
ISSN 1884-0760

GRACE TECHNICAL REPORTS

Proceedings of the Third International
Workshop on Software Patterns and Quality

(SPAQu’09)

Hironori Washizaki, Nobukazu Yoshioka, Eduardo B.
Fernandez and Jan Jürjens (editors)

GRACE-TR 2009–07 October 25, 2009

CENTER FOR GLOBAL RESEARCH IN
ADVANCED SOFTWARE SCIENCE AND ENGINEERING

NATIONAL INSTITUTE OF INFORMATICS
2-1-2 HITOTSUBASHI, CHIYODA-KU, TOKYO, JAPAN

WWW page: http://grace-center.jp/

The GRACE technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

Overview of the 3rd International Workshop

on Software Patterns and Quality (SPAQu’09)

Hironori Washizaki

Waseda University / GRACE Center,

National Institute of Informatics

3-4-1, Okubo, Shinjuku-ku, Tokyo,

Japan

washizaki@waseda.jp

Nobukazu Yoshioka

National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda-ku,

Tokyo, Japan

nobukazu@nii.ac.jp

Eduardo B. Fernandez

Florida Atlantic University

777 Glades Road, Boca Raton, FL

33431, USA

ed@cse.fau.edu

Jan Jurjens

TU Dortmund / Fraunhofer ISST

jan.jurjens@cs.tu-dortmund.de

Abstract

We will discuss here the theoretical, social, technological

and practical issues related to quality aspects of software

patterns including security and safety aspects. The work-

shop will provide the opportunity for bringing together re-

searchers and practitioners, and for discussing the future

prospects of this area. As for the workshop format, first, we

will have short talks on what software patterns are, and how

they are related to quality. Second, we will have accepted

position paper presentations to expose the latest researches

and practices on software patterns and quality. Finally, we

will discuss several topics related to these presentations in

small groups. Newcomers, interested researchers and practi-

tioners are free to attend the workshop to facilitate their un-

derstandings, researches and practices on software patterns

and quality.

Categories and Subject Descriptors D.2.10 [Software En-

gineering]: Design; D.2.11 [Software Engineering]: Soft-

ware Architectures; D.2.13 [Software Engineering]: Reusable

Software; D.3.3 [Programming Languages]: Language Con-

structs and Features

General Terms Design, Experimentation, Measurement

Keywords Software Patterns, Software Quality, Design

Patterns, Security Patterns

Copyright is held by the author/owner(s).

OOPSLA 2009, October 25–29, 2009, Orlando, Florida, USA.

ACM 978-1-60558-768-4/09/10.

1. Main Theme and Goals

As requirements for software products and processes have

become more complex, larger scale and have begun to in-

clude higher reliability, demand is increasing for a system

of technologies to capture, share, enhance, apply and evalu-

ate software patterns. Especially, although numbers of pat-

tern catalogs have been published, little known is about how

to specify, measure and evaluate those patterns themselves

and/or their application results from the viewpoint of quality.

Such conditions make it difficult to see the nature of software

patterns and pattern-oriented development ways.

To overcome such conditions, the first workshop of this

series was held on December 2007 collocated with the Asia-

Pacific Software Engineering Conference (APSEC)[1], and

it attracted more than 30 people. The second one was held

on October 2008 collocated with the Pattern Languages of

Programs Conference (PLoP)[2], and it attracted around 10

people. These previous workshops were successful to dis-

cuss the theoretical, social, technological and practical is-

sues related to quality aspects of patterns including security

and safety aspects.

However we believe there is a still room to gain an im-

proved understanding and for further research on these top-

ics, and thus continuous efforts for holding the workshop

are necessary. This workshop will provide the opportunity

for bringing together researchers and practitioners, and for

discussing the future prospects of that area. The tone of the

workshop will be such that a newcomer to the field of soft-

ware patterns will receive an introduction of what software

patterns are, and how they fit in with their research.

1

2. Possible topics

”Quality” is defined as the totality of features and charac-

teristics of a product or service that bear on its ability to

satisfy stated or implied needs in ISO 8402. An important

property of software quality is that quality requirements are

not limited to functionality and reliability. For example, typ-

ical software quality characteristics are classified in ISO/IEC

9126 as the followings: functionality, reliability, usability,

efficiency, maintainability and portability. To these we can

add security and safety. Quality requirements (as part of non-

functional requirements) can be specified for each quality

characteristic.

Software patterns can be reused to fulfill software re-

quirements including functional and non-functional ones.

Currently how to specify quality aspects of patterns applica-

tions or of themselves is a remaining big research challenge.

Typical existing approaches are the followings:

• Qualitative analysis of relationships among quality at-

tributes (characteristics) and patterns, such as software

quality assessment[4] and architecture trade-off analysis[5].

• Requirements engineering for quality aspects of patterns,

such as the goal-oriented analysis of patterns for finer

representation and selection[6].

• Quantitative measurements of quality aspects of patterns,

such as the design complexity[7] and defect frequency[8]

in design patterns application results.

• Emerging quality-specific patterns such as security patterns[9]

However, we believe there is still room to gain an im-

proved understanding and further research development on

these topics (e.g. how to validate pattern analysis and/or ap-

plication results?).

3. Post-workshop activities

After the workshop, we will display a poster summarizing

the workshop results at the OOPSLA conference site. More-

over, we have a plan to make and put a detailed report on the

workshop website[3]. This report will include a summary of

discussions so that it will provide a brief summary of the

state of the art and future perspectives in the area of soft-

ware patterns and quality. Therefore, it should facilitate each

participant’s and non-participant reader’s understanding and

future research/practice on this area.

Acknowledgments

The workshop will be co-sponsored by the IPSJ/SIGSE Pat-

terns Working Group and the GRACE Center of the National

Institute of Informatics of Japan (NII).

References

[1] 1st International Workshop on Software Patterns and

Quality (SPAQu’07), 2007.

http://patterns-wg.fuka.info.waseda.ac.jp/SPAQU/

result-2007.html

[2] 2nd Workshop on Software Patterns and Qual-

ity (SPAQu’08), 2008.

http://patterns-wg.fuka.info.waseda.ac.jp/SPAQU/

result-2008.html

[3] 3rd International Workshop on Software Patterns and

Quality (SPAQu’09), 2009.

http://patterns-wg.fuka.info.waseda.ac.jp/SPAQU/

[4] Eelke Folmer and Jan Bosch, ”A Pattern Framework for Soft-

ware Quality Assessment And Tradeoff Analysis,” Interna-

tional Journal of Software Engineering and Knowledge En-

gineering, Vol.17, No.1, 2007.

[5] Len Bass, Paul Clements and Rick Kazman, ”Software Archi-

tecture in Practice,” Addison-Wesley, 2003.

[6] Ivdm Araujo and Michael Weiss, ”Linking Patterns and Non-

Functional Requirements,” Proc. of the 9th Conference on

Pattern Language of Programs (PLoP 2002), 2002.

[7] Hironori Washizaki, Kazuhiro Fukaya, Atsuto Kubo, Yoshi-

aki Fukazawa, ”Detecting Design Patterns Using Source

Code of Before Applying Design Patterns,” Proc. of the 8th

IEEE/ACIS International Conference on Computer and Infor-

mation Science (ICIS 2009), 2009.

[8] Marek Vokac, ”Defect Frequency and Design Patterns: An

Empirical Study of Industrial Code,” IEEE Transactions on

Software Engineering, Vol.30, No.12, 2004.

[9] Markus Schumacher, Eduardo Fernandez-Buglioni, Duane

Hybertson, Frank Buschmann and Peter Sommerlad, ”Secu-

rity Patterns: Integrating security and systems engineering,”

Wiley 2006.

2

Program Committee

Yijun Yu, The Open University, UK
Yasuyuki Tahara, The University of Electro-Communications, Japan
Soon-Kyeong Kim, The University of Queensland, Australia
Linda Rising, Independent Consultant, US
Eric Platon, Cirius Technologies, Japan
Somjai Boonsiri, Chulalongkorn University, Thailand
Naoyuki Nagatou, Ritsumeikan University, Japan
Yann-Gaël Guéhéneuc, Canada Research Chair on Software Patterns and Patterns of
Software, École Polytechnique de Montréal, Canada
Kenji Tei, Waseda University, Japan
Atsuto Kubo, National Institute of Informatics, Japan
Katsuhisa Maruyama, Ritsumeikan University, Japan
Fuyuki Ishikawa, National Institute of Informatics, Japan
Michael VanHilst, Florida Atlantic University, US

External Reviewers:
Foutse Khomh, DIRO, Universite de Montreal, QC, Canada
Weimin Ma, The University of Texas at Dallas, US

3

Table of Contents

NEW PATTERNS AND QUALITY OF PATTERNS...5

Defining a Catalog of Programming Anti-Patterns for Concurrent Java .. 6
Jeremy S. Bradbury, Kevin Jalbert

Abstract Testability Patterns (position)... 12
Wanderlei Souza, Reginaldo Arakaki

Towards an Assessment of the Qualities of Refactoring Patterns (position) 14
Norihiro Yoshida, Masatomo Yoshida, Katsuro Inoue

On the Symbiosis between Quality and Patterns (position).. 16
Pankaj Kamthan

PATTERN-BASED DESIGN ...19

Generic Patterns: Bridging the Contextual Divide .. 20
Marc Boyer, Vojislav B. Misic

Reporting the Implementation of a Framework for Measuring Test Coverage on Design Pattern . 26
Kazunori Sakamoto, Hironori Washizaki, Yoshiaki Fukazawa

Architectural and Design Patterns in Multimedia Streaming Software (position) 31
Yanja Dajsuren, Mark van den Brand

SECURITY PATTERNS ..33

Building a Concept Grid to Classify Security Patterns .. 34
Michael VanHilst, Eduardo B. Fernandez, Fabrcio Braz

Validating and Impelementing Security Patterns for Database Applications 40
Arnon Sturm, Jenny Abramov, Peretz Shoavl

Security patterns and quality (position) .. 46
Eduardo B. Fernandez, Nobukazu Yoshioka, Hironori Washizaki

Extending a secure software methodology with usability aspects (position) 48
Eduardo B. Fernandez, Jaime Munoz-Arteaga

4

New Patterns and Quality of Patterns

5

Defining a Catalog of Programming Anti-Patterns for Concurrent Java

Jeremy S. Bradbury, Kevin Jalbert
Software Quality Research Group

Faculty of Science (Computer Science)
University of Ontario Institute of Technology

Oshawa, Ontario, Canada
jeremy.bradbury@uoit.ca, kevin.jalbert@mycampus.uoit.ca

Abstract—Many programming languages, including Java,
provide support for concurrency. Although concurrency has
many benefits with respect to performance, concurrent soft-
ware can be problematic to develop and test because of the
many different thread interleavings. We propose a comprehen-
sive set of concurrency programming anti-patterns that can be
used by Java developers to aid in avoiding many of the known
pitfalls associated with concurrent software development. Our
concurrency anti-patterns build upon our previous work as
well as the work of others in the research community.

Keywords-concurrency, anti-patterns, bug patterns, Java,
deadlock, race conditions, static analysis.

I. INTRODUCTION

The widespread adoption of multi-core technologies has
made concurrency an essential characteristic of many tradi-
tionally sequential programs. The use of concurrency with
multi-core systems can provide an increase in performance
over sequential code because it allows programs to have
multiple threads executing simultaneously. Although concur-
rency is beneficial, it can also be problematic. For example,
the possibly many different ways to interleave threads in
concurrent code make it very difficult to test. Concurrency
bugs can be hard to find due to the non-deterministic nature
of thread interleavings and because some bugs may occur
in only a small subset of the entire interleaving space. It is
also challenging to reproduce these bugs and determine if
a bug has been fixed or not. In general, concurrency bugs
exhibit consequences not present in sequential source code,
including deadlock and race conditions. These consequences
typically occur because of problems with accessing shared
data or controlling access to shared data.

In an effort to improve the quality of concurrent programs
there has been considerable effort invested by researchers
in developing new programming models, new testing and
analysis tools and in identifying concurrency-related design
patterns. The development of new concurrent programming
models [1] has the potential to make programming with
concurrency easier and less error prone. The development of
new testing and analysis techniques, as well as the improve-
ment of existing techniques, is aimed at identifying more
concurrency bugs prior to deployment. The identification of
concurrency design patterns complements the previous two

research topics by focusing on how to improve concurrency
programming in existing languages in an effort to reduce
bugs prior to testing and analysis.

A pattern is defined as something that “...describes a
problem which occurs over and over again in our envi-
ronment, and then describes the core of the solution to
that problem, in such a way that you can use this solution
a million times over, without ever doing it the same way
twice” [2]. A pattern should include details such as the pat-
tern name, the problem, the solution to the problem and the
consequences of using the pattern [3]. Alternatively, an anti-
pattern defines a recuring bad design solution [4]. The goal
of our research is to produce a set of low-level anti-patterns
for improving concurrent source code. We have focused our
efforts on low-level anti-patterns to complement the previous
work on identify concurrency design-level patterns [5], [6].

In Section II we will discuss how to write concurrent
programs in Java. We present our concurrency anti-patterns
catalog in Section III and provide an example to illustrate
the use of the catalog. We also discuss how our catalog can
be used to improving concurrency programming, testing and
analysis. In Section IV we address how to automatically de-
tect potential anti-patterns in source code before presenting
our conclusions in Section V.

II. JAVA CONCURRENCY

Concurrent Java programs are often called multi-threaded
programs. During execution an active thread can be runnable
or not runnable and a number of methods exist that can affect
a thread’s status:

• sleep(): will cause the current thread to stop executing
for a certain amount of time.

• yield(): will cause the current thread that is running to
pause and yield the processor to another thread.

• join(): will cause the caller thread to wait for a target
thread to terminate.

• wait(): will cause the caller thread to wait until a
condition is satisfied. Another thread notifies the caller
that a condition is satisfied using notify() or notifyAll().

Prior to J2SE 5.0, Java provided support for concurrency
primarily through the use of the synchronized keyword. Java
supports both synchronization methods and synchronization

6

blocks. Additionally, synchronization blocks can be used
in combination with implicit monitor locks. In J2SE 5.0,
additional mechanisms to support concurrency were added
as part of the java.util.concurrent package [7]:

• Explicit Lock: Provides the same semantics as the
implicit monitor locks but provides additional function-
ality such as timeouts during lock acquisition.

• Semaphore: Maintains a set of permits that restrict the
number of threads accessing a resource.

• Latch: Allows threads to wait until other threads com-
plete a set of operations.

• Barrier: A point at which threads from a set wait until
all other threads reach that point.

• Exchanger: Allows two threads to exchange objects at
a given synchronization point.

To reduce the overhead of developing concurrent software
J2SE 5.0 also provides a number of other resources:

• Concurrent collection types: ConcurrentHashMap,
BlockingQueues.

• Built-in thread pools: FixedThreadPool and an un-
bounded CachedThreadPool.

• Atomic variable types: Types that can be used in
place of synchronization since each atomic variable
type contains special atomic methods. For example,
AtomicInteger contains a methods getAndSet().

III. A CATALOG OF CONCURRENCY ANTI-PATTERNS

Prior to J2SE 5.0, Farchi, Nir, and Ur developed a bug
pattern taxonomy for Java concurrency [8]. The bug patterns
are based on common mistakes programmers make when
developing concurrent code in practice. Furthermore, the
taxonomy has been expanded and used to classify bugs in an
existing public domain concurrency benchmark maintained
by IBM Research [9]. Bradbury, Cordy and Dingel further
extended the taxonomy in their concurrency mutation re-
search [10]. We will use this bug taxonomy as the basis for
our concurrency anti-patterns – in fact many of the problems
we identify were included in this previous work.

An anti-pattern catalog for Java multithreaded software
has already been developed by Hallal et al. [6]. In their
work, Hallal et al. distinguish between design anti-patterns
and error or bug patterns. The former category focuses
on the syntactic design within a program while the latter
category focuses on “patterns of erroneous program behav-
ior correlated with programming mistakes” [6]. The Hallal
et al. anti-pattern catalog primarily contains design anti-
patterns, including anti-patterns related to efficiency, quality
and style, while our work focuses on the identification of
anti-patterns based on bugs and includes anti-patterns related
to the correctness of the program. Therefore, we believe that
the Hallal et al. catalog and our catalog are complementary.

Table I and II provide an overview of all the concurrency

anti-patterns included in our catalog1. For each anti-pattern
we provide the following information:

• pattern name: the anti-pattern name is based on the
corresponding bug’s name. For example, the two-state
access anti-pattern corresponds to the two-state access
bug.

• problem: the problem describes the corresponding bug
that is being addressed.

• context: the context in which the problem often occurs.
• solution: the solution describes general steps that can

be taken to correct the anti-pattern. We have made an
effort to keep the solutions as general as possible and it
is expected that the developer will have the appropriate
level of knowledge to understand how to apply the
solution in a specific context.

We have not included the consequences of fixing each
anti-pattern because in most cases these are evident from
the problem section of the anti-pattern. For example, the
consequences of applying the solution in the Deadlock anti-
pattern are that locks will now be released and the threads
will no longer halt.

Our catalog of concurrency anti-patterns provides several
benefits:

1) The catalog is language specific – it is focused on anti-
patterns that can occur in Java and not anti-patterns
that occur in general.

2) The catalog is comprehensive – it includes the bug
definitions from several different sources [8], [9], [10].

3) The catalog provides solutions – in addition to enu-
merating different kinds of concurrency bugs as anti-
pattern problems, we also provide solutions to each
anti-pattern.

To demonstrate the use of the catalog we will now de-
scribe an example using the Deadlock anti-pattern. Consider
the following two code fragments which are executed by
different threads:

Code fragment #1:

p u b l i c vo id methodA () {
synchronized (l o c k 1){

synchronized (l o c k 2){ }
}

}

Code fragment #2:

p u b l i c vo id methodB () {
synchronized (l o c k 3){

synchronized (l o c k 4){ }
}

}

1In Table I and II we distinguish between the original bugs from [8] (*),
the added bug used in the benchmark classification [9] (**) and the bugs
included in [10] (+).

7

Pattern name Problem Context Solution
Nonatomic
operations
assumed to
be atomic
anti-pattern.*

“...an operation that “looks” like one operation in
one programmer model (e.g., the source code
level of the programming language) but actually
consists of several unprotected operations at
the lower abstraction levels” [8].

Trying to
perform an
operation on a
shared data
variable
atomically.

Use the volatile keyword when using
64-bit variables.

Two-state
access bug
anti-pattern.*

“Sometimes a sequence of operations needs to
be protected but the programmer wrongly
assumes that separately protecting each
operation is enough” [8].

Trying to protect
access to
operations
involving shared
data.

Combine the multiple critical regions
into one critical region.

Wrong lock or
no lock bug
anti-pattern.*

“A code segment is protected by a lock but
other threads do not obtain the same lock
instance when executing. Either these other
threads do not obtain a lock at all or they obtain
some lock other than the one used by the code
segment” [8].

Trying to protect
access to
operations
involving shared
data.

Identify all accesses to shared data
and use the same lock object to
protect these critical regions. This
may involve added a new lock or
replacing incorrect locks with the
correct one.

Double-
checked lock
anti-pattern.*

“When an object is initialized, the thread local
copy of the objects field is initialized but not all
object fields are necessarily written to the heap.
This might cause the object to be partially
initialized while its reference is not null” [8].

Trying to
initialize shared
variables
without using
protection.

Use locks to synchronize all access
to the object or use volatile. Do not
perform lazy initialization on shared
objects.

The sleep()
anti-pattern.*

“The programmer assumes that a child thread
should be faster than the parent thread in order
that its results be available to the parent thread
when it decides to advance. Therefore, the
programmer sometimes adds an ʻappropriateʼ
sleep() to the parent thread. However, the
parent thread may still be quicker in some
environment.” [8].

Trying to
coordinate
threads based
on assumptions
regarding
thread timing.

“The correct solution would be for
the parent thread to use the join()
method to explicitly wait for the child
thread” [8].

Missing or
nonexistent
signals
anti-pattern.+

This pattern generalizes the losing a notify bug
pattern to all signals. The losing a notify bug is
defined as occurring “If a notify() is executed
before its corresponding wait(), the notify() has
no effect and is “lost” ... the programmer
implicitly assumes that the wait() operation will
occur before any of the corresponding notify()
operations” [8]. Another example of this
problem can occur at a barrier. If an await()
from one thread never occurs then all of threads
at the barrier may be stuck waiting.

Trying to
coordinate
threads based
on assumptions
regarding
thread timing.

In the case of a notify signal, “One
way of avoiding this bug pattern is to
repeatedly execute the notify()
operation until a condition stating
that the notify() was received
occurs”[8]. Use concurrent
mechanisms such as barriers and
join() to prevent thread timing
issues. Analogous solutions exist for
other signals.

Notify instead
of notify all
anti-pattern.**

If a notify() is executed instead of notifyAll()
then threads with some of its corresponding
wait() calls will not be notified [16].

Trying to
coordinate
threads.

Replace notify() with notifyAll().

A “blocking”
critical
section
anti-pattern.*

“A thread is assumed to eventually return
control but it never does” [8].

Using locks to
try and protect
access to
operations
involving shared
data.

Ensure that every lock() acquisition
has a corresponding unlock().
If it is possible to throw an exception
inside a critical region the unlock()
must be placed in a finally block.
The finally block will be executed
regardless if the exception is thrown.

Table I
CONCURRENCY ANTI-PATTERNS CATALOG (Part 1 of 2)

The above fragments are an example of the Deadlock anti-
pattern if lock1 is the same lock object as lock4 while lock2 is

the same lock object as lock3. If the above fragments are an
example of the Deadlock anti-pattern then we have several

8

Pattern name Problem Context Solution
The
interference
anti-pattern.**

A pattern in which “...two or more concurrent
threads access a shared variable and when at
least one access is a write, and the threads use
no explicit mechanism to prevent the access
from being simultaneous.” [17]. The interference
bug pattern can also be generalized from
classic data race interference to include high
level data races** which deal “...with accesses
to sets of fields which are related and should be
accessed atomically” [18].

Trying to use
operations
involving shared
data without
protecting the
access to the
shared data.

Use synchronization to protect both
write and read access to shared
variables.

The deadlock
anti-pattern.**

“...a situation where two or more processes are
unable to proceed because each is waiting for
one of the others to do something in a deadlock
cycle ... For example, this occurs when a thread
holds a lock that another thread desires and
vice-versa” [17].

Trying to protect
access to
operations
involving shared
data.

Remove unnecessary
synchronization if possible.
Remove unnecessary nested
synchronization if possible.
Ensure nested synchronization
always occurs in the same order.

Starvation
anti-pattern.+

This bug occurs when their is a failure to
“...allocate CPU time to a thread. This may be
due to scheduling policies...” [5]. For example,
an unfair lock acquisition scheme might cause a
thread never to be scheduled.

Trying to use
concurrency
independent of
scheduling
policies.

When available use fairness
parameter for concurrent
mechanisms like semaphores. This
will ensure that no thread can
unfairly acquire semaphore permits.

Resource
exhaustion
anti-pattern.+

“A group of threads together hold all of a finite
number of resources. One of them needs
additional resources but no other thread gives
one up” [5].

Trying to
optimize a
concurrent
program by
limiting
resources.

One solution is to consider allocating
additional resources. Another
solution is to limit all threadsʼ access
to resources.

Incorrect
count
initialization
anti-pattern.+

This pattern occurs when there is an incorrect
initialization in a barrier for the number of
parties that must be waiting for the barrier to
trip, or an incorrect initialization of the number
of threads required to complete some action in
a latch, or an incorrect initialization of the
number of permits in a semaphore.

Trying to protect
access to
operations
involving shared
data.

Correct the count to the appropriate
value.

Table II
CONCURRENCY ANTI-PATTERNS CATALOG (Part 2 of 2)

options regarding how to correct the code fragments. First
we need to ensure that both locks are indeed necessary. If
any lock is not necessary it should be removed. If all locks
are necessary, we next consider whether the locks need to
be nested. If not we rewrite the code to separate the critical
region into two separate regions each protected by one of
the locks. If nested synchronization is necessary, we need to
ensure that the lock objects are always acquired in the same
order. This example illustrates how a catalog of concurrency
anti-patterns can aide in improving the quality of concurrent
software. We believe that the benefits of this work fall into
three key areas: programming, testing and static analysis.

Programming. There are many examples of software
design patterns that have been adopted and used in in-
dustry [3], [5]. A benefit of these patterns is that they
clearly show good ways (or in the case of anti-patterns
bad ways) to design or implement software. The goal of

our concurrency anti-patterns is to provide programmers
an additional resource that will assist them in concurrent
Java programming by sharing potential problems that should
be avoided. The benefit of our anti-patterns is that they
help to clarify bad concurrency practices which can assist
developers in avoiding concurrency bugs and thus result in
improved source code.

Testing. Sequential testing typically involves developing
a set of test cases that provide a certain type of code
coverage (e.g., path coverage) and executing these tests on
the code to detect possible bugs and failures. Due to the
non-determinism of the execution of concurrent source code
and the high number of possible interleavings, concurrency
testing can not rely on coverage metrics alone to guarantee
that code is correct. Concurrency testing must also provide
increased confidence that bugs that manifest themselves in
only a few of the interleavings are found. For example,

9

since a race condition or deadlock may only occur in a
small subset of the possible interleaving space, the more
interleavings we test the higher our confidence that the bug
that caused the race condition or deadlock will be found. An
example of a tool for executing different thread schedules is
ConTest [11].

A catalog of concurrency anti-patterns can benefit concur-
rency testing by helping to direct the testing effort. A good
understanding of concurrency bugs can provide a tester with
more insight into the problems he or she may encounter as
well as help a tester focus his or her testing effort within
the interleaving space.

Static analysis. Static analysis can be used throughout
the software development life cycle and provides useful
information about the possible presence of bugs in software.
For example, a static analysis tool that detects a match of
the Deadlock anti-pattern may help a programmer improve
his or her code during implementation or may help catch a
bug during testing. Existing static analysis tools, including
FindBugs [12], JLint [13] and the Otto-Moschny tool [14],
already utilize some concurrency bug patterns in an effort
to identify potential problems in concurrent Java source
code. Our catalog of concurrency anti-patterns will aide in
improving existing tools as well as in the development of
new static analysis tools.

IV. DETECTING CONCURRENCY ANTI-PATTERNS

In addition to developing our concurrency anti-pattern
catalog we have also developed several tools to assist
programmers in managing anti-patterns and in identifying
potential anti-pattern matches in source code.

A. Concurrency Anti-Pattern Creator

Concurrency anti-patterns can be created and managed
using the Concurrency Anti-Pattern Creator tool (see Fig-
ure 1). In this tool we define a concurrency anti-pattern as
consisting of a name, a problem (with context), a solution,
one or more fragments of code as well as a rule about how
the fragments interact to cause undesired behaviour. Our
experience has shown that many concurrency bugs result
in a combination of different code fragments executing in
different threads. The interaction of code fragments from
different threads is specified in the anti-pattern definition
using a rule. Specifically, the rule explains how the code
fragments interact to produce erroneous output.

B. Clone-Based Detection of Concurrency Anti-Patterns

One of our goals in creating our concurrency anti-pattern
catalog was to also create a static analysis tool to detect
possible anti-pattern matches. In our tool, a potential match
in source code is made to a known anti-pattern only if all
code fragments are present and the rule is satisfied. Our
approach takes program source code and anti-patterns as
input. The source code is normalized and input to the clone

Figure 1. Concurrency Anti-Pattern Creator

 

Figure 2. Detection of anti-pattern matches in source code

detection tool ConQAT [15]. We use the pattern matching
in ConQAT to determine if code fragments in the source
code match the code fragments in our anti-pattern. In cases
where ConQAT finds matches for all code fragments in an

10

anti-pattern we use rule matching to determine if a particular
combination of code fragments satisfy the anti-pattern rule.
If the rule is satisfied we identify the code fragments as
a potential match to our anti-pattern. At this point the
developer can use the anti-pattern catalog to determine the
appropriate fix (if the match is not a false positive).

An important feature of our detection tool is that it
is designed to detect any anti-pattern specified using the
Concurrency Anti-Pattern Creator. This feature ensures that
the detection tool is flexible enough to be extended to any
future anti-patterns that could be added to the catalog. It
also means that the catalog can be customized to a particular
project or source code repository.

V. CONCLUSION

In this paper we have presented a catalog of programming
anti-patterns for concurrent Java that are comprehensive with
respect to the programming features available in the Java
programming language and comprehensive with respect to
an existing concurrency bug pattern taxonomy. We will be
making our catalog available publicly2 and providing the
community an opportunity to both use and contribute anti-
patterns.

In the future we hope to conduct additional research on
the benefits of the catalog with respect to static analysis and
testing. We are also interested in studying how these anti-
patterns can be utilized in combination with more high-level
design patterns [3], [5] and the Hallal et al. anti-patterns [6].

ACKNOWLEDGMENT

The authors would like to thank Shmuel Ur for providing
access to IBM Haifa Lab’s Concurrency Bug Benchmark.
We would also like to thank the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) for funding
this research.

REFERENCES

[1] H. Sutter and J. Larus, “Software and the concurrency revo-
lution,” Queue, vol. 3, no. 7, pp. 54–62, 2005.

[2] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson,
I. Fiksdahl-King, and S. Angel, A Pattern Language. Oxford
University Press, 1977.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software, ser.
Addison-Wesley Professionl Computing Series. Addison
Wesley, 1995.

[4] M. Meyer, “Pattern-based reengineering of software systems,”
in 13th Working Conference on Reverse Engineering (WCRE
’06), 2006, pp. 305–306.

[5] D. Lea, Concurrent Programming in Java: Design Principles
and Patterns, Second Edition. Addison Wesley, 2000.

2http://svilab.science.uoit.ca/concurr-catalog/

[6] H. Hallal, E. Alikacem, W. Tunney, S. Boroday, and A. Pe-
trenko, “Antipattern-based detection of deficiencies in java
multithreaded software,” in 4th International Conference on
Quality Software (QSIC 2004), 2004, pp. 258–267.

[7] “java.util.concurrent documentation,” Web page:
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/
package-summary.html.

[8] E. Farchi, Y. Nir, and S. Ur, “Concurrent bug patterns and
how to test them,” in Proc. of the 1st International Workshop
on Parallel and Distributed Systems: Testing and Debugging
(PADTAD 2003), Apr. 2003.

[9] Y. Eytani and S. Ur, “Compiling a benchmark of documented
multi-threaded bugs,” in Proc. of the 2nd International Work-
shop on Parallel and Distributed Systems: Testing and De-
bugging (PADTAD 2004), Apr. 2004.

[10] J. S. Bradbury, J. R. Cordy, and J. Dingel, “Mutation operators
for concurrent Java (J2SE 5.0),” in Proc. of the 2nd Workshop
on Mutation Analysis (Mutation 2006), Nov. 2006, pp. 83–92.

[11] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur,
“Multithreaded Java program test generation.” IBM Systems
Journal, vol. 41, no. 1, pp. 111–125, 2002.

[12] “Findbugs - find bugs in Java programs,” Web page: http:
//findbugs.sourceforge.net/.

[13] Jlint Manual: Java program checker, Web page: http://artho.
com/jlint/manual.html, Jan. 2002.

[14] F. Otto and T. Moschny, “Finding synchronization defects in
java programs: extended static analyses and code patterns,” in
IWMSE ’08: Proceedings of the 1st international workshop
on Multicore software engineering. New York, NY, USA:
ACM, 2008, pp. 41–46.

[15] F. Deissenboeck, E. Juergens, B. Hummel, S. Wagner, B. M.
y Parareda, and M. Pizka, “Tool support for continuous
quality control,” IEEE Software, vol. 25, no. 5, pp. 60–67,
2008.

[16] B. Long, R. Duke, D. Goldson, P. A. Strooper, and L. Wild-
man, “Mutation-based exploration of a method for verifying
concurrent Java components,” in Proc. of the 2nd Interna-
tional Workshop on Parallel and Distributed Systems: Testing
and Debugging (PADTAD 2004), Apr. 2004.

[17] B. Long, P. Strooper, and L. Wildman, “A method for
verifying concurrent Java components based on an analysis of
concurrency failures,” Concurrency and Computation: Prac-
tice and Experience, vol. 19, no. 3, pp. 281–294, Mar. 2007.

[18] C. Artho, K. Havelund, and A. Biere, “High-level data races,”
in Proc. of the 1st International Workshop on Verification
and Validation of Enterprise Information Systems (VVEIS’03),
Apr. 2003.

[19] R. H. B. Netzer and B. P. Miller, “What are race conditions?:
Some issues and formalizations,” ACM Lett. Program. Lang.
Syst., vol. 1, no. 1, pp. 74–88, 1992.

11

Abstract Testability Patterns

Wanderlei Souza
State of Sao Paulo Institute for Technological Research

Sao Paulo, Brazil
wandi@uol.com.br

Reginaldo Arakaki
University of Sao Paulo, Polytechnic School

Sao Paulo, Brazil
reginaldo.arakaki@poli.usp.br

Abstract—Testability is a software quality characteristic that
exposes the degree to which a software artifact facilitates the
testing process. Software testing is a technical and economical
problem, it is important to help identify patterns that would
improve the industry’s software testing capabilities. This
position paper proposes five abstract patterns that improve
software testability, which serves as a reference for testers and
developers to evaluate the testability support for high reliable
software.

Keywords: Software quality; Design patterns; Design for
testability; Software testing; Observability; Built-in testing.

I. INTRODUCTION
The component testability is an important quality

characteristic to evaluate the degree to which a software
artifact facilitates the testing process. A lower degree of
testability results in increased test effort. Depending on the
methods used, testing activities account for 25% to 90% of
total project effort [1][2][3][4]. Thus, it is important to help
identify patterns that would improve the software capabilities
of the industry.

Controllability and observability are the key points to
testability [5][6]. To test a component it is necessary to
control the inputs (controllability) and observe the outputs
(observability). Without these key points it is difficult to
improve system testability.

Testability patterns proposed in this paper are based on
abstract pattern concept described in [7] and correspond to
mechanisms or services that increase overall system
observability and controllability, these patterns are more
general ideas and are not concerned with any specific
implementation technique or software development platform.
They should not be confused with testability factors or
characteristics. Abstract testability patterns correspond to
architectural mechanisms, not testability principles.

A software architect uses a distinct pattern collection to
design a system. Architectural patterns provide a predefined
set of structures, responsibilities, rules and guidelines to
organize the relation between system components. A pattern
implements a sequence of design decisions to manage certain
system quality characteristics. The testability of the
architecture was brought up by Nancy Eickelmann and
Debra Richardson in [8]. The authors propose that the
architectural decisions must be aligned to testing strategies.
In this way, the testability of architecture is the combination
between architectural patterns and the testing strategy.

II. ABSTRACT TESTABILITY PATTERNS

A. Built-In Self-Testing (BIST)
Problem: Internal components establish connections to

external resources (HTTP connections, database systems,
remote calls etc.) and do not have a standard interface to
validate directly these integrations. The absence of a uniform
way to verify all critical integration points after the system
deployment process reduces the system testability.

Solution: Built-In Self-Tests (BIST) is a mechanism to
self-report the status and health of individual system
components. Built-In Self-Tests (BIST) adds standard
interfaces to validate core system functionalities and
provides many types of validation possibilities. For example,
testing the interface between a component and a database
system can be accomplished by invoking the BIST to
validate the connection and permissions on system tables.

Consequences: Developers must implement a standard
test interface in all BIST related classes. In general ways, it
is a minimal overhead to development process, but
implement a BIST could be more difficult depending on the
complexity of the integration under test.

B. Dependency Injection (DI)
Problem: A business component is difficult to test in

isolation because it has a direct reference to external
dependencies (third-party components, database systems,
web services, etc.) and it is not possible to replace the
dependency without changing the source code. The main
problem roots from the business component creating the
external dependencies.

Solution: It is necessary to inject dependencies into a
business component, rather than relying on the component to
manage the dependencies itself. Dependency injection is a
pattern that can be used to improve the software testability
by removing the business component responsibility for
instantiating its own external dependencies.

Consequences: There is added complexity to the source
code and there are more elements to manage on test
automation process. Testers must be able to manage mock
objects creation and initialization in order to replace the
original code dependencies when necessary.

C. Dynamic Component Management Extension
Problem: A test team has different mock components to

inject and simulate external component behavior, but they do
not have a dynamic way to change these components. To

12

choose the component concrete implementation dynamically
is fundamental to test automation process.

Solution: The system must provide a standard extension
to make the system components and services suitable. This
extension defines a management architecture to testable
components. Using a standard test extension to manage
components increases the system testability by making
applications more controllable.

Consequences: Dynamic Component Management
Extension enables system components management in a test
environment. Security barriers or component undeploy must
be used to avoid undesired test behavior in a production
environment.

D. Testability Logger
Problem: Application events and test related data must

be logged for testing purposes. This can lead to redundant
code.

Solution: Use the Testability Logger to provide
centralized control of logging functionality and takes care of
how the testable events are classified and logged. Testability
Logger increases the system testability by making
applications more observable.

Consequences: The Testability Logger operations (disk
IO access, message digests, etc.) impact the system
performance.

E. Testability Interceptor
Problem: A tester needs to intercept messages between

components for the purpose of verifying the internal
behaviors. System also must provide possibility to change
application behavior in order to inject and simulate faults in a
system.

Solution: Testability Interceptor offers a mechanism to
enhance the observability and controllability of a software
system by letting components monitor and dynamically
change their behavior. Testers can observe and modify
functionality without changing the internal logic of
components. The Interceptor supports runtime system
monitoring and control through Dynamic Component
Management Extensions pattern, described in (C).

Consequences: A system design can get more
complicated and hard to understand since the developer has
to implement the intercepting points.

III. RELATED WORK
Binder [6] presents the Built-In Test concept, a well-

known technique for hardware testing, in a software context.
We use an abstraction of this concept to describe the Built-In
Self-Testing pattern.

Dynamic Component Management Extension is an
abstraction layer over JMX technology [9]. We use the JMX
ideas and capabilities in order to improve system testability.

The Dependency Injection pattern was first described by
Fowler [10] as a specific form of Inversion of Control. We

believe that DI can be used to improve the system testability
by abstracting the dependencies out of a component.

The Testability Logger is based on Secure Logger pattern
idea [11], but with a focus on system testing and evaluation
instead of security reasons.

The Testability Interceptor pattern is related to the
Interceptor pattern, which allows services to be added
transparently and triggered automatically [12].

IV. CONCLUSION
In this paper we have introduced perspectives to improve

system testability and propose a new architectural pattern
category: testability patterns. Future work includes other
ideas to architectural testability patterns and concrete
implementations.

A Java based concrete implementation of these abstract
patterns has been used to improve the testability of critical
Internet systems in the main portal to content & the Internet
provider in Brazil.

REFERENCES
[1] S. Jungmayr, “Reviewing Software Artifacts for Testability”, Proc. of

EuroSTAR’99, Barcelona, Spain, November 10-12, 1999.
[2] R. S. Pressman, “Software Engineering: Practitioner’s Approach”,

European 3rd Edition, McGraw-Hill Book Company, Berkshire,
England, 1994, pp. 609.

[3] Tim Koomen and Martin Pol, “Test Process Improvement: A
Practical Step-by-Step Guide to Structured Testing”, Addison-
Wesley, 1999.

[4] B. Beizer, “Software Testing Techniques”, International Thomson
Computer Press, Boston, 1990.

[5] Roy S. Freedman, “Testability of Software Components”, IEEE
Transactions on Software Engineering, Vol. 17, No. 6, 1991.

[6] Robert V. Binder, “Design for Testability in Object-Oriented
Systems”, Communications of the ACM, v.37 n.9, 1994.

[7] Eduardo B. Fernandez, Hironori Washizaki and Nobukazu Yoshioka,
“Abstract Security Patterns”, 2nd International workshop on software
patterns and quality (SPAQu'08), 2008.

[8] Nancy S. Eickelmann and Debra J. Richardson, “What makes one
software architecture more testable than other?”, Joint proceedings of
the second international software architecture workshop (ISAW-2)
and international workshop on multiple perspectives in software
development (Viewpoints '96) on SIGSOFT '96 workshops, San
Francisco, California, 1996, pp. 65.

[9] H. Kreger, “Java management extensions for application
management”, IBM Journal of Research and Development, IBM
Corp. Riverton, NJ, 2001.

[10] Martin Fowler, “Inversion of Control containers and the Dependency
Injection pattern”, http://martinfowler.com, 2004.

[11] Christopher Steel, Ramesh Nagappan and Ray Lai, “Core Security
Patterns: Best Practices and Strategies for J2EE, Web Services, and
Identity Management”, Prentice Hall PTR, 2006, pp. 577.

[12] Douglas Schmidt, Michael Stal, Hans Rohnert and Frank Buschmann.
“Pattern-Oriented Software Architecture, Vol. 2 - Patterns for
Concurrent and Distributed Objects”. John Wiley and Sons, Ltd.,
2000.

13

Towards an Assessment of the Quality of Refactoring Patterns

Norihiro Yoshida, Masatomo Yoshida, Katsuro Inoue
Graduate School of Information Science and Technorogy, Osaka University

1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
Email: {n-yosida, mstm-ysd, inoue}@ist.osaka-u.ac.jp

Abstract—Refactoring is a well-known process that is
thought to improve the maintainability of object-oriented
software. Although a lot of refactoring patterns are introduced
in several pieces of literature, the quality of refactoring patterns
is not always discussed. Therefore, it is difficult for developers
to determine which refactoring patterns should be given
priority. In this paper, we propose two quality characteristics
of refactoring pattern, and then describe an open source case
study on assessing those quality characteristics.

Keywords-refactoring; quality of software pattern; object-
oriented programing; software maintenance;

I. I NTRODUCTION

Refactoring [1] is the process of changing a software
system in such a way that it does not alter the external
behavior of the code yet improves its internal structure.
That is to say, refactoring is a process to improve the
maintainability of software systems.

Several practitioners introduce a lot ofRefactoring Pat-
terns (RP) [1][2]. Each RP includes both a description of a
refactoring opportunity (RO) (i.e., a set of code fragments
that should be refactored) and the corresponding procedure
to perform refactoring (i.e., how to perform refactoring).
However, the quality of each refactoring pattern is mostly
never assessed. Therefore, it is difficult for developers to de-
termine which refactoring patterns should be given priority.

In this paper, we propose two quality characteristics of
RPs, and then describe a case study on assessing those
quality characteristics.

II. PROPOSED QUALITY CHARACTERISTICS OF

REFACTORING PATTERNS

We introduce the following two quality characteristics of
RP.

• Number of ROs: Because a lot of refactoring patterns
exist and developers have only a limited time, it is
desirable to choose RPs that have a lot of ROs.

• Ease of Refactoring: It means that ease of applying
each RP to ROs in source code. When the ease of
refactoring of a RP is high, it means that software sys-
tems involve a lot of ROs that can be easily performed
refactoring. A RP that is difficult to apply often leads to
time-consuming refactoring. Because the aim of refac-
toring is to reduce maintenance cost, time-consuming
refactoring is not desirable. There are two kinds of

refactoring pattern. The first one requires developers
to apply only steps described in its description. On the
other hand, another sometimes requires developers to
apply not only steps described in its description but
also additional steps.

III. C ASE STUDY

In this section, we assess the quality characteristics of
RP which is namedIntroduce Polymorphic Creation with
Factory Method (IPCFM) [2].

We introduce IPCFM and an automated method to identify
ROs in software systems for IPCFM. Then, we discuss
the ROs in several software systems from proposed quality
characteristics of RP.

A. Introduce polymorphic creation with factory method

IPCFM is a kind ofPull up Method [1] pattern that is
aimed at merging similar methods from different classes into
a common superclass. Figure 1 shows an example of IPCFM.
The aim of IPCFM is to merge similar methods except for
object creation statements by introducing factory methods.
An RO for IPCFM is defined as“Classes in a hierarchy
implement a method similarly except for an object creation
step” [2].

As shown in Figure 1(a), the targets of the refactoring
are the test classesDOMBuilderTest andXMLBuilderTest
for testingDOMBuilder andXMLBuilder, respectively. Be-
cause the target classes have similar methods except for
an object creation step, they indicate an RO for applying
IPCFM. This refactoring is comprised of following two
steps.

Step1 As shown in Figure 1(b), a common superclass
(AbstractBuilderTest) for the target classes is in-
troduced, and similar methods in the target classes
are merged into new method in the common su-
perclass.

Step2 A factory method is introduced in each of
the common superclass (AbstractBuilderTest)
and the subclasses (DOMBuilderTest and XML-
BuilderTest).

B. Assessment Method

For our case study, we have developed the tool that
identifies ROs for the target RP by the steps below.

14

+testAddAboveRoot() : void

DOMBuilderTest XMLBuilderTest

junit::framework::TestCase

・・・
builder = new DOMBuilder(“orders”);・・・ ・・・

builder = new XMLBuilder(“orders”);・・・
+testAddAboveRoot() : void

Similar methods (Code clones)

+testAddAboveRoot() : void

DOMBuilderTest XMLBuilderTest

junit::framework::TestCase

・・・
builder = new DOMBuilder(“orders”);・・・ ・・・

builder = new XMLBuilder(“orders”);・・・
+testAddAboveRoot() : void

Similar methods (Code clones)

(a) Before refactoring

Factory Method: Creator

#createBuilder(rootName : String) : OutputBuilder

+testAddAboveRoot() : void

AbstractBuilderTest

junit::framework::TestCase

#builder: OutputBuilder ・・・
builder = createBuilder(“orders”);・・・

DOMBuilderTest

Factory Method: ConcreteCreator

return new DOMBuilder(rootName); return new XMLBuilder(rootName);

#createBuilder(rootName:String)
: OutputBuilder

XMLBuilderTest

#createBuilder(rootName:String)
: OutputBuilder

Factory Method: Creator

#createBuilder(rootName : String) : OutputBuilder

+testAddAboveRoot() : void

AbstractBuilderTest

junit::framework::TestCase

#builder: OutputBuilder ・・・
builder = createBuilder(“orders”);・・・

DOMBuilderTest

Factory Method: ConcreteCreator

return new DOMBuilder(rootName); return new XMLBuilder(rootName);

#createBuilder(rootName:String)
: OutputBuilder

XMLBuilderTest

#createBuilder(rootName:String)
: OutputBuilder

(b) After refactoring

Figure 1. Introduce Polymorphic Creation with Factory Method

Step1 Detect similar methods using a code clone detec-
tion tool CCFinder [3]1.

Step2 Evaluate whether detected methods belong to
classes that have common superclasses in target
source code and whether they include object cre-
ation statements.

We apply the target RP to the ROs inAnt and ANTLR.
To assess the ease of refactoring, we confirm the steps that
are not described in the description of the target RP.

C. Results

Table I includes the result of identifying ROs for IPCFM
in several software systems. For comparison, in Table I, we
show the number of ROs for Pull up Method (PM). We
identify ROs for PM by detecting code clones belonging
to classes that have common superclasses. We should note
that because IPCFM is kind of PM, an RO for IPCFM is
counted towards the number of ROs for PM. According to
Table I, 17.9% of the ROs for PM are the ROs for IPCFM.
We can say that ROs for PM includes more than few ROs
for IPCFM. This indicates that when developers found RO

1In our case study, we set 30 tokens as the minimum length of code
clone.

for PM, they should inspect whether those RO are also for
IPCFM.

When we apply IPCFM to all ROs inAnt andANTLR, we
did not have to apply additional steps that are not described
in the description of IPCFM. This result indicates that the
ease of refactoring of IPCFM is high.

IV. RELATED WORKS

Hsueh, et al.[4] and Huston[5] focus on the quality of
design patterns. We focus on the quality of RPs, and propose
the two novel quality characteristics of RPs.

V. SUMMARY AND FUTURE WORK

In this paper, we proposed two quality characteristics of
RP, and then described a case study on assessing those
quality characteristics of IPCFM. To compare the quality
characteristics of RP, we are planning to assess other RPs.
We should discuss not only proposed quality characteristics
but also change in maintainability because the aim of refac-
toring is to reduce maintenance cost.

ACKNOWLEDGMENT

We thank the anonymous SPAQu’09 reviewers for useful
feedback on earlier versions of this paper. This reseach was
supported by JSPS, Grant-in-Aid for Scientific Research (A)
(No.21240002) and Grant-in-Aid for JSPS Fellows (No.20-
1964).

REFERENCES

[1] M. Fowler,Refactoring: improving the design of existing code.
Addison Wesley, 1999.

[2] J. Kerievsky,Refactoring to Patterns. Addison Wesley, 2004.

[3] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A mul-
tilinguistic token-based code clone detection system for large
scale source code,”IEEE Trans. Sofw. Eng., vol. 28, no. 7, pp.
654–670, 2002.

[4] N.-L. Hsueh, P.-H. Chu, and W. Chu, “A quantitative approach
for evaluating the quality of design patterns,”Journal of
Systems and Software, vol. 81, no. 8, pp. 1430–1439, 2008.

[5] B. Huston, “The effects of design pattern application on metric
scores,”Journal of Systems and Software, vol. 58, no. 3, pp.
261–269, 2001.

Table I
NUMBER OF ROS FORIPCFM

name LOC #classes
#opportunities
IPCFM PM

Ant 1.7.0 198K 994 2 23
ANTLR 2.7.4 32K 167 1 33

Azureus 3.0.3.4 538K 2226 20 42
JEdit 4.3 168K 992 0 1

JHotDraw 7.0.9 90K 487 1 26
SableCC 3.2 35K 237 0 1
Soot 2.2.4 352K 2298 5 53
WALA 1.1 210K 1565 7 22

15

On the Symbiosis between Quality and Patterns

Pankaj Kamthan
Department of Computer Science and Software Engineering

Concordia University
Montreal, Quebec, Canada H3G 1M8

kamthan@cse.concordia.ca

Abstract—This position paper proposes that the impact on the
quality of a software system by using patterns is intrinsically
related to the quality of the patterns themselves. In doing so, it
presents some of the challenges being faced and hints towards
potential resolutions.

Pattern Description, Pattern Stakeholder, Semiotic Quality

I. INTRODUCTION
For the sake of this paper, a pattern is an empirically proven

solution to a recurring problem in a particular context. For
simplicity, two classes of stakeholders of a pattern, namely
pattern producers and pattern consumers, are considered. The
rest of the paper explores the interdependence of the notions of
patterns for quality and quality of patterns.

II. A PERSPECTIVE ON QUALITY
For the sake of this paper, quality is defined using the

ISO/IEC 9126-1:2001(E) as “the totality of [attributes] of an
entity that bear on its ability to satisfy stated and implied
needs.” The notion of quality is multifaceted. These facets
include the entity of interest, the viewpoint on that entity, and
quality attributes of that entity.

There are a number of possible viewpoints of quality. In
one of the earliest approaches towards perceptions of quality
[4], the five views of quality are identified: (QV1) the
transcendental-based view (quality is perfective), (QV2) the
product-based view (quality is measurable), (QV3) the
manufacturing-based view (quality is conformance), (QV4) the
economics-based view (quality is benefit for cost), and (QV5)
the user-based view (quality is satisfaction).

Indeed, multiple views may need to be satisfied in
addressing quality of a software system. For example, the
ISO/IEC 9126-1:2001(E) presents an intersection of QV2,
QV4, and QV5. Furthermore, due to practical considerations,
QV4 constrains QV1. Therefore, any initiatives towards quality
assurance or evaluation need to end if the cost exceeds the
benefit. There are no studies in the current literature on the
return on investment (ROI) of using patterns, for the purpose of
aiding quality of a software system or otherwise.

III. PATTERNS FOR QUALITY
There are a number of approaches for quality assurance and

evaluation. The use of a pattern is a preventative approach to

quality, as opposed to inspections or testing that are curative
approaches.

Let S be a software system under development. Let FR be a
functional requirement for S. A realization of FR is constrained
by certain expectations of quality. If a pattern P is to be
selected for S, then a number of conditions must be satisfied:

• Context. The context of P must subsume that of S. This
means that the description of P must make the context
explicit.

• Problem. The problem of P must be aligned with FR.
This means that the description of P must make the
problem explicit.

• Forces. A quality model is useful for creating an
understanding of quality. There is currently no single,
universal quality model that is applicable to all software
systems. Let QM be a quality model associated with S.
Let the quality attributes in QM be prioritized as QA1 ≥
… ≥ QAn, where ≤ is some total ordering. The forces of
P must to be aligned with QM. In other words, the
highest priority forces that the solution of P resolves
must also be the highest priority in QA1 ≥ … ≥ QAn.
Thus, P may aid some but not other quality attributes of
S. The view of quality of the software engineers of S
and producers of P may not be identical. Indeed, it has
been shown empirically [5] that the relationship
between quality of S and the patterns used in the
development of S is equivocal. This also means that the
description of P must make the forces explicit [1].

In turn, these usually imply that the description of P is
structured in some way. It is possible to impose a structure on a
pattern by adopting a pattern form. There is currently no single
pattern form followed by pattern producers. This makes a
systematic comparison of patterns in general and an assessment
of their impact on quality of a software system in particular
difficult.

IV. QUALITY OF PATTERNS
There is guidance available for describing patterns [6].

However, currently there is no acceptable definition of quality
of a pattern and no general quality model for patterns.

There are a number of possible views of a pattern. From an
epistemological viewpoint, a pattern is implicit knowledge
made explicit by means of a pattern description. From a
semiotic viewpoint, a pattern can be viewed at six levels:

16

physical, empirical, syntactic, semantic, pragmatic, and social.
In this paper, the interest is in pragmatic quality of a pattern,
which is a contract between a pattern and its stakeholders.

The quality of a pattern needs to be studied at two levels:
(1) at the pattern description level and (2) at the individual
pattern element level.

A. Quality of a Pattern at the Description Level
The quality attributes such as accessibility/usability and

maintainability are part of pragmatic quality, and apply to a
pattern description as a whole. There are a number of issues
that can arise at the description level:

• Accessibility/Usability. These are of concern to pattern
consumers. A pattern description, especially that made
available only via repositories on the Web, can have
accessibility (as per ISO 9241-171:2008)/usability (as
per ISO/IEC 9126-1:2001(E)) issues. For example,
there are pattern descriptions that do not pass the W3C
Web Content Accessibility Guidelines (WCAG) and
users have found difficulties in reading and navigating
pattern descriptions available on pattern repositories [7].

• Maintainability. This is of concern to pattern
producers. A pattern description may need to evolve for
a number of reasons including discovery of errors that
need to be rectified, modification in technologies
illustrating the solution, presentation on a device not
targeted originally, and so on. For example, software
engineers trained in this century may be more familiar
with the Unified Modeling Language (UML) than with
the notations used in describing the solutions of the
patterns of the 1990s.

B. Quality of a Pattern at the Element Level
A pattern form can have a number of mandatory and

optional elements [2, 6]. The elements that are considered
mandatory are: (pattern) name, context, problem, forces, and
solution. The optional elements that can be useful include
examples and resulting context. There are a number of issues
that can arise at the element level:

• Name. The name of a pattern may not be evocative [2]
or pronounceable. This can be an impediment on the
selection of patterns and use of patterns for
communication by its consumers.

• Context. The context of a pattern may not be explicitly
stated. This can be an obstacle towards the selection of
patterns. For example, the COLOR-CODED
SECTIONS pattern [8] is not suitable for situations
where the users have some form of color deficiency.

• Problem. The problem of a pattern may not be
explicitly stated [3] and/or may not be context-free. In
general, the problem description can suffer from the
issues that affect a software requirement statement.

• Forces. The forces of a pattern may not be explicitly
highlighted. For example, it is possible to make the
forces explicit by listing them individually. For a given

problem in the development of S, let there be multiple
candidate patterns, say, pattern complements [2]. Then,
the absence of forces makes it difficult to select the
appropriate pattern.

• Solution. It is evident that the quality of the solution of
a pattern will directly affect the quality of S as this is the
place where conceptual reuse is realized. However, the
solution of a pattern could contain errors [3].

• Examples. The solution of a pattern may not have gone
through an evaluation, at one of the *PLoP ‘family’ of
conferences or otherwise, and may not include three
examples as suggested by the ‘patternity test’ [2].

• Resulting Context. The consequences of applying a
pattern may not be discussed. In such a case, the forces
that the solution resolves, partially or completely, and
the ones it does not resolve, may not be known.

V. CONCLUSION
If patterns are to be considered as entities of conceptually

reusable knowledge that lead to the development of ‘high-
quality’ software systems, then the quality of these patterns
themselves must be considered as a first-class concern, and
should be treated as such. It is the exploration of the semiotic
quality of a pattern that is of particular interest. Indeed, a
semiotic quality model for pattern descriptions could be useful
in the selection of the appropriate pattern from a given set of
patterns that span multiple pattern collections such as different
pattern languages.

ACKNOWLEDGMENT
The author is thankful to Peter Grogono for useful

discussions, and to the reviewers for detailed feedback and
suggestions for improvement.

REFERENCES

[1] I. Araujo and M. Weiss, “Linking Patterns and Non-Functional
Requirements,” The Ninth Conference on Pattern Languages of
Programs (PLoP 2002), Monticello, U.S.A., September 8-12, 2002.

[2] F. Buschmann, K. Henney, and D. C. Schmidt, “Pattern-Oriented
Software Architecture, Volume 5: On Patterns and Pattern Languages,”
2007, John Wiley & Sons.

[3] M. Fowler, D. Rice, M. Foemmel, E. Hieatt, R. Mee, and R. Stafford,
“Patterns of Enterprise Application Architecture,” 2003, Addison-
Wesley.

[4] D. A. Garvin, “What does Product Quality Really Mean?” MIT Sloan
Management Review, Vol. 26, No. 1, 1984, pp. 25-43.

[5] F. Khomh and Y. -G. Guéhéneuc, “Perception and Reality: What are
Design Patterns Good For?” The Eleventh ECOOP Workshop on
Quantitative Approaches in Object-Oriented Software Engineering
(QAOOSE 2007), Berlin, Germany, July 31, 2007.

[6] G. Meszaros and J. Doble, “A Pattern Language for Pattern Writing,” in:
Pattern Languages of Program Design 3. R. C. Martin, D. Riehle, and F.
Buschmann, Eds. Addison-Wesley, 1998, pp. 529-574.

[7] K. Segerståhl and T. Jokela, “Usability of Interaction Patterns,” The
ACM CHI 2006 Conference on Human Factors in Computing Systems
(CHI 2006), Montreal, Canada, April 22-27, 2006.

[8] J. Tidwell, “Designing Interfaces: Patterns for Effective Interaction
Design,” 2005, O’Reilly Media.

17

18

Pattern-based Design

19

Generic Patterns: Bridging the Contextual Divide

Marc Boyer
Computer Science Department

University of Manitoba
Winnipeg, MB, Canada
marc.boyer@shaw.ca

Vojislav B. Mišić
School of Computer Science

Ryerson University
Toronto, ON, Canada
vmisic@ryerson.ca

Abstract—Correct application of design patterns requires
bridging the cognitive gap between the problem and
implementation domains, as well as identifying the proper
pattern amongst many to use in correctly modeling the user
domain. As a result, pattern-based design is neither as efficient
nor as effective as it might be. Hence, we propose an improved
two-step pattern design process: first pick a pattern that
matches domain requirements from a small number of generic,
context-free patterns; then concretize the pattern further into
one of the industry-standard, context-dependent patterns. In
this manner, identifying patterns in requirements tightly
bound to their context becomes both faster and more accurate,
as demonstrated in a real-world example.

Keywords-software design, design patterns, design quality

I. INTRODUCTION
Ever since their introduction in the mid-nineties [3][6],

design patterns and their siblings at various levels of
abstraction [4][5] have been advertised as being one of the
most efficient ways to reuse design knowledge: "each pattern
describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to
that problem …" [2]. The traditional approach to using
design patterns, as advocated by the original authors [3][6],
relies on analyzing requirements, identifying the patterns
therein, and then using the patterns to model the software’s
concrete elements: functional classes, instantiated objects,
and their interactions. In this manner, design patterns lead to
reuse of software engineering knowledge, and ultimately
lead to an increase in designer productivity and an
improvement in the quality of software products.

Yet despite extensive training and a wealth of pattern-
related information (including a number of catalogs [7]),
proper use of patterns is still problematic [1][9][11], and
advertised benefits of patterns and pattern-based approaches
to software design are still hard to realize in practice. What is
the cause of this discrepancy: are people misusing available
design patterns? Are requirements too complex to model
using available design patterns? Or is the main reason for
the discrepancy between promise and reality the cognitive
gap between the domain requirements and the pattern
descriptions [17], and perhaps even the insufficient
discriminatory power of the pattern descriptions themselves?

To remedy this situation, we propose a set of generic or
context-free patterns that can be more easily identified

within domain requirements, and a two-stage design process
through which the generic patterns can be concretized to one
of the already-known, industry-standard, context-dependent
patterns.

The paper is organized as follows: in Section II we
discuss briefly the limitations of the traditional pattern-
based techniques used to design software, and illustrate the
problem with experimental findings. We also discuss more
recent techniques used to address these limitations, and
explain why they may not deliver the anticipated rewards of
using design patterns to model software. Section III outlines
the proposed approach to mapping requirements to models
using context-free patterns, with a small example. Section
IV concludes the paper and discusses areas of further
research.

II. PATTERN PROBLEMS AND SOLUTIONS
In the traditional pattern-based design approach,

designers analyze the requirements and use a design pattern
to map them to a software model [3][6]. Patterns are sought
and identified in the domain requirements, thus providing the
foundation upon which full-fledged software designs are
developed. The right pattern is identified by matching the
contextual elements discerned in the domain requirements
with the problem context elements provided by the pattern
description. Once identified and applied, patterns are
subsequently enriched by adding appropriate detail, and
rendered concrete so as to facilitate their implementation
through coding.

The success of this process—the selection of the best
pattern to apply in a specific domain context—is critically
dependent on the accuracy of the mapping between the
domain elements and the pattern elements. However, the
current practice of pattern use relies heavily on the context
in which the problem and the pattern (i.e., the solution to the
problem) are defined. For the correct pattern to be applied,
the context in which the domain requirement is defined must
match the context of the pattern definition. Depending on
the degree to which the two semantically match, bridging
the semantic gap between domain and design may or may
not be easy. Moreover, if model designers must re-define
the pattern to accommodate domain-context idiosyncrasies,
an activity which more often than not will require
substantial skill in abstraction or pattern-creation on the part
of the designers, the expected benefit of using a supposedly

20

reusable pattern may in fact be entirely lost – a problem that
lies at the very heart of the design process.

Equally problematic are the situations in which domain
and pattern contexts do not seem to match (and no suitable
pattern can be found to model the requirements), or the
designer identifies two or more equally viable candidate
patterns. In either case, a non-conforming pattern may
eventually be selected, or an existing pattern may be
modified (possibly incorrectly) to match the problem,
leading to further complications down the road.

A. The Cognitive Divide
As an illustration of the difficulties inherent in using the

traditional approach to pattern identification in requirements,
a group of 46 fourth-year students taking the Software
Engineering II course at the University of Manitoba were
presented with a list of some fifteen common patterns, and
then asked to (a) identify those patterns they thought they
were capable of defining or describing; and (b) identify
which of those patterns were present in a simplified
description of a real life system, shown in Fig. 1 below. The
students were fairly uniform in their prior education: all of
them had taken earlier courses in basic programming, object
orientation, and software engineering; in these courses, they
were exposed to several of the design patterns found in the
catalog [6]; in addition, 30 of them had taken the basic
database course and were familiar with the design patterns
specific to this knowledge domain.

Table I shows some of the patterns present in the
questionnaire, the results of the students’ self-assessment of
pattern-knowledge (answer to the question “I can describe
… the following patterns”), and the level of their usable
knowledge (answer to the question “I detected … the pattern
… in user requirements”). As can be seen, students were
quite confident regarding the Adapter/Wrapper and Client-
Server patterns, less so with regard to the Shared Database
and Façade patterns, and not very confident at all with
regard to the Bridge pattern. However, their definitional
knowledge is ill reflected in their practical or usable
knowledge of the patterns. About 80% of students managed
to correctly identify the Client-Server pattern, but only
about one quarter of them (or less than a third of those who
claimed to know the proper description) succeeded in
identifying the Adapter/Wrapper pattern. Similar success
rates were obtained for the Bridge pattern. The discrepancy
between the ability to define or describe a pattern and the
ability to actually identify it in the domain requirements is
likely due to the cognitive divide between the context of the
domain requirement and the context in which the pattern is
defined. Describing the pattern within its own contextual
domain was not sufficient to identify it in another domain;
only when the domain context matched the pattern context
to a large degree, could a high accuracy of pattern
identification be expected.

For instance, the Adapter/Wrapper pattern, according to
[6], “converts the interface of a class into another interface
clients expect”, while the specification in Fig. 1 does not

talk about classes and interfaces; instead, it asks for the
system to be designed “so that it can easily switch to using
an open-source email component in the future.” Obviously,
there is a significant cognitive distance or gap between the
business requirements context and the pattern definition
context. (Other, even more striking examples of this gap can
easily be found in the specification of Fig. 1, despite its
apparent brevity.) To bridge such a gap, the designer would
have to perform an accurate mapping from one context (the
domain context) to another (the pattern context) directly – a
process that offers abundant opportunity for error [16].

However, this gap is only part of the problem. Note that
about half of the students claimed to be able to
define/describe the Façade pattern which, according to [6],
“defines a higher-level interface that makes the subsystem
easier to use.” The requirements call for an adapter to isolate
external components from the rest of the software, rather
than for a façade to isolate architectural tiers. Yet almost a
quarter of the entire student group has (incorrectly) found
the Façade pattern in the specification of Fig. 1. This type of
error in pattern identification may be attributed to the
similarity—in other words, too small cognitive distance—
between the Façade pattern and other patterns which are
actually present in the specification (Adapter/Wrapper, in
this case). In fact, similarity between pattern definitions is
quite common. For example, Bridge is said to “decouple an
abstraction from its implementation so that the two can vary
independently”, whilst Proxy “provides a surrogate or
placeholder for another object to control access to it” [6].

Note that these pattern definitions again talk about OO-
domain specific classes and objects, rather than about
higher-level concepts that could be usefully mapped to a
problem domain (i.e., one or more different portions of user
requirements), and it is not too difficult to mistake one for
another. In fact, looking at the Intent sections of the 23
patterns in [6], one can’t help noticing that more than two-
thirds are defined using implementation-oriented terms like
“object”, “class”, or “interface”. It should come as no
surprise, then, that future designers (in this case, fourth-year
students) seem to have difficulty identifying such patterns in
functional requirements where no such “objects”, “classes,”
or “interfaces” are present.

GreenEarthWay Ltd. hires you to design a new computer
system to run their grocery stores, which are to be connected
using the existing network.

Staff will increase stock counts in the new system when
there is an inventory delivery to a store. Cash registers will
decrease stock counts when there is a sale to a customer. Store
managers will run reports on inventory counts in the computer
system. Each store is connected to the central Winnipeg office
computer for all credit card transactions.

GreenEarthWay wants the new system to interact with an
existing Microsoft Exchange application using Office protocols to
cut costs. However, the company also wants you to design the
system so that it can easily switch to using an open-source email
component in the future.

Figure 1: Example specification for a new system.

21

Thus it seems safe to conclude that learning a pattern
using its contextual definition does not of itself guarantee
error-free use of that pattern. Available design patterns are
very strongly coupled to the domain context which gave
birth to them – but this can also limit their utility in domains
with other contextual requirements.

The validity of this observation is witnessed by a
number of aids that have been developed to help designers
perform the contextual mapping process more efficiently
and more reliably. Yet, as we shall see, even these more
modern techniques still fail to successfully address both the
domain-to-model cognitive distance and pattern-similarity
problems described above.

B. Better Descriptions
Intuitively, providing a better description of a design

pattern, i.e., more information about its use in context, ought
to allow the designer to better understand the pattern and, by
extension, improve the likelihood of the designer selecting
the pattern that correctly addresses the problem at hand.

However, too detailed a description may also mean that
the pattern is burdened with too much contextual
information. The designer may find a “pattern” bound to a
context in this way much more difficult to apply to patterns
discerned in a very different requirement context. For
instance, a pattern like Master-Slave, if too tightly bound to
hardware-domain contextual descriptions, might with
difficulty be used to describe the interactions of, say, a
number of employees and of their (profit-seeking)
employer. Therefore, pattern descriptions can be improved
only so much, because further pattern specification might in
fact hamper, rather than facilitate, pattern identification and
application, since additional pattern-contextual information
may only reduce the pattern’s applicability to other, possibly
very different, application domains.

C. Pattern Languages
The push for better pattern descriptions has also

produced several proposals for more formal (or at least better
structured) pattern definition or description languages [18].
A pattern description language is essentially a system of
constraints on the words and word-relationships used to
define patterns. While a more structured language might

seem to reduce the potential and likelihood for designer
pattern-matching error, because the pattern descriptions will
now be more rigidly defined, the very rigidity in the pattern
description might actually make it more difficult for a
designer to match the pattern’s contextual description to the
highly differentiated requirements defined for real world
interactions. As a result, pattern languages have limited use
in bridging the contextual gap between domain requirements
and software model that we have described above.

D. Pattern Catalogs
A more straight-forward and popular solution seems to

be the compilation of pattern catalogs. Gamma et al. [6]
provide the description for 23 design patterns. A number of
much more elaborate pattern catalogs have been published
since – a recent survey [7] found that catalogued patterns
numbered in the hundreds. An exhaustive pattern catalog
might seem to assist designers in the task of pattern
identification by increasing the number of patterns
immediately available to them. However, an unfortunate
consequence of so many choices is reduced cognitive
distance between them – which in turn makes it more
difficult for the designer to identify the correct pattern to use
to model a given set of domain requirements. Thus, the
proliferation of patterns effectively eliminates two of the
main advantages of design patterns: in the words of Agerbo
and Cornils, it “will make it too laborious to find and use the
encapsulated experience, and [it] will make the common
vocabulary too large to be easily comprehended” [1].

E. Pattern Classification
To make catalogs more accessible to designers, catalog

providers oftentimes provide some kind of classification or
grouping of the patterns within their catalogs. Gamma et al.,
for instance, provide a simple categorization of patterns into
Structural, Creational, and Behavioral groups [6]. However,
most of the patterns in their catalog have both structural and
behavioral aspects, and quite a few—including Structural
and Behavioral ones—have creational aspects as well.
Compounding the problem is the fact that quite a few
patterns within each group are so very similar that they can
be easily misidentified: what is the cognitive distance
between Façade and Wrapper, for instance? Consequently,

Table I. Some of the patterns identified in the example specification of Fig. 1.

Requirement Pattern “I can describe or give a definition of
the following design patterns”

“I detected the following design pat-
terns in the user requirements above”

Each store is connected to the
central Winnipeg office computer. Client-Server 96.77% 80.65%

The new system must use the
existing network. Bridge 19.35% 6.45%

Store managers will run reports
on inventory counts.

Shared
Database 54.84% 54.84%

Easy switch to another
component in the future.

Adapter/
Wrapper 87.01% 25.81%

—not present— Façade 51.61% 22.58%

22

an a priori categorization of patterns by the ‘most obvious’
pattern feature may not be of much help to designers at all.

F. Refactoring to Patterns
Finally, we mention a radically different approach known

as refactoring to patterns or R2P [8]. This approach differs
from the ones previously mentioned. R2P seeks primarily to
identify design patterns a posteriori, that is, after software
code has been created and refactored, rather than before. The
technique does not seek to map requirements to a design
model. Instead, it starts with the code and reverse-engineers
it into an (ever-improving) design model. The technique
assumes that the design model matches the domain
requirements, because unit tests are available to validate that
every domain requirement is in fact implemented in a
specific code artifact.

In practice, this means that if the designer can easily
identify a pattern in the requirements suitable for use in
structuring the code to match real-world relationships, then
it is applied and concretized. If not, coding of the software
proceeds without any design or pattern at all. Once the
software product is fully operational, designers seek to
identify within, and impose design on, the existing code
base using existing design patterns as a guide to the
refactoring effort.

In light of our discussions, the success of this approach
stems from the fact that the cognitive distance between a
portion of the code and the pattern that implements it, is
much smaller than the corresponding distance between the
original domain requirement and the concrete pattern in
question. Smaller cognitive distance, as we have seen, leads
to simpler and more accurate identification of patterns. Yet
even the R2P approach is critically dependent on existing
pattern definitions which, as we have seen, may be difficult
to distinguish and use given their semantic overlap. For
example, the class diagram for the Strategy pattern is
surprisingly similar to that for the State pattern [6]; if such
homonyms are discerned in the code base, they may look
like an excellent candidate for refactoring – but even then,
choosing the right target pattern may be difficult if the class,
variable, and method names fail to provide clear clues as to
the exact function of the class within its own environment.

As a result, the problem of finding the right design
pattern is not completely eliminated by starting from the
code base rather than from the requirements. If we don’t
have a suitable pattern to map to, we cannot be assured that
we have in fact bridged the requirement to model contextual
divide. If the code base is poorly organized, over-
engineered, and/or excessively patched [9], the right target
pattern for the code base might be as difficult to find as it is
to discern in a poorly defined set of requirements.

Still, the concept of adjusting the development process
to eliminate the dual problems of cognitive distance and
pattern similarity seems to have more potential for
improving the effectiveness of the pattern-based design
process than a simple modification of pattern definitions. In
fact, most improvement may be obtained by a judicious

combination of the two. As will be seen in the following
section, this is the essence of our proposed approach.

III. GENERIC PATTERNS AND THE TWO-STAGE PATTERN-
BASED DESIGN PROCESS

The discussions above highlight the fact that design
patterns must possess two main aspects to lend themselves to
successful use. First, the pattern must have a conceptual
aspect that can easily map to the contextual information
found in different domains (the domain-contextualized
requirements). Second, the pattern must also have a concrete
aspect that can easily map to software models and
(subsequently) to code specifications (the implementation-
contextualized constructs). If the design patterns are too
conceptual or conversely, too concrete, their utility to the
designer may be significantly reduced.

A. The Two Stages
To reduce the cognitive gap between domain

requirements and software model, we propose a two-stage
process similar to the transformation method outlined in
[12]. In the first stage, pattern-discovery, the designer
focuses on mapping the domain requirements to a pattern
that is generic or context-free. Since the number of these
generic patterns will be small, identification should be
simpler and faster; as a result, the risk of making an
erroneous pattern choice will be much reduced.

In the second stage, that of iterative pattern
specialization or contextualization, the designer focuses on
mapping the domain requirements to ever more precise
pattern contexts, until one or more concrete patterns (or
concrete pattern specializations) are found that might be of
use in modeling the requirements. At this point, one of the
concrete patterns in the generic group—the one that
provided the best contextual match to the domain
requirements—would be selected and subsequently
elaborated in the traditional manner to produce the actual
software design.

The expected benefit to using this two-step approach is
the reduced risk of a designer picking the wrong concrete
pattern to model the requirements, a risk that we have
shown to be very real given the contextual constraints
inherent in existing patterns. Placing the concrete patterns in
a generic pattern or sub-pattern set requires the designer to
iteratively match subsequently more specialized patterns to
the requirements, in a step-wise process which eventually
leads the designer to a more judicious concrete-pattern
choice. This removes the need for the designers to sift
through voluminous pattern catalogs for a pattern that may
(but probably will not) fit their requirements.

B. Generic, Sub-Generic, and Concrete Patterns
Let us now try to identify some of the generic patterns in

question. For example, consider the patterns from the student
survey above: Façade, Bridge, Wrapper, and Proxy. What is
the feature common to all of them that clearly distinguishes
them from patterns such as Shared Data or Client-Server?

23

The answer: they all provide isolation of some sort between
two real-world entities. Therefore, all four of these patterns
are, in fact, specializations or contextualizations of the same
generic pattern which we may call Isolate.

Not all kinds of isolation operate in the same way:
sometimes isolation merely provides a simple transfer of
information between different interfaces; at other times, the
isolating element uses a specific protocol to control and
mediate between the entities. It makes perfect sense, then, in
this case as well as in others, to add a sub-class or, rather,
additional important pattern qualifications or features, in-
between the top-level generic and concrete patterns. The
sub-generic patterns in this layer capture additional
information about the manner in which the generic pattern is
expected to fulfill its duties: in the example given, the more
specialized generic patterns we have identified are
Isolate/Transfer (a pattern where the isolation features only
a transfer of information) and Isolate/Mediate (a pattern
where the isolation features mapping or information
mediation services).

We use features in the concrete patterns to identify
important pattern commonality of use in specifying a
generic. We prioritize the features to ensure that we are
classifying the generics according to their semantic
importance for accurately describing the predominant
characteristics of the pattern. We build a hierarchy of
generic patterns from the bottom up, so that it can be used
by designers from the top down.

In this manner, the designers are provided with a
conceptual tool to help them bridge the contextual divide:
the generic is firmly rooted in the concrete patterns from
which they draw their most distinctive high-priority features
and commonality; and yet due to the more conceptual nature
of the generic, it is much easier for designers to discern
these patterns in other contextual environments, that is, in
different requirement domains.

C. A Preliminary Classification
An initial evaluation of the more commonly used

concrete patterns yields the classification presented in
Table II. Note that this classification is but a preliminary
effort, and that we are currently working on a more precise
and more refined classification scheme, as well as a pattern-
evaluation procedure that can help ensure a proper
classification within the generics of the patterns currently
compiled in the catalogs.

A few comments are in order here. First, we note that
there is no conceptual limit on the number of levels that may
be used to qualify the generic and sub–generic patterns
before committing to a fully context-dependent pattern. In
practice, however, one might want to limit the levels to
high-value pattern features only, since this has a direct
bearing on the complexity of the design process.

Second, the separation of concrete from generic
patterns into a multi-level categorization structure on the
basis of the common features of concrete patterns allows for
more precise design by defining similar yet distinct concrete

patterns from the same generic or sub-generic pattern. For
example, most of the literature treats the Wrapper and
Adapter patterns as synonyms, but some authors consider
the two to be different patterns [15]; yet others consider the
Wrapper to be more generic than Adapter, Decorator, or
even Proxy [13]. In our view, a Wrapper should isolate a
component from a system, just as a Façade isolates one tier
from another. An Adapter true to its name should provide an
endpoint-to-endpoint mapping that enables a component to
adapt to its environment. As a result, the Wrapper pattern
belongs to the Isolate/Transfer pattern set, and the Adapter
to the Isolate/Mediate pattern set. This precision and clarity
in pattern names and descriptions would not be possible
without the distinguishing power of generics.

D. Related Work
Pattern layering has been proposed elsewhere [19], but

only in the context of interdependencies of concrete patterns,
rather than in the hierarchical sense adopted in the current
paper. Also, the proliferation of design patterns has been
criticized in [1], and “restriction in the formation of Design
Patterns, leading to a reduction in [their] number” was
proposed as a possible remedy. Still, the discussion remains
firmly within the realm of programming languages in general
– which makes it part of the problem, not of the solution.

Kniesel, Rho, and Hanenberg discuss the need for
generic patterns [10] but in the context of a language for
defining generic aspects, which is again much closer to the
implementation domain than the approach described here.

Riehle and Züllighoven [14] propose a hierarchical
layering of patterns, and emphasize the distinction between
conceptual patterns (“whose form is described by means of
the terms and concepts from an application domain”) and
design patterns (“whose form is described by means of
software design constructs”). Yet they stop short of
describing the actual design process for transforming the
requirements into conceptual patterns, into design patterns,
and, ultimately, into programming patterns which are also
discussed in their paper.

The classification scheme proposed by Tahvildari and
Kontogiannis [16] attempts to establish relationships
between patterns and to organize them into hierarchies; yet
it does not venture beyond the categorization from [6], and

Table II: A preliminary classification of generic and
specialized patterns.

Transfer Façade, Wrapper, Proxy Isolate
Mediate Bridge, Broker, Adapter, Mediator

Provide Repository, Database, Client-Server Share
Collaborate Producer-Consumer, Publisher-

Subscriber, Blackboard

Generate Factory, Builder Entity
Provide Singleton, Pool, Queue, Stack, Tree

Detect Listener, Observer Activity
Control Master-Slave, Pipe-and-Filter

24

focuses only on the relationships between patterns, without
any link to the requirements they are meant to implement.
Their approach is also dependent on subjective assessments
of pattern relation, unlike the generic identification process
that uses the intrinsic features of related concrete patterns to
find the relationships between a pattern and its parent sets.

E. How Does It Work?
The process of pattern identification and its results are

summarized in Table III, where the requirements in the
leftmost column are mapped to a generic and sub-generic
pattern to the right, and ultimately to a concrete pattern in
the rightmost column. Due to space limitations, we show
only the final results, rather than the details of the process.

IV. CONCLUSION
Current approaches to pattern-based software design

suffer from the cognitive divide between the domain context
in which requirements are specified and the implementation
context in which suitable design patterns are to be found. To
bridge the divide, we have proposed a two-stage process in
which the domain context is first matched by generic pattern
concepts, and subsequently concretized to standard design
patterns and implemented accordingly. Initial experience
indicates that this approach offers a better chance of
delivering on the promise of pattern-based design: namely,
an efficient and accurate mapping of domain requirements to
the design model with significantly reduced risk of errors to
all designers.

REFERENCES
[1] E. Agerbo, A. Cornils. "How to preserve the benefits of Design

Patterns," Proc. OOPSLA '98, Vancouver, BC, pp. 134-143, 1998
[2] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-

King, and S. Angel. A Pattern Language. Oxford University Press,
NewYork, 1977.

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.
Pattern-oriented software architecture: a system of patterns. John
Wiley & Sons, 1996.

[4] M. Fowler, Analysis Patterns: Reusable Object Models, Addison-
Wesley, 1997.

[5] M. Fowler, Patterns of enterprise application architecture, Addison-
Wesley, 2003.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1994.

[7] S. Henninger and V. Corrêa, Software Pattern Communities: Current
Practices and Challenges, in Proceedings of the 14th PLoP, Allerton
Park, IL, 2007.

[8] J. Kerievsky, Refactoring to Patterns. Addison-Wesley, 2005.
[9] F. Khomh and Y.-G. Guéhéneuc, Do Design Patterns Impact

Software Quality Positively? Proc. CSMR 2008, Athens, Greece, pp.
274—278, 2008.

[10] G. Kniesel, T. Rho, and S. Hanenberg, Evolvable Pattern
Implementations need Generic Aspects. Proc. RAM-SE’0, Oslo,
Norway, pp. 111-126, 2004

[11] W. B. McNatt and J. M. Bieman. Coupling of design patterns:
Common practices and their benefits. Proc. COMPSAC 2001,
Chicago, IL, pp. 574-579, October 2001

[12] H. J. Nelson and D. E. Monarchi. Ensuring the quality of conceptual
representations. Software Quality Journal 15:213-233, 2007

[13] J. Noble and R. Biddle, Patterns as signs, Proc. ECOOP 2002,
Málaga, Spain, pp. 368-391, 2002.

[14] D. Riehle and H. Züllighoven, Understanding and using patterns in
software development. Theory and Practice of Object Systems 2(1):3-
13, 1996.

[15] D. Roberts and R. Johnson, Evolving frameworks: A pattern language
for developing object-oriented frameworks. In Pattern Languages of
Program Design (Proc. PLoP’94), Vol. 3, pp. 471-486, Addison-
Wesley, 1998.

[16] L. Tahvildari and K. Kontogiannis, On the Role of Design Patterns in
Quality-Driven Re-engineering, Proc. Euro. Conf. Software Maint.
and Reeng. CSMR’02, pp. 230-240, Budapest, Hungary, March 2002

[17] S. Wagner and F. Deissenboeck, Abstractness, Specificity, and
Complexity in Software Design. Proc. ROA’08, pp. 35-42, Leipzig,
Germany, 2008.

[18] L. Welicki, O. San Juan, and J. M. Cueva Lovelle, A Model for Meta-
Specification and Cataloging of Software Patterns, Proceedings of the
12th PLoP, Allerton Park, IL, 2005.

[19] W. Zimmer. Relationships between design patterns. In Pattern
Languages of Program Design (Proc. PLoP’94), pp. 345-364,
Addison-Wesley, 1994.

Table III. The two-stage pattern-based design process: mapping proceeds from left to right.

requirement generic
pattern

sub-generic
pattern concrete pattern

The new system must use the existing network. Isolate Mediate Bridge

Each store is connected to the central Winnipeg office computer. Share Provide
Shared Database,

Client-Server

Store managers will run reports on inventory counts. Share Provide Repository or
Shared Database

The new system should interact with an existing Microsoft
Exchange application using Office protocols. Isolate Mediate Bridge

Easy switch to another component in the future. Isolate Transfer or
Mediate

Wrapper or
Adapter

Cash registers will decrease stock counts when there is a sale to a
customer. Activity Detect Observer

25

Reporting the Implementation of a Framework for Measuring Test Coverage based
on Design Patterns

Kazunori Sakamoto, Hironori Washizaki, Yoshiaki Fukazawa
Dept. Computer Science and Engineering

Waseda University
3-4-1 Okubo, Shinjuku-ku, Tokyo 1698555, Japan

kazuu@ruri.waseda.jp, washizaki@waseda.jp, fukazawa@waseda.jp

Abstract—Fault-free software is highly desirable, and so
sufficient software testing plays an important role in attempts to
realize a fault-free state. Test coverage is an important indicator
of whether software has been tested sufficiently. However, ex-
isting measurement tools are associated with several problems,
such as the cost of new development, the cost of maintenance,
and inconsistent and inflexible measurement. In this paper, we
propose a consistent and flexible test coverage measurement
framework that supports multiple programming languages. We
implemented our framework based on design patterns such as
Template Method pattern and Macro Command pattern. Thus
we report the success of the implementation of our framework
based on design patterns, and we confirm the benefit of design
patterns.

Keywords-Design pattern; Framework; Software testing; Test
coverage; Code coverage; Metrics

I. I NTRODUCTION

Test coverage (code coverage) is an important measure
used in software testing. It refers to the degree to which
the source code of a program has been tested and is an
indicator of whether software has been tested sufficiently.
Design pattern is an important software pattern which is a
general reusable solution to a commonly occurring problem
in software design. Pattern formulates the know-how of
solution to a commonly occurring problem to be reused
by people. There are multiple levels in test coverage, such
as statement coverage, decision coverage and condition
coverage. Developers select a suitable level according to the
purpose of their software testing[1].

Measurement tools are necessary in order to measure the
coverage of various programs accurately, and test coverage
measurement tools have become widely available. Many
measurement tools are offered for major languages such as
C or Java. However, measurement tools for legacy languages
such as COBOL and minor languages such as Lua are not
readily available and only at some considerable expensive.
Moreover, it is more difficult to have access to measurement
tools for newly defined languages and for existing languages
with some language specification changes because each
existing tool is specific to a certain language specification.
Such a situation drives the need for the development of some

framework or tool that corresponds to a variety of languages
including new languages in the future.

In this paper, we propose a consistent and flexible test
coverage measurement framework that supports multiple
languages. Our framework extracts commonalities among
multiple languages, and disregards variability by focusing on
the syntax of the languages. We implemented our framework
based on design patterns　 such as Template Method pattern
and Macro Command pattern, thus we confirm the benefit
of design patterns.

Our framework is now freely available via the Internet[2].

II. PROBLEMS IN CONVENTIONAL APPROACHES

The following summarizes the problems with existing
measurement tools. The problems are in cost of new de-
velopment, in cost of maintenance, in inconsistent measure-
ment, in inflexible measurement and in Incomplete measure-
ment but we focus only the cost of new development.

The variety of languages is becoming more diverse. More-
over, coverage measurement tools are often unavailable for
a number of legacy and/or minor languages due to a lack
of community or non-commercial efforts. So, measurement
tools for these languages are necessary. A measurement tool
consists of the following 4 functions: a syntactic analyzer
that interprets syntax from source code, a semantic analyzer
that interprets the meaning of syntax such as a statement
and a conditional branching, a measurement function for
test coverage, and a display function for measurement re-
sults. Generally, it is difficult to implement these functions.
Therefore, the cost necessary for development is high.

III. C OVERAGE MEASUREMENT FRAMEWORK

SUPPORTING MULTIPLE PROGRAMMING LANGUAGES

We propose a test coverage measurement framework that
supports multiple languages, and which will solve and
alleviate the problems described above.

The framework is a reusable software architecture and
provides a generic design as some similar applications.
The application can be implemented by adding application-
specific code as user code to the framework[4].

26

Figure 1. The entire design of our framework

The entire design of our framework and the processing
flow is shown in Figure 1. Our framework consists of
three subsystems: the code insertion subsystem, the code
execution subsystem and the coverage display subsystem.
Moreover, the code insertion subsystem consists of four
components: the AST (Abstract Syntax Tree) generation
component, the AST refinement component, the AST op-
eration component and the code generation component. We
implemented their with design patterns, so we get high
reusability and reduce the cost of new development.

The process of the coverage measurement is as follows.

1) Generation of AST from source code
2) Insertion of code for measurement on AST
3) Generation of source code from AST
4) Execution of generated source code and collection of

measurement information
5) Display of measurement results from test coverage

Our framework inserts the measurement code into the
source code, and the test coverage is measured by executing
the program. When our framework inserts the measurement
code, it collects information such as the location information
of the measurement elements in the source code.

Our framework is designed as an object-oriented frame-
work with object-oriented programming and design patterns.
Our framework provides common code for language in-
dependent processing and also provides structure to help
to write user code for language dependent processing.
Moreover, the insertion on AST simplifies the insertion

processing. In this way, our framework reduces the cost of
new development and maintenance. However, our framework
targets only procedure-oriented languages due to the mech-
anism used for measurement which involves inserting the
measurement code.

IV. I MPLEMENTATION OF OUR FRAMEWORK

We implemented our framework in .NET Framework 3.5
SP1. Our framework enables the implementation of language
specific processing by adding user code such as assembly
files that run in .NET Framework 3.5 SP1 or older, or script
files in languages supported by Dynamic Language Runtime
(DLR)[13]. DLR is .NET library that provides language
services for several different dynamic languages. In this way,
our framework helps to add user code.

We now show sample code as a sample measurement tool
implementation that measures test coverage in Java, C and
Python by using our framework.

A. Code insertion subsystem

The code insertion subsystem consists of the following
components: the AST generation component, the AST re-
finement component, the AST operation component and the
code generation component.

1) AST generation component:converts the obtained
source code into an AST as an XML document. In this
sample, this component consists of two functions: AST
builder and the caller of AST builder. AST builder is user
code which is deployed as an external program. AST builder

27

is implemented using compilers such as SableCC[5] for Java,
ANTLR[6] for C and Python standard library for Python.
The caller of AST builder is common code which is designed
by using Template Method pattern[7].

The Template Method pattern reorganizes the processing
steps between the coarse-grained process flow and fine-
grained concrete processing steps. The former is placed in
a superclass method and the latter is placed in subclass
methods. The latter is triggered by the former by calling
superclass abstract methods which are actually implemented
in subclasses.

Figure 2. The class diagram of the AST generation component

The class diagram of UML[8] related to this component is
shown in Figure 2. TheAstGenerator is an abstract class
that is designed by applying the Template Method pattern.
The sample user code of this component for Java is shown
in List 1.

List 1. AstGeneratorForJava.cs
1 using System.ComponentModel.Composition;
2

3 namespace CoverageFramework.AstGenerator.Java {
4 [Export(typeof (IAstGenerator))]
5 public class AstGeneratorForJava : AstGenerator {
6 private static readonly string []
7 _arguments = new[] {
8 "-jar", "../Java/Java.jar",
9 };

10 protected override string FileName {
11 get { return "java"; }
12 }
13 protected override string [] Arguments {
14 get { return _arguments; }
15 }
16 }
17 }

Therefore, the use of the compiler compilers and common
code eases the implementation of this component.

2) AST refinement component:changes the structure of
AST to operate AST easily. In the sample, this component
removes the unnecessary nodes of AST such as nonterminal
nodes which have only nonterminal nodes as child nodes.
Moreover, this component converts single-line if statements
into multi-line if statements. Our framework provides the
almost processing as common code.

3) AST operation component:has roughly three func-
tions: the enumeration of subtrees, the generation of subtrees
and the replacement of subtrees. The enumeration function
locates the position in which the measurement code is
inserted. For example, this function locates the position of
all atomic logical terms in conditional expressions in Python.
Our framework provides a large part of this function as
common code which is designed by using the Template
Method pattern.

Figure 3. The class diagram of the AST operation component

The class diagram related to this function is shown in
Figure 3. TheAtomicBooleanTermSelector is an
abstract class that is designed by applying the Template
Method pattern. The sample user code that enumerates the
atomic logical terms for Python is shown in List 2.

List 2. AtomicBooleanTermSelectorForPython.cs
1 using System.Linq;
2 using System.Xml.Linq;
3 using System.ComponentModel.Composition;
4

5 namespace CoverageFramework.Element.Selector.Python {
6 [Export(typeof (IXElementSelector))]
7 public class AtomicBooleanTermSelectorForPython
8 : AtomicBooleanTermSelector {
9 private static readonly string []

10 _condComponentNames = new[]
11 { "or_test", "and_test", };
12 private static readonly string []
13 _condNames = new[]
14 { "or_test", "and_test", };
15 private static readonly string []
16 _condOpValues = new[]
17 { "or", "and", };
18 protected override bool
19 IsBoolTermSepartor(XElement e) {
20 return !e.HasElements &&
21 _condOpValues.Contains(e.Value);
22 }
23 protected override bool
24 IsConditionalExpression(XElement e) {
25 return _condNames.Contains(e.Name.LocalName);
26 }
27 protected override bool
28 IsConditionalExpressionComponent(XElement e) {
29 return _condComponentNames
30 .Contains(e.Name.LocalName);
31 }
32 }
33 }

By implementing processing that judges whether the given

28

node is the measurement element, this code enumerates the
atomic logical terms.

In addition, our framework provides some other classes as
common code, such as theXElementSelectorUnion
class, which integrates some enumeration results, and the
XElementSelectorPipe class, which enumerates sub-
trees in other enumeration results. These classes are designed
by applying the Command pattern[7].

The Command pattern is the design pattern that encapsu-
lates a request and the parameters in an object. A command
object that is combined with certain other command objects
is called a Macro Command.

Figure 4. The class diagram according to enumeration subtrees

The class diagram related to the enumeration function
is shown in Figure 4. TheXElementSelectorPipe is
a class as a Macro Command by applying the Command
pattern. The usage of this class is shown in List 3.

List 3. The usage example of XElementSelectorPipe
1 var ifSelector = new XElementSelectorPipe(
2 new IfSelectorForC(),
3 new ParenthesisSelectorForC());

By combining the instance of theIfSelectorForC
class, which enumerates the subtrees corresponding to
the conditional sentence, and the instance of the
ParenthesisSelectorForC class, which enumerates
the subtrees corresponding to the parenthetic expression,
this code enumerates the subtrees corresponding to the
conditional expression for C.

Therefore, our framework reduces the size of the classes
and promotes code reuse. Moreover, flexible measurement
is achieved by adding processing that locates subtrees.

In addition, the generation functions are used to gener-
ate the subtrees corresponding to the measurement code.
Our framework requires user code for this function. The
replacement functions are used to insert the subtrees of
the measurement code into the source code on AST. Our
framework provides this function completely as common
code.

4) Code generation component:converts the obtained
AST into source code. When the AST has memorized
almost all of the tokens corresponding text in source code,
this component can be implemented simply by adding user

code that outputs the tokens as they are without exception.
Our framework provides common code that outputs the
memorized tokens by applying the Template Method pattern.

Figure 5. The class diagram of the code generation component

The class diagram related to this component is shown
in Figure 5. TheSourceCodeGenerator is an abstract
class that is designed by applying the Template Method
pattern. The sample user code of this component for Python
is shown in List 4.

List 4. SourceCodeGeneratorForPython.cs
1 using System.Xml.Linq;
2 using System.ComponentModel.Composition;
3

4 namespace CoverageFramework.CodeGenerator.Python {
5 [Export(typeof (ISourceCodeGenerator))]
6 public class SourceCodeGeneratorForPython
7 : SourceCodeGenerator {
8 protected override bool
9 TreatTerminalSymbol(XElement element) {

10 switch (element.Name.LocalName) {
11 case "NEWLINE":
12 WriteLine();
13 break ;
14 case "INDENT":
15 Depth++;
16 break ;
17 case "DEDENT":
18 Depth--;
19 break ;
20 default :
21 return false ;
22 }
23 return true ;
24 }
25 }
26 }

Neither the linefeed nor the indent is memorized in AST
for Python. Accordingly, this component requires user code
to output the linefeed and the indent to the corresponding
terminal nodes.

Therefore, in our framework, most of this component is
common code.

V. EVALUATION

We evaluate our framework by comparing sample im-
plementation that is developed by using our framework

29

with typical existing measurement tools, namely, Cobertura
supporting Java and Statement coverage for Python[9] sup-
porting Python.

We evaluate the new development cost by using the LOC
(Lines of Code) of the program that inserts the measurement
code and by the number of supporting coverage levels.

Figure 6. The LOC

Figure 6 shows the comparison results obtained with
LOC. The LOC of Cobertura is 1056 lines, and the LOC of
the sample implementation for Java is 215 lines. Cobertura
uses BCEL[10] to insert byte code into the Java class file.
BCEL is a library that conveniently provides users with the
option to analyze, create, and manipulate (binary) Java class
files. However, the sample implementation does not use the
library except for our simple helper methods and the .NET
standard library.

On the other hand, the LOC of Statement coverage for
Python is 131 lines, and the LOC of the sample imple-
mentation with our framework for Python is 153 lines in
Figure 6. Statement coverage for Python uses only the
Python standard library. In addition, the LOC of the language
independent and reusable part in the framework is 654 lines.
Our framework can support new language with less cost than
new development of the measurement tool.

Cobertura supports statement coverage and decision cov-
erage, and Statement coverage for Python supports only the
statement coverage. On the other hand, the sample imple-
mentation with our framework supports statement coverage,
decision coverage, condition coverage and condition/deci-
sion coverage. The same functionality can be implemented
with fewer LOCs.

Therefore, our framework succeeded in alleviating the
problem of high cost for new development using design
patterns and we confirm high reusability of design patterns.

VI. RELATED WORK

Here, we explain the ideas of Kiri et al.[12] as other
researches that relate to the mechanism and purpose of our
framework.

Kiri et al. propose the idea of developing a measurement
tool which inserts the measurement code into source code.
Their idea measures statement coverage, decision coverage
and a special coverage called RC0. RC0 is special statement
coverage for only the revised statement. However, their idea
can measure only statement coverage and decision coverage
because their idea measures coverage by simply inserting a
simple statement. Moreover, though their idea can measure
the coverage of four languages, including Java, C/C++,
Visual Basic, and ABAP/4, it cannot support any other
languages. Conversely, our framework cannot measure RC0.
However, our framework can support new coverage such as
RC0 easily by adding user code.

VII. C ONCLUSION AND FUTURE WORK

In this paper, we have proposed a coverage measurement
framework for multiple languages and report the imple-
mentation of our framework based on design patterns. We
achieved reduction of cost by reusing common code because
we implemented our framework based on design patterns.
Thus we conclude design patterns produce high reusability.

We plan to evaluate more completely our framework,
achive more reusability using design patterns, and improve
the framework in order to support languages other than
procedure-oriented languages, such as functional program-
ming languages.

REFERENCES

[1] Lee Copeland, ”A Practitioner’s Guide to Software Test
Design”, Artech House, 2003.

[2] Kazunori Sakamoto, Open Code Coverage Framework,
http://sourceforge.jp/projects/codecoverage/.

[3] Cobertura, http://cobertura.sourceforge.net/.
[4] Mohamed Fayad and Douglas C. Schmidt, ”Object-Oriented

Application Frameworks”, the Communications of the ACM,
Special Issue on Object-Oriented Application Frameworks,
Vol. 40, No. 10, October 1997.

[5] Etienne M. Gagnon, Ben Menking, Mariusz Nowostawski,
Komivi Kevin Agbakpem and Kis Gergely, SableCC,
http://sablecc.org/.

[6] ANTLR, http://www.antlr.org/.
[7] E. Gamma, R. Helm, R. Johnson and J. Vlissides, ”Design

Patterns: Elements of Reusable Object-Oriented Software”,
Addison-Wesley, 1994.

[8] OMG, Unified Modeling Language (UML) specification, ver-
sion 2.2, http://www.omg.org/spec/UML/.

[9] Gareth Rees, Statement coverage for Python,
http://garethrees.org/2001/12/04/python-coverage/.

[10] Apache Software Foundation, The Byte Code Engineering
Library, http://jakarta.apache.org/bcel/.

[11] Haruhiko Okumura, Houki Satoh, Kazuo Turu, Kazuyuki
Shudo and Tutimura Nobuyuki, ”Algorithm cyclopedia by
Java”(in Japanese), Gijutuhyoronsya, 2003.

[12] Takashi Kiri, Tatuya Miyoshi, Satoru Kishigami, Tatuo Osato,
Tuyoshi Sonehara ”About the source code insertion type
coverage tool”, The 69th Information Processing Society of
Japan National Convention, 2003.

[13] Microsoft, http://dlr.codeplex.com/.

30

Architectural and Design Patterns in Multimedia Streaming Software

Yanja Dajsuren

Dept. of SoC Architectures and Infrastructure

NXP Semiconductors

Eindhoven, the Netherlands
yanja.dajsuren@nxp.com

Mark van den Brand

Dept. of Mathematics and Computer Science

Eindhoven University of Technology

Eindhoven, the Netherlands

m.g.j.v.d.brand@tue.nl

Abstract—Software developers typically build streaming

applications using multimedia streaming frameworks like

DirectShow, GStreamer, and Symbian MMF. Although a

significant amount of work has been done on architectural and

design patterns in software engineering, there is a limited

notion of patterns in the development of multimedia streaming

software. This article explores architectural and design

patterns in the field of multimedia streaming software to

facilitate the understanding process of multimedia frameworks

and development of streaming applications.

Keywords-streaming pattern; multimedia framework;

streaming application;

I. INTRODUCTION

Since it is costly and time-consuming to build
multimedia streaming software from scratch, multimedia
frameworks enable streaming applications to be assembled
by integrating pluggable media components. In addition,
multimedia frameworks isolate applications from a variety of
complex tasks such as handling of the complex multimedia
acceleration hardware, data transport, and synchronization
between various tasks.

Multimedia frameworks are available on different
operating systems e.g. Windows supports DirectShow [1],
Linux provides GStreamer [2] and Symbian enables Multi-
Media Framework (MMF) [3]. Since frameworks are
concrete realizations of groups of patterns that enable reuse
of code [4] and there is a limited notion of architectural and
design patterns in the multimedia streaming software, it is
essential to identify patterns used in the multimedia
streaming software.

In this article, we present design patterns that are based
on the GStreamer, DirectShow, and Symbian MMF
multimedia frameworks. We use class diagram and
streaming notations of the UML 2.0 [5] to illustrate the
patterns.

II. MULTIMEDIA STREAMING SOFTWARE

One of the broadly recognized approaches in the
development of the multimedia streaming software is to
structure the streaming software as Pipes and Filters. The
Pipes and Filters architectural pattern [6] divides a complex
functionality into several sequential processing sub-
functionalities forming a streaming graph as shown in Fig 1.
The nodes of the graph are the media components that
process the data. The output of one media component can be

used as input for another media component. The edges of the
graph are (mostly) data buffers that establish connections
between the media components.

Figure 1. Overview of multimedia streaming software

We summarize below a list of main tasks that are
explored from the GStreamer, DirectShow, and Symbian
MMF multimedia frameworks:

• Building a streaming graph. Every streaming
application starts by building a streaming graph
mostly by instantiating media components and
connecting them using the functions provided by a
multimedia framework.

• Streaming data in the graph. Primitives for
moving media data through the streaming graph are
usually provided by the framework designers.

• Responding to events. Besides facilitating
mechanisms for an interaction between application
and streaming graph such as seeking to a position in
a media file, there is also an event handling needed
between media components such as End of Stream.

Multimedia frameworks enable developers to build
custom media components by providing specific APIs or a
set of base classes that provide the developer with a default
implementation for certain tasks.

III. DESIGN PATTERNS

We present three composite patterns as depicted in the
directed acyclic graph of Fig 2.

31

Figure 2. Graph of streaming design patterns

A. Streaming Graph Builder

Complex streaming software is time consuming and
cumbersome to be developed from scratch or procedural
way. The Streaming Graph Builder pattern is similar to the
Builder Pattern. Its intention is to abstract steps of
construction of a specific streaming graph so that different
implementations of these steps can construct different type of
streaming graphs (e.g. video capturing graph). The
Streaming Graph Builder pattern is depicted in Fig 3.

Figure 3. Streaming Graph Builder pattern

As a result, it can cope with many variations in building a
streaming graph and enable clients to treat media processing
components constituting the streaming graph uniformly.

B. Streaming Data Transferer Pattern

The Streaming Data Transferer pattern consists of
Transport Data, State Transition, and A/V Sync patterns. The
Transport Data pattern is elaborated in Fig 4. It enables
moving media data through the streaming graph using
common data transfer protocol and mechanisms like Media
Data pool.

Figure 4. Transport Data pattern

A streaming application, which uses general mechanisms
to transfer data through the graph independently of the media
format. State changes are handled consistently between
application and media component or streaming graph. A/V
synchronization is handled overall.

C. Event Responder Pattern

Event handling is needed between media components as
well as application. The Event Responder pattern consists of
Vertical Event Handling and Horizontal Event Handling
patterns. The Vertical Event Handling pattern is elaborated
in Fig 5.

Figure 5. Vertical Event Handling pattern

Besides facilitating mechanisms for an interaction
between application and streaming graph such as seeking to
a position in a media file, an event handling mechanism
between associate media components is provided. This
uniform solution improves the quality of streaming software
development.

IV. CONCLUDING REMARKS

Multimedia frameworks ship with a large collection of
media processing components by default, making the fast
development of a large variety of streaming applications
possible. The key capabilities of existing multimedia
frameworks include building of streaming graphs, streaming
data through the graph, and responding to events invoked in
the graph and the application. However, these tasks are
realized differently in the multimedia frameworks.

Therefore, developers need to understand the concepts
and mechanisms of multimedia frameworks to build quality-
streaming applications cost effectively, particularly when it
comes to the development for different platforms. We have
presented sample design patterns based on the GStreamer,
DirectShow, and Symbian MMF frameworks to facilitate the
development of multimedia streaming software.

Future work will be focused on a case study illustrating
how we apply design patterns to enhance the
understandability and extensibility of multimedia
frameworks and evaluate how much the application and
framework developer's effort is facilitated by the streaming
design patterns.

REFERENCES

[1] Microsoft, “Microsoft DirectShow 9.0”

http://msdn2.microsoft.com/en-us/library/ms783323.aspx

[2] GStreamer open source multimedia framework,
http://gstreamer.freedesktop.org/

[3] Symbian, “Multimedia Framework”

http://www.symbian.com/

[4] D. C. Schmidt, F. Buschmann, “Patterns, Frameworks, and
Middleware: Their Synergistic Relationships”, IEEE, 2003.

[5] D. Pilone, N. Pitman, “UML 2.0 in a Nutshell”, O’Reilly Media Inc.,
2005

[6] F. Buschmann et al., “Pattern-Oriented Software Architecture”, John

Wiley and Sons, pp. 53-70, 1996

32

Security Patterns

33

Building a Concept Grid to Classify Security Patterns

Michael VanHilst, Eduardo B. Fernandez

College of Engineering and Computer Science
Florida Atlantic University
Boca Raton, Florida, USA

mike@cse.fau.edu, ed@cse.fau.edu

Fabrício Braz
Departamento de Ciência da Computação

Universidade de Brasília
Brasília, Brasil
fabraz@unb.br

Abstract— In security, good solutions are comprehensive in
their coverage. In this paper we discuss a method of classifying
patterns based on coverage of the overall problem space. The
method defines regions in a continuous space, and associates
patterns with different regions of concern. Similar to faceted
classification, the approach aids finding patterns that address
immediate problems. But it also brings attention to what is not
being addressed. The approach allows for a meaningful
comparison of security patterns based on the size and shape of
the areas they address. In this paper we discuss the conceptual
basis of the approach, using George Kelly's psychological
construct theory to divide the conceptual space along clearly
defined axes, and describe methods borrowed from operations
research to display the classifications in a graphical form.

Keywords-patterns; security; classification

I. INTRODUCTION

To build secure systems, security must be addressed for
all components in all activities in every phase of the product
lifecycle. For complex applications, a comprehensive ap-
proach to security – top-to-bottom, beginning-to-end, and
everywhere-in-between – is a requirement. The problem is
vast. Inspection and testing is only a small part. Building se-
cure systems involves more than plugging holes.

The security challenge is compounded by the way real
world systems are built. Consider the issues of component
source in software development. Components can come
from new code, open-source, runtime script, model trans-
formation, wizard code generation, legacy application, reuse
library, outsourced development, commercial-off-the-shelf,
and remote web service. It is a rare and inefficient project
that doesn’t leverage more than a couple of these sources.

The patterns community creates and collects patterns in
the belief that patterns help users to solve problems and per-
form tasks. Specifically, patterns are intended to save users
time and improve the quality of the results. By now we have
hundreds, if not thousands of patterns, including security
patterns, for a wide variety of problems and situations. In
choosing which patterns to study and apply, the potential
user of patterns must narrow the choice to only those pat-
terns likely to be of value to the task at hand. While finding
the one best pattern is an ideal, in this case, it is not the
primary goal. The user may wish to see collections of pat-
terns related to the problem, the context, and each other in

various ways. By studying alternative and complementary
patterns, the user gains knowledge and understanding.

In this paper we present a method to organize and search
patterns based on multiple dimensions of classification.
Each dimension divides a conceptually continuous space
into multiple regions of classification. For each region, pat-
terns are classified by whether or not they play a meaningful
role, or have value, in that region. Multiple orthogonal di-
mensions are combined to form an n-dimensional space.
Patterns occupy regions within that space, and can be found
by searching and navigating among the regions.

Our method builds on the ideas of Personal Construct
Theory, first described by George Kelly in 1955 [1]. In Per-
sonal Construct Theory, conceptual dimensions are bi-polar
– defined as a continuum between two opposite poles. Each
dimension (or construct) embodies an aspect of one’s inten-
tions and understanding. Conceptual space is formed by the
combination of many such dimensions.

In the following section we describe the problem being
addressed and existing approaches to pattern classification.
We then describe our method of pattern classification, with
examples from our own work. We discuss its strengths and
advantages, and some variations that can be applied for even
greater utility. We also describe the use of tools, common in
Operations Research, that can be used to display and ex-
plore this form of pattern classification. Finally, we present
a sample walk-through to illustrate how the proposed ap-
proach to classification might be used.

II. PRIOR WORK

Several groups have published collections of security
patterns to address the problem of secure software
development [2][3][4]. They group their patterns into rough
categories, typically based on the type of solution being
presented. The original GoF patterns book [5], for example,
grouped patterns into three categories: creational, structural,
and behavioral.

Many of the existing pattern classifications use a
hierarchical approach. Hierarchical classification mimics
classification in biology, where the hierarchical structure
enables identification by following a decision tree (e.g.
Does it have a backbone?) and conforms to a view of
speciation by mutation from a parent gene. Hafiz, et al. [6],
for example, propose a hierarchical categorization for

34

security patterns with three branches corresponding to Core
security, Perimeter security, and External security.
Hierarchical classification serves a pattern collector’s need
to determine the extent to which a new pattern is the same
as other patterns in the collection, and are typically based on
the solution being presented. But hierarchical classification
offers less value to users who know more about the problem
than the solution.

Classification for component reuse has a long history.
Prieto-Diaz made a strong case for faceted classification
over hierarchical classification. In the paper, hierarchical is
called enumerative, while facets are essentially property
tags [7]. Prieto-Diaz provides seven criteria for the
classification scheme:

1. It must accommodate continually expanding
collections,

2. It must support finding components that are similar,
not just exact matches,

3. It must support finding functionally equivalent
components across domains,

4. It must be very precise and have high descriptive
power.

5. It must be easy to maintain, that is, add, delete, and
update the class structure and vocabulary without
need to reclassify.

6. It must be easily usable by both the librarian and
end user, and

7. It must be amenable to automation.
Our matrix approach is equivalent to facets and satisfies the
first six criteria. In our case, it is not clear how automation
would apply. Prieto-Diaz’s earlier component work
concerned only finding a close match, classified largely by
elements of the solution. Our matrix emphasizes properties
of the problem and also serves an education and knowledge
purpose for navigating the problem space and identifying
gaps. In the Prieto-Diaz solution, support for navigation was
limited. It said nothing about what was missing.

Sarmah et al. [8], recently presented a model for
categorizing security patterns based on a concept lattice.
Their approach of mapping patterns is similar to ours. Their
use of a lattice structure to support scaling is an interesting
aspect that we have not considered. However, their
presentation is brief and discusses neither the use of their
categorizations, nor the choice of concepts. Both concerns
are emphasized in the work here.

Rosado et al. [9], use matrix diagrams to evaluate and
compare security patterns using relative measures of
appropriateness by criteria. Other related work, such as by
Munoz-Arteaga, et al. [10], simply map patterns to
individual levels or criteria. The work of Rosado et al., is
complementary to our own and focuses more on the means
of making comparisons than on the choice of criteria. The
work here focuses more on the design and selection of
dimensions and categories, and on the use of matrices for
pattern coverage, selection, and navigation.

III. CONSTRUCT THEORY

We address pattern classification and problem coverage
through the use of a multi-dimensional matrix of concerns.
Each dimension of the matrix presents a range of
distinctions along a single axis, with a common concept or
theme. The categories along each axis should be easily
understood and represent widely used and accepted
classifications with respect to the concept of that axis. For
example, one dimension would be a list of stages along a
lifecycle axis spanning the life of an application from initial
conception to final end of use. Distinct stages would include
domain analysis, requirements, problem analysis, design,
implementation, integration, deployment (including
configuration), operation, maintenance and disposal. A
pattern applies to a lifecycle stage if a developer could use
knowledge from the pattern in performing tasks at that
stage. The list of component source types, using a
dimension from no control of details to full control as
described earlier, forms another dimension. Types of
security response from intent to attack to attack aftermath
could form yet a third dimension, covering avoidance,
deterrence, prevention, detection, mitigation, recovery, and
investigation (or forensics).

The design of the matrix is motivated by a notion of
coverage of concerns. For security, coverage must be
comprehensive. Information is not secure if it can be
compromised at any point in any way. We express coverage
as a grid or matrix of concerns, where comprehensive
coverage would mean there is something for every cell in
the grid. Thus we are concerned not only with patterns that
exist, but also to identify gaps where patterns do not exist.
Our approach starts with a complete problem space, and
then carves it into different concerns along different
dimensions. The idea of dividing up psychological space
can be traced back to Euclid’s elements. Its use here builds
on the ideas of George Kelly [1]. In Kelly’s personal
construct theory, a construct is a reference axis of two
opposing poles. Wealth, for example is an axis of rich and
poor. The space between the poles defines a “range of
convenience” which gains further relevance with additional
planes of distinction. “A construct is a dichotomous
reference axis. It defines a family of planes orthogonal to it
that divide the space.” [11]. In our case, we are not as
interested in the planes of distinction, which create the
separations, as with spaces between two planes, which
provide a convenience of classification. Kelly described a
matrix of concepts that embodies a person’s intentions and
shapes their response. He called it a “role repertory grid.” A
more formal treatment of the division of psychological
space can also be found in Brown’s “Laws of Form” [12].

35

IV. MATRIX CLASSIFICATION AND DISPLAY

We use Kelly’s approach to define a matrix of concepts to
embody the intention to secure information, and to use that
matrix to classify patterns. In defining dimensions or axes
for classification, each axis should correspond to a single
logical construct. In Kelly’s model, a construct is defined by
dichotomous poles. We strive to do the same. For each of
the primary axes we try to find two poles that define its
continuum in problem space. The axis or dimension is then
divided into regions of concern. Because we are not
concerned with uniqueness, regions along a dimension can
be loosely defined and be hierarchical, disjoint, or overlap.
Regions, or classifications of concern, should be based on
distinctions that are reasonably understood by target users –
in our case software developers and security practitioners.
Defining the regions is much like defining concerns in top-
down decomposition. In logic, a distinction defines both that
which is included, and that which is not [12]. In
comparison, when classification starts with a known, but
unstructured collection of items, and puts them into groups,
there is no way to know what is missing.

Operations research proposes 7 management tools for
organizing non-quantitative information and ideas [13].
These tools are: relationship diagram, affinity diagram, tree
diagram, matrix diagram, prioritization matrices, arrow
diagram, and process decision program chart. In organizing
collections of patterns, the patterns community already uses
three of these tools: relationship diagram, affinity diagram,
and tree diagram. Here, we propose to use a fourth tool, the
matrix diagram. We find the use of matrix diagrams to be a
convenient way to improve the quality and usability of
pattern collections for the consumers of patterns.

Figure 1 shows a grid that maps patterns with a single
dimension of the problem space. For a single mapping, we
use an L-Shaped Matrix. The dimension for type of
protection partitions the problem space of an attack into
stages along a continuum from its initial conception to the
aftermath of its having happened. Each category identifies
the type of response appropriate to the corresponding stage
of attack. From this matrix it is easy to see which stages of
attack are not addressed.

Figure 2 shows a mapping between patterns and three
dimensions of the problem space. Because we are not
interested in relationships between different dimensions of
the problem space, we can present this view as a T-shaped
matrix. By extension, the vertical axis can be stacked with
additional dimensions of the problem space.

The dimension for lifecycle stage partitions the lifecycle
along a continuum from pre-project preparation to the final
disposal of all artifacts. The National Security
Administration’s guidelines for information systems
management requires all of these stages to be covered. The
narrower lifecycle view common in software development

is not sufficient when it comes to security.

Security
pattern

vs.
Type of

protection C
he

ck
-p

oi
nt

ed

Sy
st

em

Pr

ot
ec

te
dS

ys
te

m

St
at

ef
ul

Fi
re

w
al

l

W
iM

ax
 S

ec
ur

ity

Avoidance
Deterrence
Prevention X X X
Detection X
Mitigation X
Recovery X
Forensics X

Figure 1: An L-shaped matrix of relationships between patterns and
protection type

Pr
ot

ec
tio

n
Ty

pe
Avoidance X
Deterrence X
Prevention X X X
Detection X
Mitigation X X
Recovery X X
Forensics X

Security Pattern
Check-
pointed
System

Protected
System

Stateful
Firewall

Virtual
Machine

Li
fe

cy
cl

e
St

ag
e

Domain Analysis
Requirements
Analysis X X X
Design X X X X
Implementation X X
Integration X
Deployment X
Operation X
Maintenance X
Disposal X

A
rc

hi
te

ct
ur

e
La

ye
r Network

Transport X X
Operating System X X X X
Distribution X X
Data X X X
Business Logic X X X
Client/Application X X X

Figure 2: An extended T-shaped matrix with patterns and three dimensions
of the problem space.

In today’s systems-of-systems view of applications, many
development projects address a single system or level within
a larger stack of infrastructure and components. Threats,
strategies, and mechanisms are different at different levels
of this architecture. We define a dimension for the level of

36

system architecture to address these differences. Because
there are several different views of the system stack,
depending on the domain and application, this dimension
has a number of overlapping partitions. The continuum of
this dimension is defined between the lowest physical level
of abstraction – the wire, and the highest semantic level of
abstraction – the business task. We chose the following
classifications: network, transport, distribution (including
gateways and brokers), platform and operating system, data,
business logic, and client. A simpler notion called
application spans the last three. Network, transport, and
distribution may also be grouped as communication.
Distribution and operating system overlap since gateways
and brokers often sit on top of, and depend upon, the
operating system. Since patterns can be placed in more than
one cell, there is no real need for exact or disjoint
classification.

Studies by Leveson of safety failures at NASA [14] show
that accidents are caused by failures of constraints at higher
levels than just mechanisms and developers. We define
another dimension for level of constraint. This dimension
defines the continuum from simple device mechanisms to
societal levels of regulation and oversight. Following
Leveson’s work, we partition the axis for level of constraint
into mechanism, operator, developer, organizational, and
regulatory. In our own work, we create patterns for
standards and protocols, like WiMax Security [15], that map
to these higher levels of constraint. The Common Criteria
standard requires a number of organizational level practices,
and are themselves a regulatory level constraint.

V. DISCUSSION

In security, there is a growing realization that we cannot
solve the problem by layering on more and more piece-meal
solutions. Examples of piecemeal approaches are, patches
for each new vulnerability, separate mechanisms for each
level and protocol, and ever growing checklists of
vulnerabilities to address. So, at least in the field of
security, good solutions are solutions that address many
issues in a comprehensive way. The matrix provides a
convenient way of representing that comprehensiveness.
More area coverage on the matrix means more
comprehensive.

An example of a solution pattern with good
comprehensiveness is the Virtual Machine Operating
System Architecture pattern. A single managed image
addresses all of the connections at every level above the
hardware and network. A replaceable machine image also
addresses concerns from analysis through implementation,
deployment, operation, maintenance, and ultimately
disposal. Its replaceable and isolated environment also
addresses many stages of the attack lifecycle

Recently, software engineering has shown a growing
interest in Donald Schön’s work on reflection-in-action

[16]. In looking at a situation, the reflective practitioner
considers multiple, alternative views or settings for
interpreting the situation and framing problems. Each
setting defines things to be considered, problems to be
found, and available solutions. Schön’s observations are
based on a critique that any single point of view might
overlook important aspects of the situation and solution
opportunities. By encouraging the use of multiple views on
different dimensions, our approach is less likely to miss
concerns that might be overlooked in a single classification
hierarchy or scheme.

Our approach to problem classification specifically
supports multiple, alternative settings of the same problem
space. Not surprisingly, pattern authors and classifiers are
often not comfortable with all the dimensions presented in
our scheme. The approach allows settings, goals and
perspectives that are attack, implementation, regulatory,
organizational, military, network, code, and device centric
to coexist in a single classification system. Patterns can be
classified separately in every setting to which they can be
applied. The practitioner exploring a new situation can
identify patterns from one perspective, and then explore
related patterns along other, perhaps less familiar,
dimensions thereby gaining new understanding and
perspective. New settings can be added at any time, simply
by defining a new axis.

In an earlier article [17], we discussed other types of
dimensions that augment the types of axes described here.
These secondary or auxiliary views can be lists or
collections and do not necessarily divide a bipolar
continuum. Because our mappings are not unique, they can
be combined with other mappings without loss of meaning.
For example, additional matrix dimensions can be used to
provide finer levels of distinction, or to filter selections by
other criteria, such as the criteria in a standard, or the
application domain. Classifications based on the solution
space can also be combined with the problem classifications
shown here to select solution components for a particular
architecture or strategy. In that paper, we suggested that
checklists could be used for judging patterns. The approach
here takes a more top-down view mindful of being
comprehensive.

Garbe et al. also used Kelly’s construct theory to map
psychological space for the classification of patterns, though
not specifically for security patterns [18]. In their case, the
purpose of the work was to find the pattern that most closely
matched a set of properties. In a learning phase,
psychological constructs are discovered by asking pattern
experts to compare different patterns, and recording what
they say. Using Kelly’s repertory grid technique to extract
the terms, and formal concept analysis to cluster the results,
they discover both the bipolar dimensions and the
classification properties (clusters of similarity) on those
dimensions. In the usage mode their system asks a user to

37

choose one of the properties for each dimension and returns
the closest pattern.

Although the paper by Garbe et al. does not discuss the
resulting dimensions in their system, we found in our own
experience that pattern experts almost always classify
patterns with properties of the solution space. That was part
of our motivation for mapping the problem space. We took
a synthetic approach to construct dimensions that
correspond to the types of coverage issues we have
encountered in our teaching and research. It would
however, be an interesting exercise to ask security experts to
classify the problem space using the same repertory grid
technique.

Since Garbe et al. asked for properties of existing
patterns, it is unlikely that they would discover named
properties for which no patterns exist. The repertory grid
technique does, however, use a scale for each dimension.
Respondents are asked not only to give a distinguishing
property, but to assign a value from 1 to 7 for that
dimension. Using the scale values, regions could be defined
by the range of values included in each property’s cluster.
Values between 1 and 7, but not in any cluster, could
indicate a gap.

VI. SAMPLE WALK-THROUGH

The use of the concept grid is very much like any
organizing system with labels or tags. Unlike arbitrary tags,
for example as used in Google Mail, our use of axes with
bipolar constructs assures that we have partially ordered sets
of tags to define regions and progressions along each
concept axis. The lack of an imposed hierarchy allows
arbitrary combinations.

Imagine an architect developing a system of active
defense for a public utility. An active defense assumes an
intelligent and engaged adversary cleverly able to overcome
passive defenses. For the initial requirements and analysis,
we will be interested in both high level analyses and specific
deployable mechanisms. Here, the problem space for
lifecycle could cover requirements and analysis, but also
deployment and operation, since the dynamic aspects of the
defense requires solutions that can address the attack in the
system’s deployment and operation. All layers of
architecture could be under attack, so we select the entire
range of architecture levels. On the constraint axis, the
design of dynamic solutions involves mechanisms and
operator behavior. A dynamic defense aims at the middle
stages of an attack axis, namely prevention, detection, and
mitigation.

The selections described so far cover a large region and
return a significant number of patterns. Attack and abuse
patterns, as well as high level analysis patterns, are of
particular interest for the initial analysis. A look at the
patterns in the deployment and operation regions gives some
idea of the defenses that can be deployed against an

adversary. Since part of the system involves small
embedded devices, we might use an application domain
axis, described in our earlier paper [17], to separately select
for network and server elements or embedded sensor and
control elements. Few patterns are specifically linked to the
domain of small, low power systems. In response, we may
wish to add a new axis, and classify the remaining patterns
for their minimum required device capability, ranging from
the smallest devices (no state and limited compute cycles),
to the biggest devices (essentially unlimited resources).

After reviewing the options, our architect is attracted to
the capabilities of the virtual machine pattern, and decides
to design a system around this model. Looking at the T-
shaped matrix view, as shown in Figure 2, the architect can
immediately see that the virtual machine pattern does little
to protect the network and does not address the problem of
detecting attack. Thus, at a minimum, additional pieces will
be needed to fill in these areas. To address detection, again
looking at the T-matrix, a number of different agent patterns
are considered for coverage and capability.

VII. CONCLUSION

Our objective in the work described here was to define a
method of classification for security patterns that addressed
the needs of end users and developers. In particular, we
were concerned with showing pattern coverage of problem
concerns, and supporting pattern selection and navigation
based on applicability to a developer’s immediate concerns.
We made no assumptions about the developer’s familiarity
with existing patterns or solutions.

We applied a matrix mapping technique that maps
patterns to concerns and matrix diagramming tools, found in
quality management and operations research, to visualize
the results. Regions of problem concern were defined along
multiple independent dimensions. To preserve a complete
view of the problem space, we defined each dimension as a
continuum between two opposing poles, and created
categories by partitioning the space into regions along that
continuum. The approach is grounded in a theory of
psychology called Construct Theory.

We then showed how the approach could be applied to
judging pattern quality based on a concrete representation of
scope of coverage or comprehensiveness.

Although space limitations prevent discussion here, early
experience indicates that the approach is feasible and offers
many other desirable properties. We hope that the ideas
presented here will stimulate more interest and further work
in the classification and evaluation of patterns from the
user’s point of view.

Experienced developers with security expertise may
prefer traditional classifications based on solution type or
elements. Solution based classifications can be used in
conjunction with the types of dimensions proposed here –
even as additional dimensions of the same matrix. But even

38

for experts, our approach can offer value for exploring
coverage and discovering gaps.

REFERENCES

[1] G.A. Kelly. The Psychology of Personal Constructs. Norton, 1955.
[2] B. Blakley, C. Heath, and members of the Open Group Security

Forum. Technical guide: security design patterns. The Open Group,
UK, 2004.

[3] M. Schumacher, E.B. Fernandez, D. Hybertson, F. Buschmann, and
P. Sommerlad. Security patterns: integrating security and systems
engineering. Wiley, 2006.

[4] C. Steel, R. Nagappan, and R. Lai. Core security patterns: best
practices and strategies for J2EE, web services and identity
management. Prentice Hall, 2005.

[5] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1994.

[6] M. Hafiz, P. Adamczyk, and R.E. Johnson. “Organizing security
patterns.” IEEE Software, 24(4), 2007, doi: 10.1109/MS.2007.114

[7] R. Prieto-Diaz. “Implementing faceted classification for software
reuse.” Comm. of the ACM, (34)5, pp. 88-97, 1991. doi:
10.1145/103167.103176.

[8] A. Sarmah, S.M. Hazarika and S.K. Sinha. “Security pattern lattice: a
formal model to organize security patterns.” Proc. Int. Conf. on
Database and Expert Systems Application, pp. 292-296, 2008.
doi:10.1109/DEXA.2008.74.

[9] D.G. Rosado, C. Gutiérrez, E. Fernández-Medina and M. Piattini. “A
study of security architectural patterns.” Proc. Int. Conf. on
Availability, Reliability, and Security, pp. 358-365, 2006. doi:
10.1109/ARES.2006.18

[10] J. Muñoz-Arteaga, R. Mendoza González, and J. Vanderdonckt. “A
classification of security feedback design patterns for interactive web
applications.” Proc. Int. Conf. on Internet Monitoring and Protection,
pp. 166-171, 2008, doi:10.1016/j.advengsoft.2009.01.024

[11] M.L.G. Shaw and B.R. Gaines. “Kelly's "Geometry of psychological
space" and its significance for cognitive modeling.” The New
Psychologist, pp. 23-31, October 1992.

[12] G.S. Brown. Laws of Form. George Allen and Unwin, 1971.
[13] S. Mizuno. Management for Quality Improvement: The Seven New

QC Tools. Productivity Press. 1988
[14] N. Leveson. “A new accident model for engineering safer systems.”

Safety Science, 42(4):237-270, 2004, doi:10.1016/S0925-
7535(03)00047-X

[15] E.B. Fernandez, M. VanHilst and J.C. Pelaez. “Patterns for WiMax
security.” Proc. European Conference on Pattern Languages of
Programming, 2007.

[16] D.A. Schön, The Reflective Practitioner: How Professionals Think in
Action, Basic Books, 1983.

[17] M. VanHilst, E.B. Fernández and F.A. Braz. “A multi-dimensional
classification for users of security patterns.” J. of Research and
Practice in Information Technology, 41(2), May 2009, pp. 87-97.

[18] H. Garbe, C. Janssen, C. Möbus, H. Seebold and H. De Vries.
“KARaCAs: Knowledge acquisition with repertory grids and formal
concept analysis for dialog system construction.” Proc. 15th

International Conference on Knowledge Engineering and Knowledge
Management (EKAW), pp 3-18, 2006, doi:10.1007/11891451.

39

Validating and Implementing Security Patterns for Database Applications

Arnon Sturm, Jenny Abramov, Peretz Shoval
Department of Information Systems Engineering

and Deutsche Telekom Laboratories
Ben-Gurion University of the Negev Beer Sheva, Israel
sturm@bgu.ac.il, jennyab@bgu.ac.il, shoval@bgu.ac.il,

Abstract. Security in general and database protection from
unauthorized access in particular, are crucial to organizations.
Security and authorization patterns encapsulate accumulated
knowledge and best practices in this area. Correct application of
security and authorization patterns will ensure effective access
control to the database. For example, the Role-Based Access
Control (RBAC) security pattern describes a general solution
regarding who is authorized to access specific resources and
which access privileges they have, based on user roles.
Unfortunately, patterns alone do not provide concrete guidance for
their application, and thus there is a need for validating their
correct usage. We propose a methodical approach for
implementing security patterns for access control in database
applications. This approach provides implementation guidelines to
the designer of the application model, validation of the correct
usage of the patterns, and automatic generation of secure database
schemata.

Keywords: security patterns; domain engineering; database
access control; ADOM; UML

I. INTRODUCTION
The most valuable asset for an organization is data, as its

survival depends on the correct management, security, and
confidentiality of the data [7], [8]. Most organizational data
are stored and managed using database management
systems; consequently, protecting the data that are stored in
those databases against unauthorized access is crucial for
organizations.

As security is just one of the many non-functional
requirements that developers have to handle during software
development, they might not have a solid security
background. This is a huge problem since there are many
security concerns to handle. To overcome the knowledge
gaps among developers in different domains, the notion of
design patterns was introduced. Patterns enable to capture
expert knowledge and make it more generally available. The
origins of design patterns lie in a work done by the architect
Christopher Alexander during the late 1970s. Alexander
noted that “each pattern describes a problem which occurs
over and over again in our environment, and then describes
the core of the solution to that problem, in such a way that
you can use this solution a million times over, without ever
doing it the same way twice” [2]. Since then, the idea was
adopted in the field of software design. The famous work of
design patterns of Gamma, Helm, Johnson, and
Vlissides [5] stated that a pattern addresses a recurring
design problem that occurs in a specific context, and

presents a well-proven solution to it. In this way, patterns
help to promote good design practices.

To assist developers to handle security concerns,
security patterns were proposed. These patterns capture
extensive accumulated knowledge regarding security. In the
past decade, many security patterns have been described;
yet, in this paper we focus on authorization patterns such as
the Role-Based Access Control (RBAC) [3]. Authorization
patterns describe who is authorized to access specific
resources in a system whose access has to be controlled.

Security patterns provide guidelines to be used in the
early stages of the development lifecycle. Yet, to the best of
our knowledge no work has been done on automatic
validation of the correct application of these patterns. In
addition, existing patterns do not provide concrete guidance
for their application.

To address these limitations, we adopt a domain
engineering approach called Application-Based Domain
Modeling (ADOM), which enables specifying and modeling
domain artifacts that capture the common knowledge and
the allowed variability in specific areas, guiding the
development of particular applications in the domain, and
validating the correctness and completeness of applications
with respect to their relevant domains [13], [14]. Regarding
security patterns, the patterns are specified within a domain
model, while the application model elements are classified
by the domain model's elements (i.e., the pattern elements).
In addition to the specification of patterns, we attach to
patterns transformation rules that elaborate on the
implementation of these patterns. The proposed approach
enables the automatic validation of application models with
respect to the relevant security patterns and the automatic
generation of SQL scripts including the database scheme
and the security constraints (in particular, authorization
constraints) to be injected into the database.

 The rest of this paper is structured as follows. Related
work is presented in Section II. Section III sets the
background for the presented approach: first, it provides an
overview of the ADOM approach; then it presents the SQL
privilege mechanism. Section IV describes the proposed
approach. Finally, Section V concludes the paper, discusses
the benefits and limitation of the proposed approach, and set
the basis for future research direction.

II. Related Work
Since it has been recognized that security must be

treated from early stages of the software development life

40

cycle, it is the task of the designer to ensure that all required
security requirements are included in the specifications and
that adequate protection mechanisms are implemented to
refer those specifications. In the following sections we will
review several approaches which refer to this demand.

A. Specification Techniques
Several specification techniques for representing

different security policies in a model-driven software
development process have been proposed. SecureUML [20]
is a modeling language based on RBAC, used to formalize
access control requirements and integrate them into
application models. It is basically a RBAC language with
authorization constraints that are expressed in Object
Constraint Language (OCL).

UMLSec [17] is an UML extension that enables
specifying security concerns in the functional model. It uses
standard UML extension mechanisms; stereotypes with
tagged values are used to formulate the security
requirements, and the constraints are used to check whether
the security requirements hold in the presence of particular
types of attacks.

B. Access Control Patterns
An alternative to refer security policies is by using

security patterns. Security patterns accumulate extensive
security knowledge and provide guidelines for secure
system development and evaluation.

Access control is one of the core issues in systems and
database security. In an environment with resources whose
access has to be controlled, authorization patterns can be
used to describe, for each entity, the resources it may have
access to, and which access privileges it has. Figure 1
describes the authorization pattern as defined in [19]. The
Authorization_rule association, together with the Right
association class, defines the access privileges of the Subject
to the related ProtectionObject. The Right association class
includes the type of access allowed (e.g. read, write,
execute), a predicate representing a condition that must be
true for the authorization to hold, and a copy flag signifying
a condition that indicates whether the right can be
transferred or not. An operation checkRights can be used in
the Subject or Object to check the validity of a request.

The Role-Based Access Control (RBAC) pattern [19] is
a specialization of the authorization pattern that has become
the most commonly used for access control since it reduces
the cost of administering access control policies and the
amount of errors in the process. RBAC is derived from the
notion that in organizations, users have different roles that
require different skills and responsibilities, and therefore
they should have different rights of access to data, which are
based on their role. Consequently, the RBAC
mechanism [3] describes for each user which privileges they
can acquire based on their roles or their assigned tasks. To
support the RBAC mechanism at the analysis and design
stages of the development lifecycle, a corresponding pattern
was developed [19]. The RBAC pattern is shown in Figure
2. Users are assigned to Roles, while Roles are given Rights
that are permitted to Users in that Role. As in the

authorization pattern, the association class Right defines the
access types that a user within a Role is authorized to apply
on the ProtectionObject. Correct implementation of the
RBAC pattern will ensure effective and secure access
control to the database.

C. Secure Software Development with Security Patterns
Security patterns alone are not sufficient for supporting

the development lifecycle, since they do not provide
systematic guidelines regarding to their application
throughout the entire software lifecycle. In order to provide
such information to the designers, several methodologies for
developing secure software were proposed in the literature.
Fernandez et al. [6] proposed a methodology for integrating
security patterns into each one of the software development
stages. Other methodologies present the use of the aspect-
oriented software design approach to model security
patterns as aspects and weave them into the functional
model [9] [12], or the use of agent oriented security pattern
language together with the Tropos methodology to develop
secure information systems [10] [11].

D. Patterns Validation
Although some of the methods mentioned above provide

tools for checking some aspects of the model, they do not
have the ability to validate the correct application of the
patterns, which will ensure generation of a secure
application or a database scheme. Without systematic
validation of the involved patterns, we risk in having design
problems that will propagate throughout the development
process.

To the best of our knowledge, the only work in this area
is of Peng, Dong, and Zhao [21], which presents a formal
verification method to analyze the behavioral correctness of
a design pattern implementation. Their method exploits the
partial order relationship between the sequence diagram of a
general design pattern and that of its implementation.
However, this method does not verify the structural
correctness of the implementation. Therefore, there is a need
to develop an approach to automatically and fully validate
the implementation of patterns.

-id
Subject

-id
ProtectionObject*

*

-access_type
-predicate
-copy_flag
+checkRights()

Right

Authorization_rule *

*

Figure 1. The general Authorization pattern (adopted

from [19]).

-id
-name

Role
-id
-name

ProtectionObject

-access_type
-predicate
-copy_flag
+checkRights()

Right

*
*-id

-name

User
*

*

Authorization_rule *
*

MemberOf*

*

Figure 2. The basic RBAC pattern (adopted from [19]).

41

E. Secure Database Design Methods
There are several works related to implementation of

specifications within a database, such as the work done by
Fernández-Medina and Piattini [4] which propose a
methodology to design multilevel databases1 by introducing
access control concerns into each one of the software
development stages. The methodology allows to create
conceptual and logical models of multilevel databases, and
implements the models by using Oracle Label Security [16].
The resultant database access control imposes that access of
a user to a particular row is allowed only if that user is
authorized to do so by the DBMS, has the necessary
privileges, and the label of the user dominates the label of
the row. Following that methodology, the authors provide a
way of transforming specification artifacts into
implementation; however, they do not provide tools for
validating the specification.

An additional model-driven approach for the
development of secure databases was presented by Vela,
Medina, Marcos and Piattini [1], which focuses on
authorization and audit properties in XML databases.
However, it does not apply any analysis techniques on the
design of the system.

F. Limitations of Existing Methods
Since information security is crucial to many

organizations, and since software project are big and
complex, there is a need to assure that the security policies
of database design within organization are not neglected
during the development process. However, none of the
methods provide means for enforcing that a database design
complies with particular organizational security
specifications. Some of the methods provide means for
checking models; however, they do not have the ability to
validate the correct application of the security policies. The
proposed approach in this paper deals with both enforcing
and validating the database design with the use of security
patterns: the patterns that are specified in an upper model
layer enforce the designers to apply them in the application
model, and enable the validation of the correct usage of the
defined patterns.

III. BACKGROUND FOR THE PROPOSED APPROACH
To set the background for the proposed approach, in this

section we elaborate on the ADOM approach and the
fundamental SQL mechanism for enforcing security over a
database.

A. The ADOM Approach
The Application-based Domain Modeling

(ADOM) [13], [14] is rooted in the domain engineering
discipline, which is concerned with building reusable assets
on the one hand, and representing and managing knowledge
in specific domains on the other hand. ADOM supports the
representation of reference (domain) models, construction of

1 A multilevel database permits the classification of information according
to its confidentiality, and considers mandatory access control.

enterprise-specific models, and validation of the enterprise-
specific models against the relevant reference models.

The architecture of ADOM is based on three layers:
(1) The language layer comprises metamodels and

specifications of the modeling languages. In this paper
we use UML 2.0 class diagrams as the modeling
language.

(2) The domain layer holds the building elements of the
domain and the relations among them. It consists of
specifications of various domains; these specifications
capture the knowledge gained in specific domains in
the form of concepts, features, and constraints that
express the commonality and the variability allowed
among applications in the domain. The structure and
the behavior of the domain layer are modeled using the
modeling language defined in the language layer. In
this paper we introduce the structure of each pattern in
a domain model.

(3) The application layer consists of domain-specific
applications, including their structure and behavior. The
application layer is modeled using the knowledge and
constraints presented in the domain layer and the
modeling constructs specified in the language layer. An
application model uses a domain model as a validation
template. All the static and dynamic constraints
enforced by the domain model should be applied in any
application model of that domain. In order to achieve
this goal, any element in the application model is
classified according to the elements declared in the
domain model using UML built-in stereotype. In this
paper the application model elements are classified by
the patterns (domain) model elements.

For describing variability and commonality, ADOM
uses multiplicity stereotypes that can be associated to all
UML elements, including classes, attributes, methods,
associations and more. The multiplicity stereotypes in the
domain model aim to define how many times a model
element of this type may appear in an application model.
This stereotype has two associated tagged values - min and
max - which define the lowest and the upper most
multiplicity boundaries. For clarity purposes, four
commonly used multiplicity groups were defined:
<<optional many>> (0:n), <<optional single>> (0:1),
<<mandatory many>> (1:n), and <<mandatory single>>
(1:1).

The relations between a generic (domain) element and
its specific (application) counterparts are maintained by the
UML stereotypes mechanism: each one of the elements that
appears in the domain model can serve as a stereotype of an
application element of the same type (e.g., a class that
appears in a domain model may serve as a classifier of
classes in an application model). The application elements
are required to fulfill the structural and behavioral
constraints introduced by their classifiers in the domain
model. Some optional generic elements may be omitted and
not be included in the application model, while some new
specific elements may be inserted in the specific application
model; these are termed application-specific elements and
are not stereotyped in the application model.

42

ADOM also provides validation mechanism that
prevents application developers from violating domain
constraints while (re)using the domain artifacts in the
context of a particular application. This mechanism also
handles application-specific elements that can be added in
various places in the application model in order to fulfill
particular application requirements.

B. Granting Privileges Using SQL
While using SQL, users can access or manipulate data

they do not own. To cope with this capability and enforce
data security, SQL provides a mechanism of privilege
access. This is done by specifying a set of access rules
which define the required privileges. Syntactically, the
access rules are defined using the GRANT statement; a
short version of it is as follows: GRANT [privileges]
ON [table-name] TO [authorization-
names]. Privileges can be one of the following: SELECT
UPDATE, INSERT, and DELETE. Authorization-names
refer to a list of users or roles. Naturally, creating roles and
groups are also part of the security mechanism provided by
SQL for managing databases.

IV. THE PROPOSED APPROACH
In this paper we propose an approach for validating the

usage of security patterns and utilizing the knowledge
encapsulated in these patterns for generating secure database
schemata. For this purpose, we adopt the ADOM approach
in which the security patterns are defined within the domain
layer, along with transformation rules of how to inject the
specification into a database scheme. The patterns will be
enforced in the application model. The following stages are
part of the sought approach:
1. A domain model should be developed by a security

expert and a domain engineer. That model consists of
the security patterns specification, as well as rules for
their transformation into a database scheme. In this
paper, we do not refer to this stage, and assume that the
domain model containing the security patterns is
correct. Yet, we refer to the stage outcomes.

2. An application model (in this paper, we refer to a class
diagram based model) is specified by a developer.

3. The application model is classified according to the
domain model (i.e., the security patterns) by a
developer.

4. The classified application model is validated
automatically against the domain model for the correct
usage of the patterns and its fulfillment with respect to
these patterns.

5. Having a valid classified application model, the model
can be translated automatically into a database scheme.

In the following, we describe the domain model and the
way according to which the security patterns are defined.
Then, we discuss the procedure of applying the security
patterns in a specific application, followed by an
explanation of the validation algorithm of ADOM and its
application in the context of the proposed approach. Finally,
the transformation of the application specification into a
database scheme is described and demonstrated.

A. The Domain Model
In Figure 3, the RBAC security pattern is specified using

the terminology of ADOM. The Role is akin to external
entity/user playing a specific function that needs an access
to the database. In that case, it is required that in any
application implementing or using the RBAC pattern, at
least one role should be defined. The ProtectionObject is
akin to a table in the database. The Rights association class
determines the privileges of a Role with respect to a specific
ProtectionObject. A class of that type within an application
must include at least one privilege.

<<mandatory many>>
Role

<<optional many>>
ProtectionObject

<<mandatory many>> -type : RightType
Rights

-SELECT
-INSERT
-DELETE
-UPDATE

<<Enum>>
RightType

<<mandatory many>>

Figure 3. The RBAC security pattern residing within the domain layer.

In addition to the pattern specification, the pattern also
refers to a transformation rule stating the way according to
which a specification of an application should be
transformed into a database scheme. Utilizing the access
privileges mechanism as described in Section III.B, we
propose the following transformation rules (that are related
to privileges) to be applied on application models2:
1. CREATE ROLE [role-class-name];

This rule means that for every class in the application
model that is classified as role, this statement should be
created.

2. GRANT [rights.type*] ON
[protectionObject-class-name] TO
[role-class-name];
This rule means that a statement of that type will be
produced for every association class in the application
model classified as Rights.

B. The Application Model

For the specification of an application, we use a simple
application of students and their course grades, denoted as
GRADA. In that application, the approved users (i.e., roles)
are a secretary and a student. Figure 4 presents the class
diagram of this application along with the security
specification as determined by the RBAC patterns described
in Figure 3. The various elements that are relevant for the
RBAC security pattern are classified (by stereotypes) with
the pattern elements: Role, ProtectionObject, and Rights.
Following the specification in the class diagram of the
application, an External-Student has a SELECT privilege to
the Course, Grade, and Student classes. In addition, an
External-Student has an UPDATE privilege to Student class.

2 Additional rules for creating database object such as tables should be
defined as well.

43

The Secretary has SELECT and UPDATE privileges to the
Course and Grade classes, and in addition, an INSERT and
DELETE privileges to the Grade class.

<<ProtectionObject>>
Course

<<ProtectionObject>>
Student

Lecturer

<<ProtectionObject>>
Grade

Department

<<Role>>
Secretary

<<type>> -SELECT
<<type>> -UPDATE

<<Rights>>
External-Student-Student

<<type>> -SELECT

<<Rights>>
External-Student-Course

<<type>> -SELECT

<<Rights>>
External-Student-Grade <<type>> -SELECT

<<type>> -UPDATE
<<type>> -INSERT
<<type>> -DELETE

<<Rights>>
Secretary-Grade

-SELECT
-UPDATE

<<Rights>>
Secretary-Course

<<Role>>
External-Student

Figure 4. The classified application model of the GRADA system residing

within the application layer.

C. Validating the Application Model
As noted before, the various elements that are relevant

for the RBAC security pattern are classified (by stereotypes)
with the pattern elements that are described in the domain
model of the pattern. This enables the validation of the
application specification with respect to the RBAC security
pattern.

The validation of an application against its domain
model is performed in three steps: element reduction,
element unification, and model matching. In the element
reduction step, classes that are not stereotyped by elements
of the domain model are neglected. In the case of the
GRADA application the classes of Department and Lecturer
are ignored. During the element unification step, classes
having the same domain stereotyped are unified, leaving
only one class in the resultant model. The multiplicity of
that class denotes the number of distinct classes in the
application model having the same stereotype. In the
example of GRADA application, the resultant model
consists of three classes: Role with multiplicity of 2,
ProtectionObject with multiplicity of 3, and Rights with
multiplicity of 5. In the model matching step, the resultant
model of the previous step is matched against the domain
model. In the case of the GRADA application the model
adheres with the domain model (i.e., the RBAC pattern). In
case there were classes classified as ProtectionObject with
no association classes Rights to classes classified as Role, it
would be a violation of the domain model.

D. Implementing the Application Model
Another aspect of using the patterns is the creation of

SQL scripts that define the access privileges to the database
of the application. In the GRADA example, the script shown
in Figure 5 will be generated following the rule specified in
Section IV.A. Note that in this work we assume that the
class diagram of the application is automatically
transformed to a relation database scheme, as discuss
by [18]. In the example of GRADA application, the tables
Student, Course, Grade, Department, and Lecture already
exist, along with other tables that reflect the associations
among the classes.

Figure 5. The SQL script for enforcing authorization.

V. SUMMARY
In this paper we proposed a novel approach that utilizes

security patterns for enforcing security over database
application design and for injecting security constraints to
the database. The advantages of the proposed approach
stems from the two layering approach which enable the
enforcement of the security patterns.

The limitations of the proposed approach lie in lack of
expressiveness of security constraints for low level elements
such as attributes. A possible solution for this limitation can
be the usage of the extension mechanisms of UML,
similarly to [4]. However, this requires a thorough
examination.

Future research directions include the enforcement of
more complex security patterns on an application design,
and the implementation of the approach on more powerful
database security mechanisms such as Virtual Private
Database [15] and OLS [16] of Oracle.

REFERENCES
[1] B. Vela, E. F. Medina, E. Marcos, and M. Piattini, "Model

Driven Development of Secure XML Databases," ACM
SIGMOD Record, vol. 35, 3, Sept. 2006, pp. 22-27.

[2] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I.
Fiksdahl-King, and S. Angel, “A Pattern Language: Towns,
Buildings, Construction,” Oxford University Press, 1977.

[3] D. F. Ferraiolo, and D. R. Kuhn, “Role Based Access
Control,” 15th National Computer Security
Conference, Baltimore, Maryland, Oct. 1992, pp. 554-563.

CREATE ROLE External-Student;
CREATE ROLE Secretary;
GRANT SELECT, UPDATE ON Student TO
External-Student;
GRANT SELECT ON Course TO External-
Student;
GRANT SELECT ON Grade TO External-
Student;
GRANT SELECT, UPDATE ON Course TO
Secretary;
GRANT SELECT, UPDATE, INSERT, DELETE
ON Grade TO Secretary;

44

[4] E. Fernández-Medina and M. Piattini, “Designing Secure
Databases,” Information and Software Technology, vol. 47
(7), 2005 , pp. 463-477.

[5] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides,
“Design Patterns: Elements of Reusable Object-Oriented
Software,” Addison-Wesley Professional, 1994.

[6] E.B. Fernandez, M.M. Larrondo-Petrie, T. Sorgente, and M.
VanHilst, “A Methodology to Develop Secure Systems Using
Patterns,” Integrating Security and Software Engineering:
Advances and Future Vision, H. Mouratidis and P. Giorgini
Eds., IDEA Press, Ch. 5, 2006, pp. 107-126.

[7] G. Dhillon, “Information Security Management: Global
challenges in the New Millennium,” Idea Group Publishing,
2001.

[8] G. Dhillon, and J. Backhouse, “Information System Security
Management in the New Millennium,” Communications of
the ACM, vol. 43 (7), 2000, pp. 125–128.

[9] G. Georg, I. Ray, and R. France, “Using Aspects to Design a
Secure System,” Proc. of the Eighth IEEE International
Conference on Engineering of Complex Computer Systems,
(ICECCS 2002), ACM Press, Greenbelt, MD, Dec. 2002, pp.
117- 126.

[10] H. Mouratidis, and P. Giorgini, “Secure Tropos: A Security-
Oriented Extension of the Tropos methodology,” International
Journal of Software Engineering and Knowledge Engineering,
vol. 27, no.2, 2007, pp. 285-309.

[11] H. Mouratidis, P. Giorgini, and G. Manson, “When Security
Meets Software Engineering: A Case of Modeling Secure
Information Systems,” Information Systems, vol.30, no.8,
2005, pp. 609-629.

[12] I. Ray, R. B. France, N. Li, and G. Georg, “An Aspect-Based
Approach to Modeling Access Control Concerns,” Journal of

Information and Software Technology, vol. 46, no. 9, 2004,
pp. 575-587.

[13] I. Reinhartz-Berger, and A. Sturm, “Enhancing UML Models:
A Domain Analysis Approach,” Journal of Database
Management (JDM), vol. 19 (1), 2007, pp. 74-94.

[14] I. Reinhartz-Berger, and A. Sturm, “Utilizing Domain Models
for Application Design and Validation,” Information &
Software Technology, vol. 51 (8), 2009, pp. 1275-1289.

[15] J. Czuprynski, “Oracle 10g Security,” Part 2 - Virtual Private
Database, The Database Journal,
http://www.databasejournal.com/ ,2006.

[16] J. Czuprynski, “Oracle Label Security,” The Database
Journal, http://www.databasejournal.com/, 2003.

[17] J. Jürjens, “Secure Systems Development with UML”, 2004,
Springer.

[18] M. Blaha, W. Premerlani, and H. Shen, “Converting OO
Models into RDBMS Schema,” IEEE Software vol. 11 , May
1994, pp. 28-39.

[19] M. Schumacher, E. B. Fernandez, D. Hybertson, F.
Buschmann, and P. Sommerlad, “Security Patterns:
Integrating Security and Systems Engineering,” John Wiley &
Sons, 2006.

[20] T. Lodderstedt, D. A. Basin, and J. Doser, ”SecureUML: A
UML-Based Modeling Language for Model-Driven Security,”
Proc. of the 5th international Conference on the Unified
Modeling Language, Lecture Notes In Computer Science, vol.
2460, J. Jézéquel, H. Hußmann, and S. Cook, Eds. Springer-
Verlag, London, Oct. 2002, pp. 426-441.

[21] T. Peng, J. Dong, and Y. Zhao, “Verifying Behavioral
Correctness of Design Pattern Implementation,” Proceedings
of the 20th International Conference on Software Engineering
and Knowledge Engineering (SEKE), CA, USA, July 2008,
pp. 454-459.

45

Security patterns and quality

Eduardo B. Fernandez
1
, Nobukazu Yoshioka

2
, and Hironori Washizaki

3

1 Dept. of Comp. Science and Eng., Florida Atlantic University, Boca Raton, FL, USA, ed@cse.fau.edu

2 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan

nobukazu@nii.ac.jp

3 Waseda University / GRACE Center, National Institute of Informatics, 3-4-1, Okubo, Shinjuku-ku,

Tokyo, Japan, washizaki@waseda.jp

Abstract. Security patterns are increasingly being used to

build secure systems. An important question is: How can

we show that a system built in this way is secure in some

sense? We discuss this question in this paper.

I. INTRODUCTION

Patterns are normally evaluated by submitting them to

some pattern conference, e.g. Pattern Languages of

Programs (PLoP) or EuroPLoP. In these conferences, a

pattern paper is developed with the help of a shepherd

and then discussed in a workshop. The pattern is then

published and exposed for criticism. Of course, the

ultimate evaluation comes when developers use them

in their designs. Formal modeling of patterns and

combinations of patterns can prove some of the

properties of the solution. A pattern that has gone

through all these steps is believed to have some good

level of quality, in the sense of being correct, reusable,

understandable, and easy to tailor to specific

requirements. This conclusion applies to security

patterns as well.

Assuming that we have ways to show the quality of

individual patterns, it is more meaningful to ask: what

degree of security can a system reach by the use of

patterns in its construction? Or similarly, how secure it

is, according to some definition od security? Security

is a quality property of a system architecture [1] and

we need ways to evaluate the effect of patterns on

improving this quality. Security is a quality for which

there are no numerical measures. It can only be

defined in a relative way with respect to another

system or by showing that a system satisfies some

requirements. In particular, we are developing a

methodology to build secure systems [3,4], based on

adding security patterns along the life cycle and in all

the architectural layers of the system. How can we

show that a system built in this way is secure? We

discuss this question in this paper.

II. EVALUATING SECURITY

For our analysis we consider the effect of security

patterns and misuse patterns. Security patterns can

stop or mitigate specific threats and their consequent

misuses. This means that each pattern added to the

system could contribute to the total security of the

system. Misuse patterns describe, from the point of

view of the attacker, how a type of attack is performed

(what units it uses and how), and analyzes the ways of

stopping the attack by enumerating possible security

patterns that can be applied for this purpose [5].

Threats are attacker goals and they can become

misuses, described by misuse patterns. There may be

more than one misuse pattern to realize a threat.

Misuses include internal (insider) and external attacks

(hackers). Misuse patterns describe how to realize the

threats in T, the set of possible threats in a system; for

example, a specific misuse could be an illegal access

to a specific file which could be used to read a file

with credit card information (the goal of the attacker).

Threats can be enumerated systematically [2] and it is

possible to build catalogs of misuse patterns [6].

If we consider all the threats to two specific systems,

we can see how they handle their respective threats. If

we have two versions of a system, following the same

requirements, R, one built using security patterns, S1a,

and another without them, S1b (Figure 1), we can

compare them by enumerating the set of threats of the

system, T, and seeing how the two systems can stop

these threats. We can see how they handle the known

security threats by analysis or by tests on the actual

code.

To make the comparison more precise we can consider

misuse patterns, M, which can be applied to see the

effect of generic attacks on the system and see how the

two systems can handle them. A misuse may involve

low-level threats that would not show in an analysis of

46

application threats. In Figure 1, T is a set of threats,

specific to a system, while M is a general set of typical

misuses that applies to any system, although they must

be tailored to the specific context of the misuse.

built using

security

patterns

built w ith

another

method

S 1a

S 1b

R

Reqs.

Threats
T

M

Misuse Patts

Figure 1. Comparing secure systems

Every application-level threat must be controlled. The

same is not true for low-level threats because some of

them may not lead to misuses or may lead to misuses

we consider of small risk. A Denial of Service to

access accounts in a financial institution is performed

through a Denial of Service to the server which holds

the accounts. A more complex example would be an

illegal transfer of money from a customer account to a

hacker account, which requires modifying some files

that contain the relations with the account data. A

policy that can stop this attack would be Need to know

and some patterns to realize it in the specific platform:

File Authorization, OS Authentication, and DBMS

Authorization. In the same way, we can show how to

stop each threat in T. If the system being considered

contains the necessary patterns, we can say it is secure

with respect to those threats.

 III CONCLUSIONS

Certification is frequently performed by showing that a

given process was followed and verifying that all steps

have been performed. While this is clearly not

sufficient for security, it adds up to the feeling of

security. Following a systematic methodology such as

ours, can enhance the confidence that the system is

secure. At the end of each stage of the life cycle we

can show that all threats have been handled. We can

show this also for the complete system. For a system

built using another methodology not using patterns we

would need to analyze how that system can stop the

threats, Applying the comparison to several

representative cases we can get to some conclusion

about the relative security obtained using patterns and

not using them. We intend to perform some

experiments comparing our methodology to others.

We do not think that it is possible to formally prove

security properties in a complex application; in

addition the additional effect of the platform would

make such an analysis impractical.

REFERENCES

[1] L.Bass, P. Clements, and R.Kazman, Software

architecture in practice (2
nd

 Ed), Addison-Wesley

2003.

[2] F. Braz, E.B.Fernandez, and M. VanHilst,

"Eliciting security requirements through misuse

activities" Procs. of the 2nd Int. Workshop on Secure

Systems Methodologies using Patterns (SPattern

'07). Turin, Italy, September 1-5, 2008. 328-333.

[3] E. B. Fernandez, M.M. Larrondo-Petrie, T.

Sorgente, and M. VanHilst, "A methodology to

develop secure systems using patterns", Chapter 5 in

"Integrating security and software engineering:

Advances and future vision", H. Mouratidis and P.

Giorgini (Eds.), IDEA Press, 2006, 107-126.

[4] E.B.Fernandez, N. Yoshioka, H. Washizaki, and J.

Jurjens, "Using security patterns to build secure

systems", position paper in the 1st Int. Workshop on

Software Patterns and Quality (SPAQu'07), Nagoya,

Japan, December 3, 2007, collocated with the

14th Asia-Pacific Software Engineering Conference

(APSEC),

[5] E.B. Fernandez, N. Yoshioka and H. Washizaki,

"Modeling misuse patterns", Procs. of the 4th Int.

Workshop on Dependability Aspects of Data

Warehousing and Mining Applications (DAWAM

2009), in conjunction with the 4th Int.Conf. on

Availability, Reliability, and Security (ARES 2009).

March 16-19, 2009, Fukuoka, Japan.

[6] J. Pelaez, E.B.Fernandez, and M.M. Larrondo-

Petrie, "Misuse patterns in VoIP", Security and

Communication Networks Journal. Wiley.Published

online: 15 Apr 2009

47

Abstract— A variety of security patterns have been presented, and

there are several books about them. However, patterns are not very
useful without a systematic way to apply them. For this purpose, we
have developed a methodology to build secure systems. We have not
until now considered usability aspects of the security mechanisms
needed in those systems. We have also developed patterns for making
security more usable. We are starting to add to our methodology some
of the results of this work and to develop new aspects of their
combination. We present here some preliminary ideas on how to
combine these two approaches.

Index Terms—interactive and design patterns, HCI-S, usability

I. INTRODUCTION
 Security patterns specify best practices to design and develop
secure software. A variety of security patterns have been
presented, and there are several books about them. However,
patterns are not very useful without a systematic way to apply
them. For this purpose, we have developed a methodology to
build secure systems [2].

Most systems are interactive and the interaction usually
occurs through a graphical user interface. The security of
human computer interaction (HCI-S) considers how the
security features of the user interface can be as friendly and
intuitive as possible, to let users understand the available
security features, thus avoiding errors in their use. A group of
HCI-S patterns have been designed for this effect [4, 5]. In
particular, privacy is a growing concern. In places where we
need the users to provide personal information we should
guarantee to them that this information is being sent to the right
place and will not be misused. We have written some interface
patterns for this purpose [3].

 We intend to add to our secure development methodology
some of the results of the HCI-S work and to develop new
aspects of their combination. We present here some preliminary
ideas on how to combine these two approaches. Section 2
summarizes the secure methodology while Section 3 considers
some ways where these approaches may be synergistically
combined.

II. A METHODOLOGY FOR SECURE SYSTEMS DESIGN
The main ideas of our methodology are that security

principles should be applied at every stage of the software
lifecycle and that each stage can be tested for compliance with

security principles. Another basic idea is the use of patterns to
guide security at each stage. Patterns are applied to cover all
architectural levels. This methodology considers the following
development stages:
 Domain analysis stage: A business model is defined. This
phase should be performed only once for each new domain.
General security constraints, including regulations and
institution policies, can be applied at this stage.

Requirements stage: Use cases define the required
interactions with the system. Applying the principle that
security must start from the highest levels, it makes sense to
relate attacks to use cases. We study each action within a use
case and see which threats are possible. We then determine
which policies would stop these attacks. From the use cases we
can also determine the needed rights for each actor and thus
apply a need-to-know policy. The security test cases for the
complete system are also defined at this stage.

Analysis stage: Analysis patterns can be used to build the
conceptual model in a more reliable and efficient way. Security
patterns describe security models or mechanisms. We can build
a conceptual model where repeated applications of a security
model pattern realize the rights determined from use cases. In
fact, analysis patterns can be built with predefined
authorizations according to the roles in their use cases. In that
case, we only need to additionally specify the rights for those
parts not covered by patterns.

Design stage: When we have the possible attacks to the
system, design mechanisms are selected to stop these attacks.
User interfaces should correspond to use cases and may be used
to enforce the authorizations defined in the analysis stage.
Components can be secured by using authorization rules for
Java or .NET components. Distribution provides another
dimension where security restrictions can be applied.
Deployment diagrams can define secure configurations to be
used by security administrators. A multilayer architecture is
needed to enforce the security constraints defined at the
application level. In each level we use patterns to represent
appropriate security mechanisms. Security constraints must be
mapped between levels.

Implementation stage: This stage requires reflecting in the
code the security rules defined in the design stage. Because
these rules are expressed as classes, associations, and
constraints, they can be implemented as classes in
object-oriented languages. In this stage we can also select
specific security packages or COTS, e.g., a firewall product, a
cryptographic package. Some of the patterns identified earlier

Extending a Secure Software Methodology with
Usability Aspects

Eduardo B. Fernandez1 and Jaime Muñoz-Arteaga2,
1Dept. of Comp. Science and Eng., Florida Atlantic University, Boca Raton, FL, USA, ed@cse.fau.edu

2 Universidad Autónoma de Aguascalientes, México, jmunozar@correo.uaa.mx

48

in the cycle can be replaced by COTS (these can be tested to see
if they include a similar pattern).

III. A POSSIBLE COMBINATION
We can incorporate these usability patterns in our

methodology in two basic ways:
• For the construction of interactive applications. Some

interactions can be very sensitive, such as accessing a bank
account by its owner. It is important for the users of such
systems to be aware of the security attacks that are possible in
the interaction. As an example, the activity diagram of Figure 1
shows the activities needed to open an account in a financial
institution. For each activity we may need to use a specific
screen, e.g. to create an account a manager would use a “Create
Account” screen. The figure also shows possible attacks [1]; for
each of them we need to warn the user in case it is happening or
about the possibility of the attack happening if some
precautions are not taken. From the scenarios and activity
diagrams of the requirements stage we can see where we need
views (screens) to interact with the system. These views are
associated with conceptual model classes in the analysis stage.
In the design stage we can use the MVC pattern to implement
the views. For each view we can add a security subview,
intended to provide feedback to the user in case of threats or if
the user accidentally performs a potentially insecure action.
Warnings about privacy can also be included in this way. For
example, for the action “Provide personal information”, the
customer would receive warnings about privacy and a
description of what security measures the system would take to
protect this information. He would also be warned that his
interaction with the institution requires checking that he is
talking to the authentic web site.

• To develop convenient facilities for security
administrators. Each security mechanism needs the definition
of rules to indicate who can access specific resources of the
system and what she can do with them. The person in charge of
maintaining these rules is the security administrator. A
confusing view of the authorization could result in errors and
subsequent security violations. The administration interfaces
should show clearly which roles have which rights, which users
belong to a specific role, which are the rights of each role, etc.
Of particular importance is the effect of new or changed rules;
in this case the interface should display the effect of changes
before the change becomes effective.

The security of human interaction considers how the security
features of the user interface can be as friendly and intuitive as
possible, to let users understand the security features, thus
avoiding errors in their use. A group of patterns have been
designed for this effect [4,5], which can be used in the
corresponding user interfaces. These patterns can be applied to
the two situations described above. Our approach can be
described as a model-driven, pattern-based methodology and
we believe that this is the appropriate level where security
should be applied, not just in the code.

Figure 1. Activities in use case “Open account”

IV. CONCLUSIONS
Usability aspects are fundamental in any development

methodology since almost all applications require some type of
user interaction. Usability is usually reflected in the logical
structuring of class operations and in the way to show to the
users normal and exceptional operation of the system. In
particular, the usability of the security administrator interfaces
is basic for security. We have proposed here an approach to
integrate a secure systems development methodology with a
methodology to make user interfaces more usable for security
purposes. We are still in the process of defining its specific
details and scope and we expect to get ideas for further work
from this workshop.

REFERENCES
[1] F. Braz, E.B.Fernandez, and M. VanHilst, "Eliciting security

requirements through misuse activities" Procs. of the 2nd Int. Workshop
on Secure Systems Methodologies using Patterns (SPattern'07). In
conjunction with the 4th International Conference onTrust, Privacy &
Security in Digital Busines(TrustBus'07), Turin, Italy, September 1-5,
2008. 328-333.

[2] E. B. Fernandez, M.M. Larrondo-Petrie, T. Sorgente, and M. VanHilst,
"A methodology to develop secure systems using patterns", Chapter 5 in
"Integrating security and software engineering: Advances and future
vision", H. Mouratidis and P. Giorgini (Eds.), IDEA Press, 2006,
107-126.

[3] L.L. Lobato and E.B. Fernandez, "Patterns to support the development of
privacy policies", Procs. of the First Int. Wokshop on Organizational
Security Aspects (OSA 2009). In conjuction with ARES 2009.

[4] R. Mendoza, J. Muñoz-Arteaga, M. Vargas, and F. Alvarez-Rodriguez,
“A pattern methodology to specify usable security in websites”, Procs. of
the Third Int. Workshop on Secure System Methodologies using Patterns
(SPattern 2009). August 31-Sept. 4, Linz, Austria

[5] J. Muñoz-Arteaga , R.Mendoza-Gonzalez, J. Vanderdonckt, F.
Álvarez-Rodriguez, “A methodology for designing information security
feedback based on user interface patterns, Journal of Advances in
Engineering Software (JAES), Elsevier, April 2009..

49

	000-SPAQu09-proceedings-binding.pdf
	001-SPAQu09-proceedings-index.pdf
	01-wks0000017-washizaki.pdf
	02-F6-bradbury_SPAQu09.pdf
	03-P2-AbstractTestabilityPatterns.pdf
	04-P4-draft.pdf
	05-P1-sparqu_2009.pdf
	06-F5-boyer-misic-final.pdf
	07-F7-document.pdf
	08-F3(P)-SPAQu_CameraReadyVerNew_Dajsuren_vdBrand.pdf
	09-F4-SPAQU-vanhilst-fernandez-braz-012.pdf
	References

	10-F1-SPAQU09-SturmAbramovShoval-CRC.pdf
	11-P3-SecPattQualityOct08-09.pdf
	12-P5-Fernandez-Extending.pdf

