Preface

This book is about using interactive and dynamic plots on a computer screen
as part of data exploration and modeling, both alone and as a partner with
static graphics and non-graphical computational methods. The area of inter-
active and dynamic data visualization emerged within statistics as part of
research on exploratory data analysis in the late 1960s, and it remains an
active subject of research today, as its use in practice continues to grow. It
now makes substantial contributions within computer science as well, as part
of the growing fields of information visualization and data mining, especially
visual data mining.
The material in this book includes:

e An introduction to data visualization, explaining how it differs from other
types of visualization.
A description of our toolbox of interactive and dynamic graphical methods.
An approach for exploring missing values in data.
An explanation of the use of these tools in cluster analysis and supervised
classification.
An overview of additional material available on the web.
A description of the data used in the analyses and exercises.

The book’s examples use the software R and GGobi. R (Thaka & Gentle-
man 1996, R Development Core Team 2006) is a free software environment for
statistical computing and graphics; it is most often used from the command
line, provides a wide variety of statistical methods, and includes high—quality
static graphics. R arose in the Statistics Department of the University of Auck-
land and is now developed and maintained by a global collaborative effort.
It began as a re-implementation of the S language and statistical computing
environment (Becker & Chambers 1984) first developed at Bell Laboratories
before the breakup of AT&T.

GGobi (Swayne, Temple Lang, Buja & Cook 2003) is free software for
interactive and dynamic graphics; it can be operated using a command-line
interface or from a graphical user interface (GUI). When GGobi is used as a
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stand-alone tool, only the GUI is used; when it is used with R, via the rggobi
(Temple Lang, Swayne, Wickham & Lawrence 2006) package, a command-line
interface is used along with the GUIL. GGobi is a descendant of two earlier pro-
grams: XGobi (Swayne, Cook & Buja 1992, Buja, Cook & Swayne 1996) and,
before that, Dataviewer (Buja, Hurley & McDonald 1986, Hurley 1987). Many
of the examples that follow might be reproduced with other software such
as S-PLUS®, SAS JMP®, DataDesk®, Mondrian, MANET, and Spotfire®.
However, GGobi is unique because it offers tours (rotations of data in higher
than 3D), complex linking between plots using categorical variables, and the
tight connection with R.

Web resources

The web site which accompanies the book contains sample datasets and
R code, movies demonstrating the interactive and dynamic graphic meth-
ods, and additional chapters. It can be reached through the GGobi web site:

http://www.ggobi.org
The R software is available from:
http://www.R-project.org

Both web sites include source code as well as binaries for various operating
systems (Linux®, Windows®, Mac OS X®) and allow users to sign up for
mailing lists and browse mailing list archives. The R web site offers a wealth
of documentation, including an introduction to R and a partially annotated
list of books offering more instruction. [Widely read books include Dalgaard
(2002), Venables & Ripley (2002), and Maindonald & Braun (2003).] The
GGobi web site includes an introductory tutorial, a list of papers, and several
movies.

How to use this book

The language in the book is aimed at later year undergraduates, beginning
graduate students, and graduate students in any discipline needing to analyze
their own multivariate data. It is suitable reading for an industry statisti-
cian, engineer, bioinformaticist, or computer scientist with some knowledge
of basic data analysis and a need to analyze high-dimensional data. It also
may be useful for a mathematician who wants to visualize high-dimensional
structures.

The end of each chapter contains exercises to help practice the methods
discussed in the chapter. The book may be used as a text in a class on statis-
tical graphics, exploratory data analysis, visual data mining, or information
visualization. It might also be used as an adjunct text in a course on multi-
variate data analysis or data mining.

This book has been closely tied to a particular software implementation
so that you can actively use the methods as you read about them, to learn
and experiment with interactive and dynamic graphics. The plots and writ-
ten explanations in the book are no substitute for personal experience. We
strongly urge the reader to go through this book sitting near a computer with
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GGobi, R, and rggobi installed, following along with the examples. If you
do not wish to install the software, then the next best choice is to watch the
accompanying movies demonstrating the examples in the text.

If you have not used GGobi before, then visit the web site, watch the
movies, download the manual, and work through the tutorial; the same advice
applies for those unfamiliar with R: Visit the R web site and learn the basics.

As you read the book, try things out for yourself. Take your time, and
have fun!
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Technical Notes

R code

The R code in this book, denoted by typewriter font, and the more
extensive code on the web site, has been tested on version 2.4.0 of R, version
2.1.5 of GGobi, and version 2.1.5 of rggobi. Updates will be available on the
web site as they are needed.

Figures

The figures in this book were produced in a variety of ways, and the files
and code to reproduce them are all available on the book’s web site. Some
were produced directly in R. Some were produced using both GGobi and R,
and the process of converting GGobi views into publication graphics deserves
an explanation.

When we arrive at a GGobi view we want to include in a paper or book, we
use the Save Display Description item on GGobi’s Tools menu to generate
a file containing an S language description of the display. We read the file into
R using the R package DescribeDisplay (Wickham 2006b), like this:

> library(DescribeDisplay)
> d <- dd_load("fig.R")

We create the publication-quality graphic using either that package’s plot
method or another R package, ggplot (Wickham 2006¢), like this:

> plot(d)
or

> p <- ggplot(d)
> print(p)

Figure 0.1 illustrates the differences with a trio of representations of the
same bivariate scatterplot. The picture at left is a screen dump of a GGobi
display. Such images are not usually satisfactory for publication for several
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Fig. 0.1. Sample plots produced from GGobi in different ways: (left) a simple
screen dump; (middle) a plot produced using the plot method of the R package
DescribeDisplay; (right) a plot made using the R package ggplot.

reasons, the most obvious of which is the lack of resolution. The second picture
was produced using DescribeDisplay’s plot method, which reproduces the
plotting region of the view with pretty good fidelity. We used this method
to produce most of the one-dimensional and two-dimensional tour pictures
in this book. The third picture was produced using ggplot, which adds axis
ticks, labels and grid lines. We used it to produce nearly all the bivariate
scatterplots of GGobi views in this book.
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Introduction

In this technological age, we live in a sea of information. We face the problem
of gleaning useful knowledge from masses of words and numbers stored in com-
puters. Fortunately, the computing technology that produces this deluge also
gives us some tools to transform heterogeneous information into knowledge.
We now rely on computers at every stage of this transformation: structuring
and exploring information, developing models, and communicating knowledge.

In this book we teach a methodology that makes visualization central to
the process of abstracting knowledge from information. Computers give us
great power to represent information in pictures, but even more, they give
us the power to interact with these pictures. If these are pictures of data,
then interaction gives us the feeling of having our hands on the data itself
and helps us to orient ourselves in the sea of information. By generating and
manipulating many pictures, we make comparisons among different views of
the data, we pose queries about the data and get immediate answers, and
we discover large patterns and small features of interest. These are essential
facets of data exploration, and they are important for model development and
diagnosis.

In this first chapter we sketch the history of computer-aided data visual-
ization and the role of data visualization in the process of data analysis.

1.1 Data visualization: beyond the third dimension

So far we have used the terms “information,” “knowledge,” and “data” infor-
mally. From now on we will use the following distinction: the term data refers
to information that is structured in some schematic form such as a table or a
list, and knowledge is derived from studying data. Data is often but not always
quantitative, and it is often derived by processing unstructured information.
It always includes some attributes or variables such as the number of hits on
web sites, frequencies of words in text samples, weight in pounds, mileage in
gallons per mile, income per household in dollars, years of education, acidity
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on the pH scale, sulfur emissions in tons per year, or scores on standardized
tests.

When we visualize data, we are interested in portraying abstract rela-
tionships among such variables: for example, the degree to which income in-
creases with education, or whether certain astronomical measurements indi-
cate grouping and therefore hint at new classes of celestial objects. In contrast
to this interest in abstract relationships, many other areas of visualization are
principally concerned with the display of objects and phenomena in physical
three-dimensional (3D) space. Examples are volume visualization (e.g., for the
display of human organs in medicine), surface visualization (e.g., for manu-
facturing cars or animated movies), flow visualization (e.g., for aeronautics
or meteorology), and cartography (e.g., for navigation or social studies). In
these areas one often strives for physical realism or the display of great detail
in space, as in the visual display of a new car design or of a developing hurri-
cane in a meteorological simulation. The data visualization task is obviously
different from drawing physical objects.

If data visualization emphasizes abstract variables and their relationships,
then the challenge of data visualization is to create pictures that reflect these
abstract entities. One approach to drawing abstract variables is to create axes
in space and map the variable values to locations on the axes, and then ren-
der the axes on a drawing surface. In effect, one codes non-spatial information
using spatial attributes: position and distance on a page or computer screen.
The goal of data visualization is then not realistic drawing, which is mean-
ingless in this context, but translating abstract relationships to interpretable
pictures.

This way of thinking about data visualization, as interpretable spatial
representation of abstract data, immediately brings up a limitation: Plotting
surfaces such as paper or computer screens are merely two-dimensional (2D).
We can extend this limit by simulating a third dimension: The eye can be
tricked into seeing 3D virtual space with perspective and motion, but if we
want an axis for each variable, that’s as far as we can stretch the display
dimension.

This limitation to a 3D display space is not a problem if the objects to be
represented are three-dimensional, as in most other visualization areas. In data
visualization, however, the number of axes required to code variables can be
large: Five or ten axes are common, but these days one often encounters dozens
and even hundreds. Overcoming the 2D and 3D barriers is a key challenge
for data visualization. To meet this challenge, we use powerful computer-
aided visualization tools. For example, we can mimic and amplify a strategy
familiar from photography: taking pictures from multiple directions so the
shape of an object can be understood in its entirety. This is an example of the
“multiple views” paradigm, which will be a recurring theme of this book. In
our 3D world the paradigm works superbly, because the human eye is adept
at inferring the true shape of an object from just a few directional views.
Unfortunately, the same is often not true for views of abstract data. The
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chasm between different views of data, however, can be actively bridged with
additional computer technology: Unlike the passive paper medium, computers
allow us to manipulate pictures, to pull and push their content in continuous
motion like a moving video camera, or to poke at objects in one picture and
see them light up in other pictures. Motion links pictures in time; poking
links them across space. This book features many illustrations of the power
of these linking technologies. The diligent reader may come away “seeing”
high-dimensional data spaces!

1.2 Statistical data visualization: goals and history

Visualization has been used for centuries to map our world (cartography)
and describe the animal and plant kingdoms (scientific illustration). Data
visualization, which is more abstract, emerged more recently. An early inno-
vator was William Playfair, whose extensive charting of economic data in the
1800s (Wainer & Spence 2005a, Wainer & Spence 2005b) contributed to its
emergence. The early history of visualization has been richly — and beauti-
fully — documented (Friendly & Denis 2006, Tufte 1983, Tufte 1990, Ford
1992, Wainer 2000).

Today’s data visualization has homes in several disciplines, including the
natural sciences, engineering, geography, computer science, and statistics.
There is a lot of overlap in the functionality of the methods and tools they
generate, but some differences in emphasis can be traced to the research con-
texts in which they were incubated. For example, data visualization in the
natural science and engineering communities supports the goal of modeling
physical objects and processes, relying on scientific visualization (Hansen &
Johnson 2004, Bonneau, Ertl & Nielson 2006). For the geographical com-
munity, maps are the starting point, and other data visualization methods
are used to expand on the information displayed using cartography (Longley,
Maguire, Goodchild & Rhind 2005, Dykes, MacEachren & Kraak 2005). The
database research community creates visualization software that grows out of
their work in data storage and retrieval; their graphics often summarize the
kinds of tables and tabulations that are common results of database queries.
The human—computer interface community produces software as part of their
research in human perception, human—computer interaction and usability, and
their tools are often designed to make the performance of a complex task as
straightforward as possible. These two latter fields have been instrumental in
developing the field of information visualization (Card, Mackinlay & Schnei-
derman 1999, Bederson & Schneiderman 2003, Spence 2007).

The statistics community creates visualization systems within the context
of data analysis, so the graphics are designed to support and enrich the sta-
tistical processes of data exploration, modeling, and inference. As a result,
statistical data visualization has some unique features. Statisticians are al-
ways concerned with variability in observations and error in measurements,
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both of which cause uncertainty about conclusions drawn from data. Dealing
with this uncertainty is at the heart of classical statistics, and statisticians
have developed a huge body of inferential methods that help to quantify un-
certainty.

Systems for data analysis included visualization as soon as they began to
emerge (Nie, Jenkins, Steinbrenner & Bent 1975, Becker & Chambers 1984,
Wilkinson 1984). They could generate a wide variety of plots, either for display
on the screen or for printing, and the more flexible systems have always allowed
users considerably leeway in plot design. Since these systems predated the
general use of the mouse, the keyboard was their only input device, and the
displays on the screen were not themselves interactive.

As early as the 1960s, however, researchers in many disciplines were making
innovations in computer—human interaction, and statisticians were there, too.
The seminal visualization system for exploratory data analysis was PRIM-9,
the work of Fisherkeller, Friedman, and Tukey at the Stanford Linear Accel-
erator Center in 1974. PRIM-9 was the first stab at an interactive tool set for
the visual analysis of multivariate data. It was followed by further pioneering
systems at the Swiss Federal Institute of Technology (PRIM-ETH), Harvard
University (PRIM-H), and Stanford University (ORION), in the late 1970s
and early 1980s.

Research picked up in the following few years in many places (Wang 1978,
McNeil 1977, Velleman & Velleman 1985, Cleveland & McGill 1988, Buja &
Tukey 1991, Tierney 1991, Cleveland 1993, Rao 1993, Carr, Wegman & Luo
1996). The authors themselves were influenced by work at Bell Laboratories,
Bellcore, the University of Washington, Rutgers University, the University
of Minnesota, MIT, CMU, Batelle Richmond WA, George Mason University,
Rice University, York University, Cornell University, Trinity College, and the
University of Augsburg, among others. In the past couple of years, books
have begun to appear that capture this history and continue to point the way
forward (Wilkinson 2005, Young, Valero-Mora & Friendly 2006, Unwin, Theus
& Hofmann 2006, Chen, Hérdle & Unwin 2007).

1.3 Getting down to data

Here is a very small and seemingly simple dataset we will use to illustrate
the use of data graphics. One waiter recorded information about each tip he
received over a period of a few months working in one restaurant. He collected
several variables:
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tip (i.e., gratuity) in US dollars

bill (the cost of the meal) in US dollars
sex of the bill payer

whether the party included smokers
day of the week

time of day

size of the party

In all he recorded 244 tips. The data was reported in a collection of case
studies for business statistics (Bryant & Smith 1995). The primary question
suggested by the data is this: What are the factors that affect tipping behavior?

This dataset is typical (albeit small): There are seven variables, of which
two are numeric (tip, bill), and the others are categorical or otherwise discrete.
In answering the question, we are interested in exploring relationships that
may involve more than three variables, none of which corresponds to physical
space. In this sense the data is high-dimensional and abstract.

We look first at the variable of greatest interest to the waiter: tip. A com-
mon graph for looking at a single variable is the histogram, where data values
are binned and the count is represented by a rectangular bar. We choose an
initial bin width of $1 and produce the uppermost graph of Fig. 1.1. The
distribution appears to be unimodal; that is, it has one peak, the bar repre-
senting the tips greater than $1.50 and less than or equal $2.50. There are
very few tips of $1.50 or less. The number of larger tips trails off rapidly,
which suggests that this is not a very expensive restaurant.

The conclusions drawn from a histogram are often influenced by the choice
of bin width, which is a parameter of the graph and not of the data. Figure 1.1
shows a histogram with a smaller bin width, 10¢c. At the smaller bin width
the shape is multimodal, and it is clear that there are large peaks at the full
dollars and smaller peaks at the half dollar. This shows that the customers
tended to round the tip to the nearest fifty cents or dollar.

This type of observation occurs frequently when studying histograms: A
large bin width smooths out the graph and shows rough or global trends,
whereas a smaller bin width highlights more local features. Since the bin
width is an example of a graph parameter, experimenting with bin width is
an example of exploring a set of related graphs. Exploring multiple related
graphs can lead to insights that would not be apparent in any single graph.

So far we have not addressed the primary question: What relationships
exist between tip and the other variables? Since the tip is usually calculated
based on the bill, it is natural to look first at a graph of tip and bill. A
common graph for looking at a pair of continuous variables is the scatterplot,
as in Fig. 1.2. We see that the variables are highly correlated (r = 0.68), which
confirms that tip is calculated from the bill. We have added a line representing
a tip rate of 18%. Disappointingly for the waiter, there are many more points
below the line than above it: There are many more “cheap tippers” than
generous tippers. There are a couple of notable exceptions, especially one
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Fig. 1.1. Histograms of tip with differing bin width: $1, 10¢c. Bin width can be
changed interactively in interactive systems, often by dragging a slider.
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party who gave a $5.15 tip for a $7.25 bill, which works out to a tip rate of
about 70%.

We said earlier that an essential aspect of data visualization is capturing
relationships among many variables: three, four, or even more. This dataset,
simple as it is, illustrates the point. Let us ask, for example, how a third
variable such as sex affects the relationship between tip and bill. As sex is
categorical with two levels (i.e., binary), it is natural to divide the data into
female and male payers and to generate two scatterplots of tip vs. bill. Let us
go even further by including a fourth variable, smoking, which is also binary.
We now divide the data into four parts and generate the four scatterplots
observed in Fig. 1.3. (The 18% tip guideline is included in each plot, and
the correlation between the variables for each subset is in the top left of
each plot.) Inspecting these plots reveals numerous features: (1) For smoking
parties, there is a lot less association between the size of the tip and the size
of the bill; (2) when a female non-smoker paid the bill, the tip was a very
consistent percentage of the bill, with the exceptions of three dining parties;
and (3) larger bills were mostly paid by men.

Taking stock

In the above example we gained a wealth of insight in a short time. Us-
ing nothing but graphical methods we investigated univariate, bivariate, and
multivariate relationships. We found both global features and local detail. We
saw that tips were rounded; then we saw the obvious correlation between the
tip and the size of the bill, noting the scarcity of generous tippers; finally we
discovered differences in the tipping behavior of male and female smokers and
non-smokers.

Notice that we used very simple plots to explore some pretty complex
relationships involving as many as four variables. We began to explore multi-
variate relationships for the first time when we produced the plots in Fig. 1.3.
Each plot shows a subset obtained by partitioning the data according to two
binary variables. The statistical term for partitioning based on variables is
“conditioning.” For example, the top left plot shows the dining parties that
meet the condition that the bill payer was a male non-smoker: sex = male and
smoking = False. In database terminology this plot would be called the result
of “drill-down.” The idea of conditioning is richer than drill-down because it
involves a structured partitioning of all data as opposed to the extraction of
a single partition.

Having generated the four plots, we arrange them in a two-by-two layout
to reflect the two variables on which we conditioned. Although the axes in
each plot are tip and bill, the axes of the overall figure are smoking (vertical)
and sex (horizontal). The arrangement permits us to make several kinds of
comparisons and to make observations about the partitions. For example,
comparing the rows shows that smokers and non-smokers differ in the strength
of the correlation between tip and bill, and comparing the plots in the top row
shows that male and female non-smokers differ in that the larger bills tend
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tip

bill

Fig. 1.2. Scatterplot of tip vs. bill. The line represents a tip of 18%. The greater
number of points far below the line indicates that there are more “cheap tippers”
than generous tippers.

to be paid by men. In this way a few simple plots allow us to reason about
relationships among four variables.

In contrast, an old-fashioned approach without graphics would be to fit a
regression model. Without subtle regression diagnostics (which rely on graph-
ics!), this approach would miss many of the above insights: the rounding of
tips, the preponderance of cheap tippers, and perhaps the multivariate rela-
tionships involving the bill payer’s sex and the group’s smoking habits.

1.4 Getting real: process and caveats

The preceding explanations may have given a somewhat misleading impression
of the process of data analysis. In our account the data had no problems; for
example, there were no missing values and no recording errors. Every step
was logical and necessary. Every question we asked had a meaningful answer.
Every plot that was produced was useful and informative. In actual data
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Fig. 1.3. Scatterplot of tip vs. bill conditioned by sex and smoker. There is almost
no association between tip and bill in the smoking parties, and with the exception of
three dining parties, when a female non-smoker paid the bill, the tip was extremely
consistent.

analysis, nothing could be further from the truth. Real datasets are rarely
perfect; most choices are guided by intuition, knowledge, and judgment; most
steps lead to dead ends; most plots end up in the wastebasket. This may sound
daunting, but even though data analysis is a highly improvisational activity,
it can be given some structure nonetheless.

To understand data analysis, and how visualization fits in, it is useful to
talk about it as a process consisting of several stages:
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The problem statement
Data preparation
Exploratory data analysis
Quantitative analysis
Presentation

The problem statement: Why do you want to analyze this data? Underlying
every dataset is a question or problem statement. For the tipping data the
question was provided to us from the data source: “What are the factors that
affect tipping behavior?” This problem statement drives the process of any
data analysis. Sometimes the problem is identified prior to a data collection.
Perhaps it is realized after data becomes available because having the data
available has made it possible to imagine new issues. It may be a task that the
boss assigns, it may be an individual’s curiosity, or it may be part of a larger
scientific endeavor. Ideally, we begin an analysis with some sense of direction,
as described by a pertinent question.

Data preparation: In the classroom, the teacher hands the class a single data
matrix with each variable clearly defined. In the real world, it can take a great
deal of work to construct a clean data matrix. For example, data values may
be missing or misrecorded, data may be distributed across several sources,
and the variable definitions and data values may be inconsistent across these
sources. Analysts often have to invest considerable time in acquiring domain
knowledge and in learning computing tools before they can even ask a mean-
ingful question about the data. It is therefore not uncommon for this stage
to consume most of the effort that goes into a project. And it is also not
uncommon to loop back to this stage after completing the subsequent stages,
to re-prepare and re-analyze the data.

In preparing the Tips data, we would create a new variable called tip rate,
because when tips are discussed in restaurants, among waiters, dining parties,
and tourist guides, it is in terms of a percentage of total bill. We may also
create several new dummy variables for the day of the week, in anticipation
of fitting a regression model. We did not talk about using visualization to
verify that we had correctly understood and prepared the tipping data. For
example, that unusually large tip could have been the result of a transcription
error. Graphics identified the observation as unusual, and the analyst might
use this information to search the origins of the data to check the validity of
the numbers for this observation.

Ezploratory data analysis (EDA): At this stage in the analysis, we make time
to “play in the sand” to allow us to find the unexpected, and come to some
understanding of our data. We like to think of this as a little like traveling.
We may have a purpose in visiting a new city, perhaps to attend a conference,
but we need to take care of our basic necessities, such as finding eating places
and gas stations. Some of our movements will be pre-determined, or guided
by the advice of others, but some of the time we wander around by ourselves.
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We may find a cafe we particularly like or a cheaper gas station. This is all
about getting to know the neighborhood.

By analogy, at this stage in the analysis, we relax the focus on the prob-
lem statement and explore broadly different aspects of the data. Modern ex-
ploratory data analysis software is designed to make this process as fruitful as
possible. It is a highly interactive, real-time, dynamic, and visual process, hav-
ing evolved along with computers. It takes advantage of technology, in a way
that Tukey envisioned and experimented with on specialist hardware 40 years
ago: “Today, software and hardware together provide far more powerful fac-
tories than most statisticians realize, factories that many of today’s most able
young people find exciting and worth learning about on their own” (Tukey
1965). It is characterized by direct manipulation and dynamic graphics: plots
that respond in real time to an analyst’s queries and change dynamically to
re-focus, link to information from other sources, and re-organize information.
The analyst can work rapidly and thoroughly through the data, slipping out
of dead-ends and chasing down new leads. The high level of interactivity is
enabled by bare-bones graphics, which are generally not adequate for presen-
tation purposes.

We gave you some flavor of this stage in the analysis of the waiter’s tips.
Although the primary question was about the factors affecting tipping behav-
ior, we checked the distribution of individual variables, we looked for unusual
records, we explored relationships among multiple variables, and we found
some unexpected patterns: the rounding of tips, the prevalence of cheap tip-
pers, and the heterogeneity in variance between groups.

Quantitative analysis (QA):

At this stage, we use statistical modeling and statistical interference to
answer our primary questions. With statistical models, we summarize com-
plex data, decomposing it into estimates of signal and noise. With statistical
inference, we try to assess whether a signal is real. Data visualization plays
an important role at this stage, although that is less well known than its key
role in exploration. It is helpful both in better understanding a model and in
assessing its validity in relation to the data.

For Tips, we have not yet answered the primary question of interest. Let’s
fit a regression model using tiprate as the response and the remaining variables
(except tip and bill) as the explanatory variables. When we do this, only
size has a significant regression coefficient, resulting in the model tiprate =
0.18 — 0.01 x size. The model says that, starting from a baseline tip rate of
18%, the amount drops by 1% for each additional diner in a party, and this
is the model answer in Bryant & Smith (1995). Figure 1.4 shows this model
and the underlying data. (The data is jittered horizontally to alleviate over-
plotting caused by the discreteness of size; that is, a small amount of noise is
added to the value of size for each case.)

Are we satisfied with this model? We have some doubts about it, although
we know that something like it is used in practice: Most restaurants today
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factor the tip into the bill automatically for larger dining parties. However,
in this data it explains only 2% of the variation in tip rate. The points are
spread widely around the regression line. There are very few data points for
parties of size one, five, and six, which makes us question the validity of the
model in these regions. The signal is very weak relative to the noise.

Predicted tiprate = 0.18 — 0.01 size
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Fig. 1.4. Factors affecting tipping behavior. This scatterplot of tiprate vs. size shows
the best model along with the data (jittered horizontally). There is a lot of variation
around the regression line, showing very little signal relative to noise. In addition
there are very few data points for parties of 1, 5, or 6 diners, so the model may not
be valid at these extremes.

Most problems are more complex than the Tips data, and the models are
often more sophisticated, so evaluating them is correspondingly more difficult.
We evaluate a model using data produced by the model-fitting process, such
as model estimates and diagnostics. Other data may be derived by simulating
from the model or by calculating confidence regions. All this data can be
explored and plotted for the pleasure of understanding the model.

Plotting the model in relation to the original data is also important. There
is a temptation to ignore that messy raw data in favor of the simplification
provided by a model, but a lot can be learned from what is left out of a model.
For example, we would never consider teaching regression analysis without
teaching residual plots. A model is a succinct explanation of the variation
in the data, a simplification. With a model we can make short descriptive
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statements about the data, and pictures help us find out whether a model is
too simple. And so we plot the model in the context of the data, as we just
did in Fig. 1.4, and as we will do often in the chapters to follow.

The interplay of EDA and QA: Is it data snooping?

Because EDA is very graphical, it sometimes gives rise to a suspicion that
patterns in the data are being detected and reported that are not really there.
Sometimes this is called data snooping. Certainly it is important to validate
our observations about the data. Just as we argue that models should be val-
idated by all means available, we are just as happy to argue that observations
made in plots should be validated using quantitative methods, permutation
tests, or cross-validation, as appropriate, and incorporating subject matter
expertise. A discussion of this topic emerged in the comments on Koschat &
Swayne (1996), and Buja’s remark (Buja 1996) is particularly apt:

In our experience, false discovery is the lesser danger when com-
pared to nondiscovery. Nondiscovery is the failure to identify mean-
ingful structure, and it may result in false or incomplete modeling. In
a healthy scientific enterprise, the fear of nondiscovery should be at
least as great as the fear of false discovery.

We snooped into the Tips data, and from a few plots we learned an enor-
mous amount of information about tipping: There is a scarcity of generous
tippers, the variability in tips increases extraordinarily for smoking parties,
and people tend to round their tips. These are very different types of tipping
behaviors than what we learned from the regression model. The regression
model was not compromised by what we learned from graphics, and indeed,
we have a richer and more informative analysis. Making plots of the data is
just smart.

On different sides of the pond: EDA and IDA

Consulting statisticians, particularly in the British tradition, have always
looked at the data before formal modeling, and call it IDA (initial data anal-
ysis) (Chatfield 1995). For example, Crowder & Hand (1990) say: “The first
thing to do with data is to look at them.... usually means tabulating and plot-
ting the data in many different ways to ‘see what’s going on’. With the wide
availability of computer packages and graphics nowadays there is no excuse
for ducking the labour of this preliminary phase, and it may save some red
faces later.”

The interactive graphics methods described in this book emerged from a
different research tradition, which started with Tukey’s influential work on
EDA, focusing on discovery and finding the unexpected in data. Like IDA,
EDA has always depended heavily on graphics, even before the term data
visualization was coined. Our favorite quote from John Tukey’s rich legacy is
that we need good pictures to “force the unexpected upon us.”
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EDA and IDA, although not entirely distinct, differ in emphasis. Funda-
mental to EDA is the desire to let the data inform us, to approach the data
without pre-conceived hypotheses, so that we may discover unexpected fea-
tures. Of course, some of the unexpected features may be errors in the data.
IDA emphasizes finding these errors by checking the quality of data prior to
formal modeling. It is much more closely tied to inference than EDA: Prob-
lems with the data that violate the assumptions required for valid inference
need to be discovered and fixed early.

In the past, EDA and inference were sometimes seen as incompatible, but
we argue that they are not mutually exclusive. In this book, we present some
visual methods for assessing uncertainty and performing inference, that is,
deciding whether what we see is “really there.”

Presentation: Once an analysis has been completed, the results must be re-
ported, either to clients, managers, or colleagues. The results probably take
the form of a narrative and include quantitative summaries such as tables,
forecasts, models, and graphics. Quite often, graphics form the bulk of the
sumimaries.

The graphics included in a final report may be a small fraction of the
graphics generated for exploration and diagnostics. Indeed, they may be dif-
ferent graphics altogether. They are undoubtedly carefully prepared for their
audience. The graphics generated during the analysis are meant for the ana-
lyst only and thus need to be quickly generated, functional but not polished.
This issue is a dilemma for authors who have much to say about exploratory
graphics but need to convey it in printed form. The plots in this book, for
example, lie somewhere between exploratory and presentation graphics.

As mentioned, these broadly defined stages do not form a rigid recipe.
Some stages overlap, and occasionally some are skipped. The order is often
shuffled and groups of steps reiterated. What may look like a chaotic activity
is often improvisation on a theme loosely following the “recipe.”

Because of its improvisational nature, EDA is not easy to teach. Says
Tukey (1965) “Exploratory data analysis is NOT a bundle of techniques....Con-
firmatory analysis is easier to teach and compute....” In the classroom, the
teacher explains a method to the class and demonstrates it on the single data
matrix and then repeats this process with another method. Teaching a bundle
of methods is indeed an efficient approach to covering substantial quantities
of material, but this may be perceived by the student as a stream of discon-
nected methods, applied to unrelated data fragments, and they may not be
able to apply what they have learned outside that fragmented context for
quite a while. It takes time and experience for students to integrate this ma-
terial and to develop their own intuition. Students need to navigate their own
way through data, cleaning it, exploring it, choosing models; they need to
make mistakes, recover from them, and synthesize the findings into a sum-
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mary. Learning how to perform data analysis is a process that continues long
after the student’s formal training is complete.

1.5 Interactive investigation

Thus far, all observations on the tipping data have been made using static
graphics — our purpose up to this point has been to communicate the
importance of plots in the context of data analysis. Static plots were originally
drawn by hand, and although they are now produced by computers, they are
still designed to be printed on paper, often to be displayed or studied some
time later. However, computers also allow us to produce plots to be viewed
as they are created, and tweaked and manipulated in real time. This book is
about such interactive and dynamic plots, and the chapters that follow have a
lot to say about them. Here we will say a few words about the way interactive
plots enhance the data analysis process we have just described.

The Tips data is simple, and most of the interesting features can be discov-
ered using static plots. Still, interacting with the plots reveals more and en-
ables the analyst to pursue follow-up questions. For example, we could address
a new question, arising from the current analysis, such as “Is the rounding
behavior of tips predominant in some demographic group?” To investigate we
probe the histogram, highlight the bars corresponding to rounded tips, and
observe the pattern of highlighting in the linked plots (Fig. 1.5). Multiple plots
are visible simultaneously, and the highlighting action on one plot generates
changes in the other plots. The two additional plots here are mosaic plots,
which are used to examine the proportions in categorical variables. (Mosaic
plots will be explained further in the next chapter; for now, it is enough to
know that the area of each rectangle is proportional to the corresponding
number of cases in the data.) For the highlighted subset of dining parties,
the ones who rounded the tip to the nearest dollar or half-dollar, the propor-
tion of bill paying males and females is roughly equal, but interestingly, the
proportion of smoking parties is higher than non-smoking parties. This might
suggest another behavioral difference between smokers and non-smokers: a
larger tendency for smokers than non-smokers to round their tips. If we were
to be skeptical about this effect we would dig deeper, making more graphical
explorations and numerical models. By pursuing this with graphics, we would
find that the proportion of smokers who round the tip is only higher than
non-smokers for full dollar amounts, and not for half-dollar amounts.

The remaining chapters in this book continue in this vein, describing how
interactive and dynamic plots are used in several kinds of data analysis.
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Fig. 1.5. Histogram of tip linked to 2D mosaic plots of sex and smoker. Bars of
whole and half-dollar amounts are highlighted. The proportion of smoking parties

who round their tips is higher than that of non-smoking parties, whereas men and
women round about equally.






