mice when the HSC pool is still
expanding to establish long-term hematopoiesis after irra-
diation; however, these aneuploid cells are depleted from
the peripheral blood of recipients once the HSC popula-
tion is no longer rapidly expanding and the hematopoietic
compartment reaches a steady state. Furthermore, we
conclude that HSC source, either fetal liver or adult
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Figure 6. Bub1bH/H adult regenerative tissues show evidence of selection against aneuploid cells. (A) The percent aneuploidy over time
during hematopoietic reconstitution with Bub1bH/H HSCs was determined by single-cell sequencing of peripheral blood cells derived
from primary recipient mice of Bub1bH/H bone marrow (open circles) or Bub1bH/H fetal liver (closed circles) cells at the indicated times
after transfer. Peripheral blood cells from amouse reconstituted with Bub1bH/H FL-HSCs 16 wk after competitive reconstitution (shown
as the percent of total peripheral blood; gray triangle) (Fig. 1G) and from a Bub1bH/H secondary bone marrow recipient mouse (black tri-
angle) (Fig. 5C) were also sequenced. Baseline aneuploidy was determined by single-cell sequencing of FL-HSCs and BM-HSCs. Segmen-
tation plots of all sequenced cells are shown in Supplemental Figures S7 and S8. (B) Percentage of euploid cells found in different adult
Bub1bH/H cell types. BM-HSCs, peripheral blood cells (PB), keratinocytes, and intestines (in blue) are from ∼4-mo-old Bub1bH/H mice.
Data from hepatocytes and brains (in red) are from Knouse et al. (2014) and ∼6-mo-old Bub1bH/H mice. Segmentation plots of all newly
sequenced cells are shown in Supplemental Figure S9. (C ) The number of aneuploid chromosomes per cell in all adult cells analyzed inA
andB. The bar represents themean value for each population. t-tests were performed for significance. (∗∗∗) P < 0.001. (D) Summary of chro-
mosome gain and loss events observed in each cell from transplantation peripheral blood cells and adult nonproliferative neurons and hep-
atocytes. “Multiple gains” and “multiple losses” describe cells that have gained or lost two or more chromosomes. “Both loss and gain”
describes cells that have gained at least one chromosome and lost at least one chromosome. (E,F ) Frequency of chromosome gain (red) or
chromosome loss (green) by chromosome observed in all peripheral blood cells after transplantation (E) and in all adult neurons and hep-
atocytes (F ).
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bone marrow, does not affect the degree of aneuploidy
observed in the peripheral blood.

Aneuploidy is selected against in Bub1bH/H

regenerating tissues

The idea that rapidly expanding cell populations are more
tolerant of aneuploidy than tissues that have reached a
proliferative steady state further predicts that the preva-
lence of aneuploidy in adult Bub1bH/H tissues should
depend on the proliferative capacity of tissues. Tissues
that form during embryogenesis (when cells are rapidly
proliferating) and are largely nonproliferative in the adult
should harbor higher levels of aneuploidy. In contrast,
tissues that undergo self-renewal and are thus under
more stringent purifying selection in the adult should har-
bor lower levels of aneuploidy. To test this prediction, we
sequenced single cells from tissues that self-renew in
adult Bub1bH/H mice (peripheral blood cells, keratino-
cytes, and intestinal crypt cells) and compared the
observed degree of autosomal aneuploidy with that of tis-
sues that divide primarily during embryogenesis (the liver
and brain). The liver and brain are formed during embryo-
genesis, and hepatocytes and neurons are largely nonpro-
liferative in the adult (Zimmermann 2004; Campisi and
d’Adda di Fagagna 2007). Our previous studies showed
that aneuploid cells were prevalent in the livers (18.8%)
and brains (38.1%) of 8- and 12-wk-oldBub1bH/H animals,
respectively (Knouse et al. 2014). Sequencing four addi-
tional hepatocytes from a 30-wk-old Bub1bH/H mouse
and four additional neurons from a 28-wk-old Bub1bH/H

mouse estimated the levels of aneuploidy to be 14.3%
and 40%, respectively (Fig. 6B; Supplemental Fig. S9D,E).

Both BM-HSCs and peripheral white blood cells
obtained from the same 19-wk-old Bub1bH/H mouse
exhibited 0% and 4.3% aneuploidy, respectively (n = 19
and 23 cells sequenced) (Fig. 6B; Supplemental Figs.
S7D, S9A). A previous study reported higher levels of
aneuploidy in splenocytes of 3- and 5-mo-old Bub1bH/H

animals (9% and 15%) (Baker et al. 2004). However, meta-
phase spreads, which tend to overestimate aneuploidy
(Knouse et al. 2014), were used to evaluate cell karyotype
in this study. It is also possible that aneuploid blood cells
have a higher survival rate in the spleen than in the bone
marrow or peripheral blood. Keratinocytes and intestinal
cells enriched for crypts also showed low levels of aneu-
ploidy: 4.3% of keratinocytes isolated from a 15-wk-old
Bub1bH/H mouse were aneuploid (n = 23 cells sequenced)
(Fig. 6B; Supplemental Fig. S9B), and 4.8% aneuploidywas
observed in intestinal crypt cells from an 18-wk-old
mouse and a 30-wk-old Bub1bH/H mouse (n = 18 and 3
cells sequenced, respectively) (Fig. 6B; Supplemental Fig.
S9C). We conclude that tissues that regenerate during
adulthood harbor lower levels of aneuploidy than tissues
that proliferate predominantly during embryogenesis.

A direct comparison of the degree of aneuploidy
between adult tissues further revealed that adult nonpro-
liferative tissues (the brain and the liver) aremore tolerant
of aneuploidy than self-renewing adult tissues (peripheral
blood, BM-HSCs, skin, and intestines) and blood cells

derived from fetal liver or bone marrow transfers (Fig.
6C). Further analyses of specific chromosome gains and
losses revealed that nonproliferative tissues (the brain
and the liver) harbored cells with more complex aneuploi-
dies than cells from Bub1bH/H HSC recipients (Fig. 6D–F;
Supplemental Fig. S10). Of the three aneuploid cells
observed in tissues that regenerate in the adult, two har-
bored a single chromosome gain, and one harbored a single
chromosome loss (Supplemental Fig. S9). Thus, we con-
clude that aneuploidy is selected against in tissues that
regenerate in the adult.

Discussion

Here we describe a system that has permitted direct com-
parison of aneuploid mammalian cell fitness with the
fitness of isogenic euploid cells in vivo. We found that
constitutional trisomy and aneuploidy resulting from
CIN negatively affect HSC fitness. Furthermore, we
obtained evidence that aneuploidy is selected against in
adult regenerating tissues. These findings greatly inform
our understanding of the role of aneuploidy in cancer
and aging.

The effects of aneuploidy and CIN on HSC fitness
and hematopoiesis

The hematopoietic reconstitution system that we devel-
oped here has allowed us to investigate whether aneu-
ploidy provides a proliferative advantage to cells. Our
findings demonstrate that both constitutional trisomy
and aneuploidy generated by CIN adversely affect the fit-
ness of HSCs in vivo. Defects specific to certain aneuploi-
dies as well as defects observed in all aneuploid strains
analyzed were evident in our aneuploid HSCs. The line-
age-specific defects such as reduced B-cell number
observed in trisomy 16 FL-HSC reconstitutions are likely
due to chromosome-specific effects, as B-cell differentia-
tion defects have also been observed in DS (Roy et al.
2012; Lane et al. 2014). Furthermore, we observed
decreased proliferative potential in all aneuploidy models
that we examined. Trisomy 16 FL-HSCs are much less fit
than euploid HSCs and show phenotypes characteristic of
proliferation defects when challenged to reconstitute irra-
diated euploid recipients. Trisomy 19 and Bub1bH/H

HSCs exhibit less severe fitness defects, indicating that
lower levels of aneuploidy are better tolerated in the hem-
atopoietic lineage. Recent studies have shown that mur-
ine HSCs divide very infrequently and use numerous,
more differentiated progenitor cells to sustain long-term
hematopoiesis (Busch et al. 2015; Sun et al. 2015). This
provides a potential explanation of why repeated chal-
lenges are needed to reveal the fitness defects of aneu-
ploidy in Bub1bH/H HSCs. In the Bub1bH/H HSC pool,
only a subpopulation of cells is likely aneuploid, and selec-
tion for euploid cells likely occurs given that we did not
observe aneuploidy in Bub1bH/H HSCs. In the same
vein, a proliferative defect in trisomy 19 HSCs began to
emerge after tertiary bone marrow transfer and was
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obvious only after quaternary transfer. Thus, in vivo anal-
yses of primary aneuploid cells demonstrate that aneu-
ploidy in the hematopoietic lineage reduces cellular
fitness and proliferative capacity. While some aneuploi-
dies, such as trisomy 19, are better tolerated than others,
such as trisomy 16, reconstitutions with the Bub1bH/H

CIN model reveal that when euploid cells can be gener-
ated, aneuploidy is selected against in the hematopoietic
lineage.
How aneuploidy leads to reduced fitness in HSCs

remains to be determined. Cell culture studies of yeast
and mammalian cells have shown that the proteomic
imbalances caused by aneuploidy lead to proteotoxic
stress, metabolic alterations, increased reactive oxygen
species (ROS) production, and cell cycle delays (Santa-
guida and Amon 2015). These general characteristics of
aneuploid cells likely contribute to the decreased prolifer-
ative potential and eventual exhaustion of aneuploid
HSCs that are observed.
While increased proliferation was not observed in trans-

plantation of aneuploid HSCs alone, it will be interesting
to determinewhether particular aneuploidies can contrib-
ute to tumorigenesis in specific oncogenic contexts or in
conjunction with aneuploidy-tolerating mutations. For
example, aneuploidy has been shown to increase tumor
burden and decrease survival in animals lacking the
tumor suppressor p53 (Li et al. 2010). Loss of p53 could
permit the survival of cells with abnormal karyotypes
and/or DNA damage that ensues when chromosomes
are missegregated (Crasta et al. 2012), allowing for the
selection of malignant karyotypes. Particular aneuploi-
dies in conjunction with other specific genomic altera-
tions could also facilitate the development of specific
cancers. For example, analyses of individuals with DS
demonstrate that trisomy 21 is sufficient to bias differen-
tiation in the human fetal liver, leading to a relative
expansion of myeloid cells (Chou et al. 2008; Tunstall-
Pedoe et al. 2008). This bias can progress to a transient
myeloproliferative disorder (TMD) (Gamis and Smith
2012) and eventually AML if a cooperatingGATA1muta-
tion is also present (Hitzler 2003; Mundschau et al. 2003).
Furthermore, trisomy 21 is also observed in non-DS hem-
atologic cancers (Mitelman et al. 1990; Cheng et al. 2009).
The model system that we developed here will permit
effective molecular dissection of the effect of specific
chromosomal abnormalities and the role of aneuploidy
and CIN in general on the development of leukemias
and lymphomas.

Aneuploidy is selected against in regenerating tissues

Our finding that aneuploidy impairs rather than promotes
proliferation in vivo is supported by our tissue analyses in
Bub1bH/Hmice. Tissues that form largely during embryo-
genesis harbored high levels of aneuploid cells, whereas
BM-HSCs and adult peripheral blood, skin, and intestinal
crypt cells harbor few aneuploid cells. Importantly, we
also found that FL-HSCs were euploid, suggesting that
mechanisms that eliminate aneuploid cells are not unique
to adult tissues. Rather, we favor the idea that the varying

degree of aneuploidy observed in different tissues reflects
differences in the strength of purifying selection across
tissues. During rapid population expansion, a “population
flush” effect (Carson 1968) can occur in which genetically
less-fit individuals are able to survive and contribute to
the population in a more substantive manner. Once
populations reach steady state, purifying selection forces
are relatively stronger and select against the survival
of less-fit individuals. Thus, tissues that form during
embryogenesis, a period of rapid cell expansion, and are
largely nonproliferative and not maintained by stem cells
in the adult (brain and liver) harbor high levels of aneu-
ploidy, whereas adult regenerating tissues (blood, skin,
and the intestine) harbor few aneuploid cells. Our analysis
of aneuploidy dynamics in Bub1bH/H HSC-derived blood
cells during hematopoietic reconstitution further indi-
cates that the way in which tissues are generated and
maintained determines the prevalence of aneuploidy
in those tissues. Both BM-HSCs and FL-HSCs are euploid.
However, when HSCs are challenged to rapidly expand to
reconstitute an irradiated recipient, aneuploidy becomes
more prevalent in the peripheral blood of primary recipi-
ents during the early stages of hematopoietic recon-
stitution. Aneuploidy levels then decline as the tissue
reaches steady state.
A previous evaluation of aneuploidy in aged mice that

harbored increased expression of the BUBR1 protein in
all tissues throughout life found that cells that overex-
press BUBR1 and additionally all wild-type aged adult
stem cells show low levels of aneuploidy (Baker et al.
2012). We found that, even in a mutant in which the
BUBR1 checkpoint protein is compromised, aneuploidy
is selected against in tissues that are maintained by adult
stem cells. Further investigation is needed to determine
how aneuploid cells are culled in adult regenerating tis-
sues. Previous cell culture studies have shown that chro-
mosome missegregation leads to p53 activation (Li et al.
2010; Thompson and Compton 2010), raising the possibil-
ity that aneuploid cells are culled in tissues through apop-
tosis. We did not observe high levels of apoptosis in the
skin or bone marrow of adult Bub1bH/H mice by standard
assays (data not shown), suggesting that other mecha-
nisms are responsible for eliminating aneuploid cells in
adult regenerating tissues.

Aneuploidy and aging

Bub1bH/H mice have a decreased life span and show a
number of progeroid phenotypes such as dwarfism, cata-
racts, loss of subcutaneous fat, and impaired wound heal-
ing (Baker et al. 2004). It has been proposed that these early
aging phenotypes are caused by the progressive accumula-
tion of aneuploid cells in these animals. However, our
findings that serial bone marrow transfer leads to
Bub1bH/H HSC exhaustion and that adult Bub1bH/H

regenerating tissues contain very few aneuploid cells sug-
gest an alternative explanation. The decreased life span
and early aging phenotypes exhibited by Bub1bH/H mice
could be due to the exhaustion of adult stem cell pools
that must proliferate more than wild-type stem cells to
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produce euploid cells. It is also possible that the strength
of purifying selection in adult regenerative tissues is
relaxed as organisms age and stem cell fitness declines
(Rozhok and DeGregori 2015). Such decreased purifying
selection would cause tissue function decline due to the
accumulation of aneuploid and hence less-fit cells with
time. Consistent with this idea is the observation that
life span extension can be achieved in Bub1bH/H mice
when senescing, and thus presumably aneuploid cells
are induced to undergo apoptosis (Baker et al. 2011). Fur-
ther investigation is needed to determine whether
decreased purifying selection can also cause the accumu-
lation of cells that are genetically unstable and karyotypi-
cally abnormal (Sheltzer et al. 2011; Zhu et al. 2012;
Nicholson et al. 2015), since such a population from
which rare cells with high proliferative and hence tumori-
genic potential may arise could cause cancer as individu-
als age.

Materials and methods

Mouse strains

The mouse strains used previously (Williams et al. 2008) were
backcrossed for at least 10 generations into the C57BL/6J back-
ground (Jackson Laboratory) to generate congenic strains. Strains
used to generate trisomic embryos were B6.Cg-Rb(6.16)24Lub/
JAmonJ or B6.Cg-Rb(13.16)1Mpl/JAmonJ and B6.Cg-Rb(16.17)
7Bnr/JAmonJ (trisomy 16) and B6.Cg-Rb(5.19)1Wh/JAmonJ and
B6Ei.Cg-Rb(9.19)163H/J (trisomy 19). Allmale compound hetero-
zygousmicewerematedwithC57BL/6J females to generate triso-
mic embryos, although at a lower frequency than previously
reported, most likely due to backcrossing (Pfau and Amon
2016). Bub1bH/H mice were a generous gift from Dr. J.M. van
Deursen. Embryos from all strains were collected at E14.5–
E15.5 by timed matings. Recipient mice were 6- to 8-wk-old B6.
SJL-PtprcaPepcb/BoyJ (CD45.1) female mice from Jackson Labo-
ratory. Fetal livers were prepared and karyotyped as described in
the Supplemental Material. All animal studies and procedures
were approved by the Massachusetts Institute of Technology
Institutional Animal Care and Use Committee.

Hematopoietic reconstitutions

For all reconstitution experiments, mice were closely monitored
for signs of bone marrow failure and rapid weight loss. All proto-
cols for treating irradiated mice were outlined by the Massachu-
setts Institute of Technology’s Division of Comparative
Medicine. Whole-body irradiation was performed using a 137Cs

irradiator (γ cell 40) at a dose rate of ∼100 cGy/min.
Forcompetitive reconstitutionassaysandhematopoietic recon-

stitution experiments, recipient mice were irradiated with a 12-
Gy total dose administered as a split doseof 8Gy followedbya sec-
ond dose of 4 Gy 3 h later. Fetal liver cells were thawed in Iscove’s
modified Dulbecco’s medium (IMDM) supplemented with 2%
FBS and counted on a Cellometer Auto T4 automated hemacy-
tometer (Nexelcom). Viability was assessed by propidium iodide
exclusion using a FACSCalibur flow cytometer (Becton Dickin-
son). Live cells (106 cells) were injected intravenously in Hank’s
balanced salt solution (HBSS). In one replicate of the trisomy 16
competition assay (n = 5 trisomy 16; n = 7 wild type), CD45.2/
CD45.1 aneuploid donors and CD45.2 commonwild-type donors
were transferred into CD45.1 irradiated recipient mice.

Recipient mice for CFU-S assays were irradiated with 9.5 Gy
administered as a single dose. Fetal liver cells were then prepared,
and 106 live cellswere injected as described above. Seven days to 8
d after injection, spleens were harvested from recipients and then
fixed overnight in Bouin’s fixative. Spleens were sectioned into 5-
μm slices and stained with hematoxylin and eosin. Slides were
then scanned on a Leica Aperio slide scanner, and colony area
was measured using ImageJ. To control for small residual white
blood cell nodules in the spleen, sections of spleens from irradi-
atedmice that were not transferred with cells were also analyzed.
We determined the average background colony size to be 0.336%
of the total spleen area, and colonies larger than this average were
considered CFU-S colonies.
Homing assays were performed as described (Gilbert and

Hemann 2012) and are detailed in the Supplemental Material.
For EdU incorporation assays, recipient mice were irradiated

with 9.5 Gy, administered as a single dose. Fetal liver cells were
thawed, and viability was determined by propidium iodide exclu-
sion as described above. Live fetal liver cells (106 cells) were
injected intravenously in HBSS. Six days later, micewere injected
intraperitoneally with 1.25 mg of EdU in PBS. Twenty hours
after EdU injection, recipient mice were euthanized. Bone
marrowwas harvested by flushing the long bones 24 h after injec-
tion. Red blood cells were lysed in ACK lysing buffer, and samples
were washed in IMDM containing 2% FBS. EdU incorporation
was detected using the Click-iT plus EdU Alexa fluor 488 flow
cytometry kit (Thermo-Fisher) on an LSR II flow cytometer (Bec-
ton Dickinson). EdU-positive recipient-derived bone marrow
cells were excluded using a CD45.1 antibody conjugated to PE
(BioLegend; clone A20).
Recipient mice for bone marrow transfers were irradiated with

9.5Gy, administered as a single dose. Bonemarrow cells were iso-
lated, and red blood cells were lysed as described above. White
blood cells were then counted, and recipient mice were reconsti-
tuted by intravenous injection of 106 cells in HBSS.

Peripheral blood analysis

For complete blood cell counts, peripheral blood was collected
with heparinized capillary tubes into EDTA-coated Microvette
100 tubes (Sarstedt) and analyzed on aHemaVet 950FS (Drew Sci-
entific). Peripheral blood for flow cytometry analysis was col-
lected with heparinized capillary tubes into sodium heparin
diluted in PBS. Red blood cells were lysed in ACK lysing buffer
and washed in HBSS containing 2% FBS. Cells were then incu-
bated with antibodies according to the manufacturer’s specifica-
tions and analyzed with a FACSCalibur or LSR II flow
cytometer (Becton Dickinson). The following antibodies were
used and obtained from BioLegend: CD45.1 (A20), CD45.2
(104), CD45R/B220 (RA3-6B2), and CD90.2/Thy-1.2 (53-2.1).

HSC quantification

Fetal livers and bone marrow cells were harvested, genotyped or
karyotyped, processed, and counted as described above for hema-
topoietic reconstitutions. FL-HSCs were quantified using
markers described previously (Kim et al. 2006). BM-HSCs were
quantified as described previously (Kiel et al. 2005).More detailed
procedures are included in the Supplemental Material. The fol-
lowing antibodies were used and obtained from BioLegend:
CD150 (TC15-12F12.2), CD48 (HM48-1), Sca-1 (E13-161.7),
CD117 (2B8). The following antibodies were used in a lineage
cocktail for fetal liver cells and were obtained from BioLegend:
CD3ε (145-2C11), Ly-6G/Ly-6C (Gr-1) (RB6-8C5), B220/CD45R
(RA3-6B2), Ter-119, CD5 (53-7.3), and CD8a (53-6.7).
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Single-cell sequencing and trisomy 19 sequencing

Single-cell sequencing was performed and analyzed as described
in Knouse et al. (2014). Single-cell isolation protocols for each
cell type are described in detail in the Supplemental Material.
CD45.2 trisomy 19 peripheral blood was prepared as above for
other blood cells and sorted on a FACSAria (Becton Dickinson).
Genomic DNA was isolated from collected cells using the
DNeasy blood and tissue kit (Qiagen), amplified with Genome-
Plex CompleteWGAkit (Sigma-Aldrich), and sequenced and ana-
lyzed in the same way as amplified single cells. The sequences
reported in this study have been deposited in theNational Center
for Biotechnology Information Sequence Read Archive (accession
no. SRP075831).
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