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Complex patterns of cell-type–specific gene expression are thought to be achieved by combinatorial binding of tran-
scription factors (TFs) to sequence elements in regulatory regions. Predicting cell-type–specific expression in mammals has
been hindered by the oftentimes unknown location of distal regulatory regions. To alleviate this bottleneck, we used
DNase-seq data from 19 diverse human cell types to identify proximal and distal regulatory elements at genome-wide scale.
Matched expression data allowed us to separate genes into classes of cell-type–specific up-regulated, down-regulated, and
constitutively expressed genes. CG dinucleotide content and DNA accessibility in the promoters of these three classes of
genes displayed substantial differences, highlighting the importance of including these aspects in modeling gene ex-
pression. We associated DNase I hypersensitive sites (DHSs) with genes, and trained classifiers for different expression
patterns. TF sequence motif matches in DHSs provided a strong performance improvement in predicting gene expression
over the typical baseline approach of using proximal promoter sequences. In particular, we achieved competitive per-
formance when discriminating up-regulated genes from different cell types or genes up- and down-regulated under the
same conditions. We identified previously known and new candidate cell-type–specific regulators. The models generated
testable predictions of activating or repressive functions of regulators. DNase I footprints for these regulators were
indicative of their direct binding to DNA. In summary, we successfully used information of open chromatin obtained by
a single assay, DNase-seq, to address the problem of predicting cell-type–specific gene expression in mammalian organisms
directly from regulatory sequence.

[Supplemental material is available for this article.]

Decades of research on gene regulatory mechanisms has provided

a rich framework with which we can explain gene expression. At

the transcriptional level, this regulation is achieved by complex

interactions between the DNA sequence and transcription factors

(TFs), as well as nucleosomes, histone tail modifications, and DNA

methylation. In particular, TFs have long been recognized as

playing a fundamental role in gene regulation. A good example of

the primacy of TFs in orchestrating programs of gene expression is

demonstrated by the ability of ectopically expressed TFs to repro-

gram fibroblasts into induced pluripotent stem cells (Takahashi

and Yamanaka 2006; Yu et al. 2007).

TFs influence gene expression by binding to cis-regulatory

elements, typically between 6 and 20 bp, that are present in the

proximal promoter or in distal regulatory regions (Vavouri and

Elgar 2005). It has been proposed that the specific combinations of

transcription factor binding sites (TFBSs) make it possible to define

highly specific expression patterns. Elaborate patterns of gene

expression have been shown to be controlled in a spatial, tempo-

ral, and cell-type–specific fashion. In contrast, many housekeeping

genes have expression patterns that exhibit very little variation

across most conditions or cell types. Understanding the extent to

which groups of regulatory factors can achieve cell-type–specific

gene expression and how this is encoded in the genome has long

been a key question in biology (Britten and Davidson 1969).

Genome-wide techniques, such as chromatin immunopre-

cipitation followed by microarrays or sequencing (ChIP-chip and

ChIP-seq), have been instrumental in identifying precise TFBSs

that can then be used to predict gene expression. For example,

ChIP data for 12 key TFs in embryonic stem (ES) cells were used to

predict both absolute and relative expression values with high

accuracy (Chen et al. 2008; Ouyang et al. 2009). While impressive,

it is important to note the difficulty in procuring this kind of data

across a wide variety of cell types. First, in order to conduct ChIP,

one needs a high-quality antibody or tagged protein, which is not

always available for the TF(s) of interest. Second, TFs have to be

assayed individually, which requires many independent ChIP ex-

periments to identify combinatorial patterns of TF binding. Finally,

for this method to succeed, one must have a good understanding of

the cell type in question to know which TFs to analyze. As a result,

for most cell types, there is not enough information available on the

binding profiles of TFs to predict cell-type–specific gene expression.

Therefore, developing predictive models of gene expression without

relying on ChIP would facilitate our understanding of transcrip-

tional regulation.

A more widely applicable alternative to ChIP is to use known

cognate binding preferences for TFs determined from assays such

as SELEX, ChIP-seq, ChIP-chip, and protein binding microarrays

(PBMs) (Stormo and Zhao 2010) to find TFBSs in putative regula-

tory regions. However, without knowing the location of distal
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regulatory regions, most studies using this method focus exclu-

sively on TFBS identified in proximal promoter sequences (Das

et al. 2006; Ramsey et al. 2008; Sinha et al. 2008; Suzuki et al. 2009).

Using these sequence features has revealed, for example, a crucial

CG content difference between cell-type–specific and constitu-

tively expressed genes in mammalian organisms (Yamashita et al.

2005; Carninci et al. 2006). However, these approaches have fre-

quently struggled to distinguish between more specific patterns,

such as predicting cell-type–specific expression across many cell

types. A comprehensive understanding of cell-type–specific ex-

pression will require identification of both proximal promoter and

distal regulatory elements. While comparative genomics has been

successfully used to pinpoint functionally relevant regions, recent

reports have stressed the complexity of evolution in functional

noncoding regions and the resulting frequent lack of sequence con-

servation (Ludwig et al. 2005; Odom et al. 2007; Blow et al. 2010).

For more than three decades, mapping DNase I hypersensitive

sites (DHSs) has been used to identify the location of many types of

active gene regulatory elements (Wu and Gilbert 1981). DNase I is

an enzyme that preferentially digests DNA in regions of low nu-

cleosome occupancy, i.e., regions of open or accessible chromatin.

DHSs have been found to be well correlated with genomic features

such as transcription start sites (TSSs), distal enhancers, insulators,

TFBSs, and active histone marks (Heintzman et al. 2007, 2009;

Boyle et al. 2008a). A recent study profiling open chromatin

in seven cell types in a genome-wide fashion using DNase-seq

highlighted that open chromatin regions are similar across func-

tionally related cell types and that cell-type–specific regions are

distal to TSSs, and identified groups of DHSs that show coordinated

nucleosome depletion (Song et al. 2011). Other studies have in-

dicated that DNase-seq data can be used to identify TFBSs at single-

nucleotide resolution (Hesselberth et al. 2009; Boyle et al. 2011;

Pique-Regi et al. 2011).

In this study, we use DNase-seq data across 19 diverse human

cell lines to define proximal and distal regulatory regions and to

quantify the contribution of sequence features in DHSs to specify

different patterns of cell-type–specific gene expression. Using ex-

pression data from the same 19 cell types,

we define classes of up-regulated, down-

regulated, and constitutively expressed

genes, which show distinct patterns of

chromatin accessibility. We then build

predictive models specifically for these

different expression classes, by using the

binding site matches that map within

DHSs. Crucially, these models dramati-

cally improve on baseline models of prox-

imal promoter regions and specifically

control for the impact of promoter CG

content on classifier performance.

Our results demonstrate the crucial

role for sequence features in open chro-

matin regions for determining expression

patterns and its usefulness for building

predictive regulatory models. We confirm

many known regulatory interactions and

identify novel putative positive and neg-

ative regulators of gene expression. We

also reveal the presence of DNase foot-

prints for specific TFs that are identified as

predictive in our model indicating direct

binding to DNA. Our work provides a

general and easily extensible framework to address questions re-

lated to gene regulation in vertebrates.

Results

DHSs have different properties depending on their
genomic location

As part of the ENCODE Project, DNase-seq has been performed in

several human cell lines representing a wide variety of tissue types.

Aligned reads were used to define DNase I hypersensitive sites

(DHSs) (for details, see Methods). Of these, we selected 19 cell lines

to represent a broad and largely unrelated variety of cell types.

These include DNase-seq data from a recent study across seven cell

lines (Song et al. 2011). In each of the 19 cell lines we used, DHS

regions cover ;2% of the genome (Supplemental Table 1). This

indicates that a large proportion of cis-elements likely to be in-

volved in establishing the expression patterns in each cell line only

comprise a small fraction of the genome. Such regions may encode

specific activation patterns of genes, but also include insulators

that can define target relationships. A hallmark of insulators is the

presence of binding sites for the CCCTC binding factor (CTCF).

Across the nine cell types for which CTCF ChIP-seq data are

available, ;28% of DHSs overlapped CTCF bound sites (Supple-

mental Table 5), in agreement with recent work (Song et al. 2011).

Based on their genomic location, DHSs were divided into

exclusive classes as follows. We first identified a set of TSS DHSs as

those that overlapped the transcription start sites (TSSs) of genes

based on RefSeq hg19 annotation (Fig. 1A). Other DHSs were des-

ignated as Gene Body DHSs if they overlapped exons or introns,

and as Intergenic DHSs if they did not overlap any genes. The

median size of all DHSs was ;300 bp, with the TSS DHS set as

outlier with a median size of ;1 kb (Fig. 1B). The larger size of TSS

DHSs may reflect the presence of larger and more stable complexes

such as the pre-initiation complex (PIC) near the TSS of genes.

The normalized CG dinucleotide content of Gene Body and

Intergenic DHSs showed a median of 0.28 and 0.26, respectively

Figure 1. Properties of DHS based on genomic location. (A) DHSs that are intergenic and those that
are overlapping the TSS and gene body were classified as Intergenic, TSS, and Gene Body DHSs, re-
spectively (Chr1: 201,566,484–201,683,121). (B) Sizes of different DHSs for the Chorion cell line. Data
from only one cell line were used to avoid multiple counting of ubiquitous DHSs. Other cell lines show
similar trends. Outliers are not plotted. (C ) Violin plot showing normalized CG content for different
DHSs in the Chorion cell line. The subset of DHSs with a normalized CG content of zero is comparatively
small (median of 128 bp).
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(Fig. 1C). For TSS DHSs, the normalized CG content showed a

unimodal distribution with its mode at ;0.8, with a heavy tail of

several DHSs with CG content below 0.6.

A large proportion of TSSs are found in regions
of accessible chromatin

To understand how regions of open chromatin vary between cell

types, we inspected the degree to which DHSs were shared in the

19 cell types. A DHS was classified as being specific to a cell line if it

was only present in a single cell type or overlapped <50% of its

length with a DHS from any of the other 18 cell types (Fig. 2A).

Across all DHSs, ;14% were specific to a single cell line (Fig. 2B).

Intergenic DHSs showed the highest percentage of being cell-type–

specific (;17%). Conversely, TSS DHSs were largely not cell-type–

specific with <1% being open specifically in a single cell type.

Despite the broad panel of cell lines that vary in expression, the

chromatin state at the TSS of these genes was open and largely

invariant across multiple cell lines. This is in agreement with a re-

cent study analyzing a subset of the cell types used here (Song et al.

2011).

We determined the normalized CG content in the proximal

promoter region of the gene, defining the proximal promoter as

�900 to +100 bp around the TSS. If a gene had multiple TSSs, the

average of the normalized CG content from each TSS was used.

There was a steady positive trend in the number of cell lines in

which a DHS overlapped a TSS and the CG content around the TSS

(Fig. 2C). Previous studies have reported that gene expression can

be predicted from the CG content in the proximal promoter region

(Yamashita et al. 2005; Carninci et al. 2006; Zhu et al. 2008). Our

result indicates that higher levels of CG dinucleotide content, and

thus more frequent presence of CpG islands, are positively corre-

lated with, and could be functioning to preserve, an open chro-

matin state surrounding the TSS. There were fewer genes with a TSS

open in only one cell type (976 genes) and many with an open TSS

across all 19 cell types (8393) (Supplemental Table 2).

Cell-type–specific expressed genes show differing patterns
of accessible chromatin at their TSS

Gene expression data for the 19 cell lines were generated using

Affymetrix exon arrays. Expression values for each gene were

transformed to Z-scores across all of the cell lines. Genes with large

positive or negative Z-score values thus showed a larger deviation

from the mean expression across cell types. The Z-score trans-

formed expression values were used to select subsets of genes with

specific expression patterns (Fig. 3A–C; Supplemental Table 3). Up-

regulated genes, exemplified by GCM1 (Fig. 3A), had a particularly

high expression in one cell line, but ex-

pression close to the mean in the other

cell lines. To identify genes exhibiting

this type of expression pattern, we sorted

the Z-score expression for the genes in

each cell line. The top 200 genes in this

sorted list were classified as being up-

regulated in that cell type (UR genes).

Down-regulated genes exhibit low expres-

sion levels in one cell type but are other-

wise constitutively expressed in other cell

lines (Fig. 3B; Thorrez et al. 2011). We

classified the last 200 genes in the sorted

Z-score expression list as being the cell-

type–specific down-regulated genes (DR

genes). Constitutively expressed genes

(Fig. 3C) were identified by filtering all

genes that were not in UR and DR gene

sets in any cell line and had absolute ex-

pression Z-score values < 1.7 in all cell

lines. Using this cutoff, 168 genes dis-

played a pattern of constant expression

levels across all cell lines.

To address how up-regulated genes

are expressed in one particular cell type,

we grouped UR genes from all other cell

types and denoted this group as UR-Other

genes (Fig. 3A). We imposed the addi-

tional constraint that such genes would

show an expression Z-score < 0 in the cell

type of consideration, i.e., had expression

below its mean expression. As an exam-

ple, GCM1 (Fig. 3A) was highly expressed

in the first cell type and in none of the

others shown. It was therefore grouped

into the UR class for the first cell type and

into the UR-Other class in each of the

other cell types. Similarly, genes denoted

Figure 2. Cell-type specificity of hypersensitive regions. (A) Example (Chr1: 201,890,462–201,
938,914) showing cell-type–specific DHSs across two cell lines (pink boxes). Note that we called
a DHS cell-type–specific if it did not overlap another DHS by more than half in any of the 18 other
cell lines. (B) Bar graph showing the proportions of cell-type–specific DHSs across different genomic
locations averaged across all cell lines. (C ) TSSs were divided by the number of cell lines that they
overlapped in a region of open chromatin. For each set of TSSs, normalized CG content in the promoter
regions (�900,100) of the TSSs are shown.
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as DR-Other had to be classified as down-regulated in another cell

line and had an expression Z-score > 0 in the cell type of consider-

ation (Fig. 3B). In this way, we defined different classes of transcrip-

tionally active (UR, DR-Other, and Constitutive) and transcription-

ally inactive genes (UR-Other, DR) from the point of view of each cell

line in comparison to other cell lines.

By definition, UR and DR genes displayed the highest and

lowest Z-score gene expression, respectively (Fig. 3D). UR genes

were consequently enriched in functions related to the tissue type

of origin (Supplemental Table 4). DR-Other and Constitutive genes

showed similar expression values and had higher expression values

than genes in the UR-Other class. To understand whether these

different classes had different properties in sequence composition

and chromatin state, we first inspected normalized CG content in

the proximal promoter region (Fig. 3E). UR and UR-Other genes

had the lowest average CG content compared with the other classes

of genes. Constitutively expressed genes displayed a particularly

high CG content in their proximal promoter regions, as previously

reported (Yamashita et al. 2005; Carninci et al. 2006; Zhu et al.

2008); however, this observation clearly extended to the DR and DR-

Other gene classes, which had a CG content slightly lower than

constitutively expressed genes.

Constitutively expressed and DR-Other genes had the highest

proportion of their TSSs in regions of accessible chromatin (Fig. 3F).

DR genes displayed slightly lower chromatin accessibility compared

with DR-Other, indicating that repression of DR genes largely occurs

while maintaining chromatin accessibility at the TSS. UR genes also

showed a high proportion of genes containing an accessible TSS, at

similar levels to DR and DR-Other. In stark contrast, UR-Other genes

had the lowest fraction of TSSs that overlapped a DHS. These results

indicate that even though UR-Other and

DR genes are both transcriptionally in-

active in a cell type of consideration com-

pared with other cell types, they are likely

to be regulated via different chromatin-

remodeling mechanisms. Specifically, genes

that are up-regulated in a small number of

cell types likely maintain a closed chro-

matin conformation until cellular pro-

cesses require up-regulation. In contrast,

down-regulated genes may be viewed as

constitutively expressed genes that are

repressed in a single cell type. UR genes

had intergenic and gene body DHSs as-

sociated with them (Supplemental Fig.

1A,B), in agreement with previous results

indicating that cell-type–specific expres-

sion is mediated by distal cis-regulatory

regions (Song et al. 2011). Overall, these

results indicate that different classes of

transcriptionally active and inactive genes

have different CG content and chromatin

accessibility at their TSS.

Classifying tissue-specific expression
from sequence features
in open chromatin

To predict gene expression patterns from

sequence, approaches have frequently

used features contained within fixed-size

proximal promoter sequences. We used

DHS data from a large number of cell types to determine whether

using both proximal and distal regulatory regions with open

chromatin would improve predictive models for cell-type–specific

expression patterns. Position weight matrices (PWMs) for TFs

in vertebrates were compiled from TRANSFAC, JASPAR, and

UniProbe databases (Matys et al. 2006; Bryne et al. 2008; Newburger

and Bulyk 2009). For each DHS, 789 PWMs were used to calculate

TFBS scores that accounted for local dinucleotide composition.

The maximum sliding window score for each PWM was used as

the TFBS score for that DHS (Fig. 4A; Methods). To associate DHSs

with specific genes that they are likely to regulate, we applied

a simple approach of associating each DHS with the closest TSS

(closest gene DHS). For each TF, we then chose the maximum

TFBS score across all DHSs associated with a gene (Fig. 4B). As an

alternative approach, we split DHSs into distal sites (a set including

both Gene-Body and Intergenic DHSs) and TSS DHS sites and used

the maximum TFBS in each set as individual features (split DHSs).

This doubled the number of features and allowed us to identify

different characteristics of TSS-overlapping versus distal DHSs. To

compare our models with previous approaches, we also used TFBS

features calculated in proximal promoters, defined here as �900 to

+100 nt surrounding the TSS (Landolin et al. 2010).

We used the TFBS scores as features for sparse logistic re-

gression classifiers to discriminate between different gene classes.

These classifiers balance the use of many available features against

model complexity, effectively selecting a small subset of in-

formative features that are used in the classification. We trained

cell-type–specific classifiers on the task to discern whether a gene

belonged to a specific expression pattern (e.g., UR vs. UR-Other, UR

vs. DR, UR vs. Constitutive, etc.). The area under the receiver operating

Figure 3. Cell-type–specific gene expression and definition of gene classes. (A–C) Representative
examples of different patterns of gene expression. Note that Z-score values are calculated from ex-
pression across all 19 cell lines. (A) A gene where the expression is specifically up-regulated in the first cell
line (UR gene). (B) A gene that is specifically down-regulated in the first cell line (DR gene). (C ) A gene
that has low variability in expression (constitutively expressed gene). (D) Median expression Z-scores for
the genes in each set in each cell line. (E) Normalized CG content from the promoter regions of genes.
(F ) The fraction of TSS in each gene set that were in a region of open chromatin. E and F share the same
color map.
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characteristic curve (AuROC) metric was used to evaluate the per-

formance of a model, where a value of 0.5 indicates random as-

signments and 1.0 indicates perfect classification (see Methods). To

not bias results due to different amounts of training data, the posi-

tive sets of up- and down-regulated genes were all of the same size.

The performance of the classifier using only proximal pro-

moter information is close to that of a random classifier, across all

tasks. All of the classifiers using DHS sequences display strong

improvements in performance over this baseline in discriminating

genes that are up-regulated in different cell types (UR vs. UR-Other)

(Fig. 5A), with a greater improvement in performance coming from

the Split DHS approach with separate features for the TSS and

Distal DHSs (median AuROC ;0.73). Similar results were obtained

when training classifiers to distinguish between specifically up-

and down-regulated genes from the same cell types (UR vs. DR)

(Fig. 5B), and to distinguish up-regulated from constitutively

expressed genes (UR vs. Const.) (Fig. 5C). Discriminating down-

regulated genes from different cell types (DR vs. DR-Other) and

down-regulated from constitutively expressed genes (DR vs.

Const.) resulted in lower accuracies but still showed the trend of

better performance with DHSs compared with proximal promoter

sequence (Supplemental Fig. 2A,B). All results clearly indicate that

strong performance improvement is achieved by scanning for

TFBS matches in open chromatin regions.

Evaluating the influence of CG dinucleotide content

CG dinucleotide content in the proximal promoter sequence of

genes is a common sequence feature that is directly or implicitly

used to distinguish various classes of genes.

Adding CG dinucleotide content as an ad-

ditional feature led to a variable impact on

classifier performance depending on the

classification being considered (Fig. 5D–F).

Specifically, when using open chromatin

information, adding CG content did not

substantially improve the performance of

classifying UR genes from UR-Other genes

(Fig. 5D). In the case of the Split DHS, only

six of the cell lines had a significant coef-

ficient for the CG dinucleotide coefficient

(mean across all cell lines = �0.66, SD =

1.40; the coefficient was set to 0 when not

significant). Due to the means being close

to zero and the standard deviations being

large, the effect of using CG content to

discriminate between UR and UR-Other

genes was largely negligible. Only for a few

cell types, such as hepatocytes, did we ob-

serve a negative regression coefficient of

significant magnitude (�5.11 for Split DHS

and �3.31 for Promoters). This is in agree-

ment with previous results showing that

liver-specific genes have promoters with

lower CpG content (Smith et al. 2005).

As anticipated by the trends observed

in Figure 3E, UR vs. DR classification tasks

benefited more by the addition of CpG

content. Here, this feature was deemed to

be significant in 17 of the cell lines for the

Split DHSs (Fig. 5E). Furthermore, the re-

gression coefficients were largely negative,

which indicated the higher CG content among the DR genes (mean =

�2.88, SD = 1.55). As has been shown before (Yamashita et al. 2005;

Carninci et al. 2006; Zhu et al. 2008), we observed that high CpG

content is predictive of constitutively expressed genes when com-

pared with UR genes (Fig. 5F). The regression coefficient for the fea-

ture was significant in all cases (mean = �3.25, SD = 1.44). The CpG

content feature had almost no impact in classifying DR from

DR-Other genes (Supplemental Fig. 3). Finally, CpG content had a

significant coefficient in classifying DR from constitutively ex-

pressed genes in only one cell line (mean = �0.09, SD = 0.39).

Adding CG content to the baseline proximal promoter

models reconciled the apparent discrepancies between previous

studies and the results reported in Figure 5A–C, because all classi-

fication tasks were improved upon for the proximal promoter.

However, the DHS models with CG content outperformed baseline

proximal promoter models with the inclusion of CG content

(paired t-test < 0.05). In fact, in all cases except UR vs. Constitutive

genes, DHS models even without CG content perform significantly

better than both proximal promoter models (paired t-test < 0.05).

Note that while adding CG content provided enormous perfor-

mance gains for certain classification tasks (UR genes vs. Consti-

tutive genes), this could be considered misleading. If TFBS scores

are not explicitly normalized for local nucleotide composition, as

we have done here, decent performance results can be achieved

based solely on the different CG content observed for down-regulated

and constitutively expressed genes compared with up-regulated

genes. CG content is predictive in the case of classifying constitu-

tive and DR genes from UR genes, but is not very useful in differ-

entiating between genes that are up-regulated or down-regulated

Figure 4. Transcription factor binding site features. (A) DHS and promoter sequences are scanned with
PWMs. TFBS scores are log-likelihood ratios of PWM over the background model. A sliding window is used
to identify the score for each DHS or promoter. (B) Example to show association of DHSs with genes.
Numbers in the brackets are example TFBS scores for the DHS for a specific DHS. Two methods of as-
sociation were used. In closest gene DHS, DHSs 1–4 from the GM12878 cell line are associated with the
gene MAFB. For the TF in consideration, the maximum of all TFBS scores is 2.3. In Split DHS, we separated
DHSs overlapping the TSS and other DHSs. This resulted in two features for each gene for each TF.
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in different cell types. It is notable that the categories that are less

aided by CG content are exactly those where our classifiers dis-

played the most predictive value.

Identifying candidate regulators

In addition to classifying genes belonging to different groups, we

inspected the classifiers to identify motifs that were most in-

formative in the classification task, i.e., those PWMs that had large

regression coefficients (Supplemental Table 4). This identified

several TFs with known impact on transcriptional output in the

cell line of interest. For example, YY1, SPI1, and IRF8 are crucial in

the specification of B-cells (GM12878 cell line) (Lu et al. 2003; Liu

et al. 2007; Sokalski et al. 2011). We also identified the REST motif

as a positive regulator of UR genes in the medulloblastoma cell line

that is of neural origin (Supplemental Table 6). REST specifically

down-regulates neuron-specific genes in many non-neuronal cell

lines, and its expression is suppressed in neurons (Schoenherr and

Anderson 1995). As a result, the model identified the cis-elements

that are present in the DHSs associated with neuron-specific genes

as the factor that separates these genes from the genes up-regulated

elsewhere. This example illustrates that the inactivation of a repressor

can also explain up-regulation of genes. Other well-characterized

factors included ETS1 in HUVEC cells and HNF4A for HepG2 cells

(Cereghini 1996; Oda et al. 1999; Yordy et al. 2005).

The feature set described thus far was comprehensive in that

it used available PWM information from multiple sources, inde-

pendent of the expression levels of transcription factors or the

potential redundancy of features. To assess

how much cell-type–specific regulation

can be explained by the cell-type–specific

expression of transcription factors them-

selves, we selected the top 10 TFs with

highest absolute Z-scores from each cell

line and had PWMs that were not similar

to each other (Supplemental Table 7).

Using sparse logistic regression clas-

sifiers trained on these small sets of vari-

ables, we observed similar predictive trends,

which indicated that a subset of cell-type–

specific TFs were predictive of tissue-

specific expression (Supplemental Fig. 4).

Using only promoter CG content or the

status of the chromatin at the TSS as fea-

tures for a baseline comparison shows that

motifs in DHS regions significantly con-

tribute to the performance improvement

across all comparisons. In addition, we

used genomic regions identified as con-

served in the 46-way placental mammal

phastCons track from the UCSC Genome

Browser. We note that using conserved se-

quences and particularly conserved non-

coding regions improved performance

compared with the promoter. However,

the AuROC was still highest when DHS

sequences were used, indicating that the

presence of motifs in weakly conserved

DHS regions contributes to the perfor-

mance improvement. Finally, to assess

the potential influence of insulators, we

excluded DHSs that overlapped CTCF

binding sites for classifiers trained specifically for the nine cell

types for which genome-wide CTCF ChIP data were available

(Supplemental Fig. 5). While this did not impact classification of

UR genes, it reduced the accuracy of identifying DR genes, dem-

onstrating that regions containing insulator sites are likely to con-

tain regulatory information for the repression of genes.

Knowing both the regression coefficient in our model and the

expression level of a potential regulator provided clues as to whether

the TF in question is an activator or a repressor in the cell line, as

highlighted for REST in medulloblastoma cells (Table 1; Supple-

mental Table 7). As another example, NR2F2 was identified as

a positive predictor of up-regulated genes for embryonic stem cells.

However, NR2F2 is a known negative regulator of POU5F1, a critical

gene involved in pluripotency (Rosa and Brivanlou 2011). As ex-

pected, NR2F2 is down-regulated in ES cells (Supplemental Table 7).

We also identified other known positive regulators, such as GATA1

in K562 cells (Huang et al. 2005) and MYF6 in myotubes (Fan et al.

2011). Note that genes that have both positive and negative co-

efficients have different effects when in TSS DHSs and Distal DHSs.

For HNF4A in HepG2 and GATA1 in K562 cells, ChIP data are

available from the ENCODE Project. To validate the predictions

made by our model, we looked for overlap of these ChIP sites with

DHS sites associated with different sets of genes. In HepG2 cells,

19% of all genes with an associated DHS overlapped an HNF4A

binding site. Strikingly, 64.5% of the UR genes had a DHS over-

lapping an HNF4A ChIP peak (P-value < 1 3 10�12, binomial test).

Conversely, only 10.5% of DR genes had a DHS that overlapped an

HNF4A site (P-value < 1 3 10�3). In K562 cells, we found that 6% of

Figure 5. Classifier performance for various classification tasks. (A–C) Performance of the classifier
using all PWMs. Each figure compares the performance of two methods of associating DHSs to genes
(Closest Gene DHS and Split DHS) with the proximal promoter. The solid black lines across the dots
indicate the median. Across all figures, the promoter sequence classifier does not perform as well as the
performance achieved by using Closest Gene DHS and Split DHS and is significant at the 0.05 level
(paired t-test). (D–F) Impact of normalized CG dinucleotide content on classifier performance. Results
using the Split DHS and promoter sequence are shown. Without CG, columns are the same as in A–C.
All figures show average results from five iterations of fourfold cross-validation. The dotted line indicates
an AuROC of 0.5, which is the performance of a random classifier.
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all genes had an associated DHS with a GATA1 ChIP peak. How-

ever, 31.5% (P-value < 1 3 10�12) of UR genes and only 3.5%

(P-value < 0.1) of DR genes had a DHS with a GATA1 ChIP peak.

The ChIP binding data provided strong and independent evi-

dence that our models identify relevant factors that regulate the

transcriptional program in these cells.

In addition, we investigated the accuracy of our predictions of

TFBS locations in DHSs. In HepG2, 5215 of the 6597 HNF4A ChIP

peaks overlapped the predicted TFBS in DHSs. Furthermore, using

TFBS scores led to a high accuracy on discriminating between

positive and negative sets defined by ChIP peaks (AuROC of 0.79).

In K562 cells, only 315 of the 1704 GATA1 ChIP peaks overlapped

the predicted TFBS in the DHS; yet, the AuROC still remained

high at a value of 0.88. This indicated that high-scoring TFBSs

accurately predicted binding of GATA1 to these sites. We note that

the low percent overlap may arise from nonspecific or indirect

binding of GATA1.

To assess the presence of additional sequence motifs not

accounted for by the sets of known PWMs, we used the discrimi-

native version of MEME to perform motif finding (Bailey et al.

2010), identifying motifs differentially enriched between UR and

UR-Other, respectively, DR genes (Supplemental Table 8). While

some of the identified motifs corroborated the importance of

features from the set of top 10 TFs (FOXA2 [formerly HNF3B] in

HepG2), others corresponded to TFs that were not in this list. These

are candidate TFs that are not among the most differentially ex-

pressed, but still might be involved in the transcriptional program,

potentially through other steps of activation. We note that we

largely did not recover the motifs recently identified in a subset of

seven of the 19 cell lines (Song et al. 2011). In contrast to this study,

which used the sequences from cell-type–specific DHSs as fore-

ground and the subsets of cell-type–specific DHSs in other cell

types as background, we analyzed the sequences from all DHSs

associated with a gene and defined the background according to

the classification tasks.

Footprints in DNase-seq data show evidence
of direct TF binding

While we have shown that the presence of sequence motifs in DHS

regions is predictive of cell-type–specific gene expression patterns,

we were only able to validate the direct binding of two factors due

to the lack of ChIP data. This issue is likely to arise in several studies

in which ChIP data are not available to provide evidence of direct

binding of a TF to its cognate binding site. However, if a region is

bound by a TF, the profile of aggregate reads around the TF binding

site will show that region to be protected from digestion by DNase

I, resulting in a DNase ‘‘footprint.’’ Based on this pattern, DNase-

seq data have been recently used to identify the precise binding

locations of several TFs at base-pair accuracy (Hesselberth et al.

2009; Boyle et al. 2011; Pique-Regi et al. 2011).

To assess whether the factors that had high regression co-

efficients in the classification tasks showed such distinctive foot-

prints, we compiled the DNase-seq reads in a 100-bp window

centered on the top motif matches across the genome. We expected

to see a distinct pattern in the cell line in which a motif was pre-

dictive of gene expression. As a control, DNase profiles were

compiled for cell lines in which the model did not have a high

regression coefficient for the TF. The motif matches used here

were chosen to reflect the genome-wide binding of the factor,

Table 1. Candidate TFs identified by the classifier for each cell line using Split DHS from the top 10 highest absolute Z-score of expression
and nonredundant TFs

Cell type

UR–UR Other genes UR–DR genes

AuROC
TFs Positive
coefficient

TFs Negative
coefficient AuROC

TFs Positive
coefficient

TFs Negative
coefficient

Chorion 0.55 OSR2, ELK1 0.83 ZFP161 E2F3, ELK1
Medulloblastoma 0.77 CRX, REST 0.8 CRX, REST, NR2F2, SOX11
FB0167P 0.72 BACH2, ZIC1, AIRE 0.72 STAT1, ZBTB12, BACH2,

HOXC11, ZIC1, AIRE
GM12878 0.75 EGR2, SPIB 0.64 SPIB ARID5A
H1_ES 0.67 ZIC3, OTX2, NR2F2 0.69 NR2F2, ZIC3, OTX2 MEIS1, NR2F2
Glioblastoma 0.81 ZIC1, IRF3, BAPX1 0.74 ZIC1, HOXD10
HeLa S3 0.84 PAX6, E2F2, FOXF2,

ELK1, ARNT, ESRRA
0.84 MEOX1, ARNT, FOXF2,

PAX6, ELK1, ESRRA
Hepatocytes 0.70 FOXJ3, HNF4A,

RXRA, STAT3
RXRA, RFX7, HOXA6,

FOXJ3, E2F3, STAT3
0.78 E2F3

HepG2 0.77 GFI1, HNF4A 0.67 SOX9, FOXA2, HNF4A
HMEC 0.6 STAT4 0.68 STAT4, IRF6
HUVEC 0.67 SOX17 0.71 HIC1, SOX17
K562 0.66 GATA1 0.64 GATA1
LnCAP 0.64 NKX3-1 0.6 ZBTB7B
MCF7 0.74 GATA3 0.68 GATA1, ESR1
Melanocyte 0.76 MAF, LEF1, IRF4,

CUX1, GABPA
0.83 IRF4, GABPA TBX5, GABPA

HSMMtube 0.61 HLXB9, MYF6, ZBTB3 SOX11, SIX1, ZBTB12,
STRA13, ZBTB3

0.67 MYF6 MYF6, STRA13, ZBTB12,
SOX11, GATA6, ZBTB6

NHEK 0.72 MTF1, MAF 0.67 MTF1
Osteoblast 0.63 BACH1, STAT4, GLIS2 0.56 STAT4, BACH1
AoSMC 0.83 MEIS1, OSR1, HOXC11,

SOX8, PITX3, PAX4
0.82 PITX3, MEIS1, OSR1, HOXC11

UR vs. UR-Other and UR vs. DR classification tasks are shown. TFs with positive and negative coefficients are shown for both tasks. Genes in bold are up-
regulated and other genes are down-regulated in the cell line. Several of the same factors help in classifying UR vs. UR-Other genes and UR vs. DR genes.
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as opposed to the specific binding sites used to model gene

expression.

For several factors, we observed indicative footprints in the

region of the motif (Fig. 6). For example, CRX was predictive of UR

genes in the medulloblastoma cell line, and it exhibited a protected

region at the motif (Fig. 6A). Importantly, in other cell lines such as

GM12878, LnCAP, and MCF7, the CRX motif did not display

a similar level of protection. While CRX has been shown to be

expressed in certain types of medulloblastoma subtypes (Kool et al.

2008), other factors such as OTX2 have nearly identical PWMs and

are known to be important for transcriptional regulation in me-

dulloblastomas (Bunt et al. 2011). This highlights a caveat in pre-

dicting expression from motifs; while we can identify biologically

relevant motifs, this type of analysis only suggests a subset of

factors that likely bind to a specific motif.

As mentioned earlier, we identified REST as a regulator in the

medulloblastoma cell line. Since it is not expressed in this cell line,

we observed the absence of a footprint in that cell line, and a visible

footprint in other cell lines (Fig. 6B). Additional footprinting evi-

dence is detected for EGR2 and SPIB in the GM12878 cell line (Fig.

6C,D); however, the SPIB motif also exhibits a smaller footprint in

another cell line. This could be due to expression of other factors

that bind to a similar motif in this cell line. Further work is needed

to quantify these encouraging observations rigorously.

Discussion
In this study, we proposed a new method to predict gene expres-

sion by using DNase-seq data from 19 human cell lines. Unlike

other strategies that require multiple ChIP-seq data sets for highly

informative regulatory factors, a single DNase-seq experiment

identifies most regions of the genome that are accessible to TF

binding. We show that motifs located in these DHS sites are pre-

dictive of cell-type–specific expression.

Some of the predictive motifs we identified were found to be

enriched within cell-type–specific DHSs in a previous study using

a subset of the cell types used here (Song et al. 2011). Patterns of co-

occurrence and conservation of TFBS have also been used to

identify regulatory modules de novo (Aerts et al. 2003; Sharan et al.

2003; Fu et al. 2004; Gotea and Ovcharenko 2008). However, our

approach differs from such motif finding approaches, because it is

not based on the sole presence of motifs, but their predictive value

for gene expression patterns. As a result, the regression coefficients

in our classifier and the expression profile of the TF can be viewed

as testable predictions of the activating or repressing nature of the

regulatory interactions between TFs and the different patterns. We

also do not restrict our analysis here to cell-type–specific DHSs, to

allow for the possibility that a motif could be present in a region of

ubiquitously open chromatin, but only be predictive of gene ex-

pression in a specific cell type, for instance, due to the cell-type–

specific expression of the factor binding to it.

CpG islands are hallmarks of unmethylated regions in verte-

brate genomes and are known to overlap promoter regions, in

particular in constitutively expressed genes (Yamashita et al. 2005;

Carninci et al. 2006). Our results here are in agreement with pre-

vious findings that normalized CG dinucleotide content is nega-

tively correlated with the specificity of gene expression. Conse-

quently, constitutively expressed genes show higher CG content

than up-regulated genes. While this feature is therefore useful in

differentiating constitutively expressed genes, it is a confounding

feature of proximal promoters when defining tissue-specific regu-

latory codes. Our models are based on normalized binding site

Figure 6. Aggregate plots of DNase-reads around motifs for factors with high regression coefficients. (Red lines) The cell line in which the TF is identified
as a regulator. (A) CRX shows a footprint in medulloblastoma but not in the other cell lines shown. (B) REST shows a footprint in other cell lines but not
in medulloblastoma, where it is not expressed. (C,D) EGR2 and SPIB show footprints in the GM12878 cell line.
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scores in a compendium of proximal and distal regulatory regions,

and thus show consistent performance across different expression

patterns. The classification performance we achieved when using

the presence of motifs from open chromatin regions is signifi-

cantly better than using the proximal promoter region. This is the

case even when CG content is included as a feature for the classi-

fier. We note that while using conserved regions of the genome

improved the performance of the classifier over that achieved with

the proximal promoter region, scanning for motifs in open chro-

matin regions still provided the best performance. Interestingly, in

a previous study, only 43% of DHSs were found to overlap an

evolutionarily conserved region (Boyle et al. 2008a), and it is known

that functional enhancers are sometimes weakly conserved (Blow

et al. 2010).

A related recent study monitored expression using transient

transfection assays for several promoters (Landolin et al. 2010).

The investigators then used sequence features in the transfected

plasmids to predict expression with high accuracy. There are two

main differences between this work and our study reported here.

First, as pointed out by Landolin et al. (2010), the promoters are

not in their endogenous context in the plasmid. Therefore, this

effort reflects the role that sequence plays in determining expres-

sion outside of the chromatin context. In contrast, our work

attempts to identify cell-type–specific expression from the en-

dogenous accessibility of putative cis-regulatory regions. Second,

the investigators defined classification tasks different from the

ones we examined here. In particular, they discriminated cell-

type–specifically expressed genes from ubiquitously expressed and

unexpressed genes. While the first classification task is similar to

the UR vs. Constitutive classifiers here, we do not attempt to define

ubiquitously unexpressed genes, because genes could always be

expressed in another condition not assayed or be affected by arti-

facts such as ineffective probes or misannotated genes. On the

other hand, we build classifiers for the harder problem of predict-

ing up- or down-regulation in one cell type versus another.

As expected, we observed an increased performance when

using the comprehensive set of all PWM scores rather than just

those for the most specifically expressed TFs. However, these

models are harder to interpret: Many PWMs used to compute the

comprehensive feature vectors are highly similar or identical. TFs

with the same protein binding domains also have similar binding

preferences, and a large proportion of the TFs in the current release

of the UniProbe database are homeodomain TFs. This can lead to

collinearity among the features that are used to classify the genes

into different sets. As a result, over multiple iterations of the cross-

validation, the weights assigned to each PWM are distributed to

similar PWMs, and comparatively few PWMs had significant re-

gression coefficients. To counter this, we used the subset of spe-

cifically expressed TFs, where our modeling approach allowed us to

identify several known TFs that regulate gene expression but also

additional candidates to study for their potential role in gene

regulation in the given cell type. Future efforts will make use of

recent sparse regression models that explicitly account for feature

redundancy or use projection methods such as factor analysis to

explain the high-dimensional feature vectors by smaller numbers

of covariates.

DNase data also showed footprints of cell-type–specific bind-

ing of some factors at a high resolution. This analysis therefore

corroborates recent analyses that demonstrated that the DNase-seq

assay improves the signal-to-noise when attempting to identify

functional locations of TF binding (Boyle et al. 2011; Pique-Regi

et al. 2011). Future work in predicting gene expression will attempt

to understand the utility of these high-resolution data in predict-

ing gene expression.

We note that the approach of predicting cell-type–specific

expression from cis-regulatory sequence as presented here is im-

peded by several limitations, even when the location of distal en-

hancers is known. First, only a small fraction of all TF motifs are

known, making it likely that more comprehensive knowledge of

motifs will improve the performance of the classifier. Second, ac-

counting for long-range regulatory interactions by methods like

3C, 4C, 5C, Hi-C, and ChIA-PET will allow for more accurate

connections of DHSs to the correct target gene (van Steensel and

Dekker 2010). Third, quantitative nucleotide-level accessibility

scores may perform better than simple binary DHS peak calling.

Fourth, an important extension to our work lies in the identifica-

tion of combinatorial TF codes that improve classification accu-

racy. Finally, transcript abundance is affected by several factors

including post-transcriptional regulation, for instance, by micro-

RNAs. A complete model that takes all of these factors into account

will likely be necessary to provide even better predictive models of

gene expression.

Methods

DNase-seq
DNase-seq was performed on 19 human cell lines representing
a wide variety of tissue types, and aligned reads were used to define
DNase hypersensitive sites (DHSs). Data from seven cell lines were
previously published (Song et al. 2011), and remaining libraries
were processed as described in that study. The reads generated were
aligned to the hg19 genome using BWA and were then smoothed
using a kernel density estimator, F-seq (Boyle et al. 2008b; Li and
Durbin 2009). Following this, DHS peaks were identified as having
a �log10 (P-value) $ 1.3. We refer to these regions as DHSs or re-
gions of open chromatin. Note that the AoSMC cell line was cul-
tured in serum-free media.

Classifying DHSs based on genomic location

The RefSeq hg19 database was downloaded from the UCSC Ge-
nome Browser and used to classify DHSs based on their genomic
location. If a DHS overlapped the TSS of any transcript variant of
a gene, it was classified as being a TSS DHS for that gene. Other
DHSs were similarly classified as Gene Body DHSs if they over-
lapped any region of the gene excluding the TSS. All other DHSs
were classified as Intergenic DHSs.

Microarrays

We used Affymetrix Human Exon 1.0ST microarrays to measure
gene expression following ENCODE protocols. We normalized 110
microarrays (measuring 40 cell lines) together, then extracted the
subset (19 cell lines) used in the present study. Probesets flagged as
cross-hybridizing were first removed from the analysis (Salomonis
et al. 2010). Although these arrays provide exon-level probesets,
we sought gene-level expression estimates, so we grouped probe-
sets by gene for normalization (Bemmo et al. 2008). To normalize,
we used Affymetrix Power Tools (APT) with the chipstream com-
mand ‘‘rma-bg, med-norm, pm-gcbg, med-polish.’’ This chip-
stream calls for an RMA normalization with gc-background
correction using antigenomic background probes. After normal-
izing, we noticed an effect due to a switch in microarray reagents.
Some of our arrays were processed differently, because our earlier
array reagents become unavailable partway through the experiment.
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Using hierarchical clustering and multidimensional scaling, we
found the arrays to group on the basis of reagent used, rather than by
biological relatedness. To make the arrays comparable, we used an R
script (ComBat) to correct for this batch effect (Johnson et al. 2007).
After correction with ComBat, the arrays grouped according to
expected biological similarity.

Cell-type–specific expression

We identified the genomic location of genes based on matching
gene symbols to the RefSeq hg19 database. If a gene from the array
did not have a matching gene symbol, it was dropped from the
analysis. If a gene did not have expression above background (>4.8)
in at least one cell type, it was dropped from the analysis. For the
remaining genes, expression values across the 19 cell lines were
Z-transformed. The Z-scores for expression in each cell line were
sorted. The top 200 genes were classified as UR genes and the
bottom 200 genes as DR genes in that cell type. For each cell type,
the UR-Other genes were compiled as follows: We first made a set
comprising all UR genes from all cell types. We then removed the
current cell-type UR genes from this global UR gene set. We further
removed genes from this set that had expression Z-score $ 0 in the
current cell type to exclude genes that had higher than mean ex-
pression in that cell type. This ensured that this set of genes was
purely composed of genes that were up-regulated in other cell
types and had lower than mean expression in the current cell type.
A similar procedure identified DR-Other genes. To identify con-
stitutively expressed genes, we selected genes in neither UR or DR
sets across all cell lines that were expressed above background in all
cell lines and had a maximum |Z-score| < 1.7, which resulted in 168
genes. This size compared well with the other positive sets of UR
and DR genes. This gave us a list of genes that did not have a sig-
nificant variance in their expression.

GO analysis

DAVID was used to identify functional categories of genes up-
regulated in each cell type (Huang et al. 2009a,b).We used the GO
categories and also the UP_Tissue category to identify the tissue
showing the closest gene expression profile to the cell type in
question. A P-value < 0.05 was used as the significance threshold.

PWM scans of DHS and promoter sequences

We collected PWMs for vertebrate TFs from the TRANSFAC,
JASPAR, and UniProbe databases. This gave us a collection of 789
PWMs, some of which refer to the same TF. Note that we allowed
multiple PWMs for each TF in our data set since it is generally not
known which one reflects binding affinities more accurately. Fur-
thermore, multiple PWMs may also reflect different binding mo-
dalities for the same factor. This could be due to, for example, the
presence of specific cooperative binding partners in one cell type
but not in another.

We scanned the sequence from each DHS site and (proximal)
promoter sequence (�900 to +100 relative to each TSS of a gene)
using these PWMs. A score was assigned to each location in the
sequence based on the log-likelihood ratio of the PWM score
(probability of the PWM generating the specific sequence) versus
the probability that the sequence was generated by a background
model. The background model used was a first-order Markov
Model trained over a 500-bp window centered at the base pair being
scored. This effectively corrects for the underlying dinucleotide
composition and allows us to separate signal from noise (Megraw
et al. 2009). Scores with a log-likelihood ratio less than 0 were not
included in further analysis.

After these scores were generated for each base pair, we
summed scores across a sliding window of size 60 to account for
local clusters of multiple, potentially overlapping binding sites.
Clusters of binding sites have been shown to be more likely to be
bound by TFs as opposed to single binding sites (Gotea et al. 2010).
For each DHS or promoter region, we assigned the maximum slid-
ing window score as the TFBS score for that TF for that region.

Associating DHS TFBS scores with genes

To associate each DHS with a gene that it was potentially regulat-
ing, we found the closest TSS to the midpoint of the DHS. The DHS
was then associated with that gene. In general, there were several
associated DHSs for each gene, and these were assumed to be the
putative regulatory regions for that gene. To assign one score for
a TFBS to each gene, we picked the maximum TFBS score across all
of the associated DHSs (closest gene DHS). In Split DHS, we sepa-
rated DHSs into two groups—overlapping TSSs and those in other
parts of the genome. We selected the maximum for each set,
therefore having two features per gene per TF.

Sparse logistic regression classifier

We used a sparse logistic regression classifier that minimizes an
objective function that is a linear combination of the sum of
squared residuals and the ‘1-norm of the weights (Koh et al. 2007).
We divided our data into four parts to perform a fourfold cross-
validation. Three parts of the divided data were used as the training
set. This training set was further divided into six parts, one of
which was used as the validation set to learn the hyperparameter
for the contribution of the ‘1-norm in the objective function. The
optimal hyperparameter was selected from 10 values (0.001,
0.011, . . ., 0.091). This value was then used to evaluate the per-
formance of the model on the original test set, and the area under
the receiver operating characteristics (AuROC) was computed as
a measure of performance. We performed five iterations of each
fourfold cross-validation, with the data shuffled before each iter-
ation. Results for each classification task are therefore averages over
20 different partitions of the data, which makes our results more
robust to chance arrangements of the data.

Cell-type–specific expressed nonredundant TFs

To identify TFs that were cell-type–specifically expressed, we used
the absolute Z-score and extracted gene symbols for TFs with
available PWMs. We again used the gene symbol from the Affy-
metrix arrays to match expression to TF names in our PWM list. By
using absolute Z-scores, we picked out genes that were cell-type–
specifically up- and down-regulated. To ensure that we were pick-
ing a nonredundant set of TFs, we used STAMP (Mahony and Benos
2007) with the default settings. Starting from the TF with the
highest absolute Z-score, we only added a TF when it had a signif-
icantly different PWM (E-value > 0.25) from the TFs already chosen.
We stopped adding to the set when we had 10 TFs.

Conservation analysis

Genomic regions from the 46-way placental mammal track were
downloaded from the UCSC Genome Browser. Only regions of
size 100 bp or more were used. Coding exon sequences were
extracted from the RefSeq hg19 database. BedTools (Quinlan and
Hall 2010) was used to subtract exonic coding sequences from
conserved regions to find noncoding conserved regions. Regions
were scanned for motifs, and TFBS scores were assigned to genes in
the same way as open chromatin regions.
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Discriminative motif finding using MEME

We used MEME to first calculate a position-specific prior using the
psp-gen tool. For example, if we wanted to identify the motifs in
the DHS sequences related to the UR genes when classifying
against DR genes, the positive file was the UR genes and the neg-
ative file was the DR genes. This was then used to identify motifs
from 1000 positive sequences, UR gene DHS sequences in the
above example. The motif width was chosen to be between 8 and
12 bp, and motifs were allowed to have zero or one occurrence per
sequence. Motifs with an E-value < 0.05 were then compared with
either the top 10 nonredundantly expressed TFs or the full list of
TFs using STAMP. A STAMP E-value < 0.05 was accepted as a good
match of a motif to a TF.

ChIP analysis

ChIP-seq peak coordinates were obtained from the ENCODE
webpage in BED (narrowPeaks) file format. To assess whether
DHSs are really bound by the TF or not, we checked for overlap
between the coordinates of DHS and ChIP-seq peaks for that TF.
To calculate AuROC, the TFBS scores in the DHS were compared
against ChIP-seq peaks. Overlaps with the 60-bp window around
the TFBS site were considered true positives, and others were
considered false positives for AuROC calculations.

Footprinting analysis

DNase reads were used to plot the distribution of DNase-seq reads
around transcription factor binding sites. The number of reads
mapping to 100 bp surrounding transcription factor binding sites
was counted for each site and aggregated over the 10,000 highest-
scoring binding sites. A trough centered at the binding sites in such
plots is called a DNase footprint, indicative of protection of the
binding site against DNase digestion by a bound TF.

Data access
DNase-seq data are publicly available on the UCSC Genome Browser,
the NCBI Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.
nih.gov/geo/) (accession no. GSE32970), and the NCBI Sequence
Read Archive (http://www.ncbi.nlm.nih.gov/sra) (accession no.
SRA047031). Expression data can be downloaded from the GEO
database (accession nos. GSE15805, GSE12760, GSE14863). Data
sets can also be found via http://labs.genome.duke.edu/ohler/
research/transcription.
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