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Abstract: For regression problems that involve many potential predictors, the Bayesian variable selection
(BVS) method is a powerful tool, which associates each model with its posterior probabilities, and achieves
superb prediction performance through Bayesian model averaging (BMA). Two challenges of using such
models are, specifying a suitable prior, and computing posterior quantities for inference. We contribute to
the literature of BVS modeling in the following aspects. First, we propose a new family of priors, called
the mnet prior, which is indexed by a few hyperparameters that allow great flexibility in the prior density.
The hyperparameters can also be treated as random, so that their values need not be tuned manually, but
will instead adapt to the data. Simulation studies are used to demonstrate good prediction and variable
selection performances of these models. Secondly, the analytical expression of the posterior distribution
is unavailable for the BVS model under the mnet prior in general, as is the case for most BVS models.
We develop an adaptive Markov chain Monte Carlo (MCMC) algorithm that facilitates the computation
in high dimensional regression problems. Finally, we showcase various ways to do inference with BVS
models, highlighting a new way to visualize the importance of each predictor, along with estimation of the
coefficients and their uncertainties. These are demonstrated through the analysis of a breast cancer dataset.
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1. INTRODUCTION

Penalized regression (PR) methods such as the ridge, the lasso, the elastic net (enet), and the
minimax concave penalty (mcp) methods have seen wide applications as alternatives to the least
squares method in fitting regression models. Assume that the data arise from a linear model
Y = XB +¢ where Y isann x 1response, X = (X3, -, X,) denotes ¢ potential predictors,
€ is an n x 1 vector of independent and identically distributed normal errors with mean 0 and
variance o2, and B = (B4, ... ,ﬂq)T is the vector of coefficients. Without loss of generality,
suppose Y "1 =0, X1 =0and X, X; = nforj = 1,...,q, so that an intercept is not needed.
Two major goals are to identify the most relevant explanatory variables, and to predict future
responses. A PR method estimates 3 using the minimizer of

L(BN) = o[V = XBI? + p(Bi ). n

where p(-; A) : R? — R" is a penalty function with penalty parameter A, and || - || denotes the
L- norm. Relative to the least squares method, PR methods generally estimate coefficients to be
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closer to zero, and sometimes exactly zero, which in effect drops the corresponding predictors
from the model. Assessing the uncertainty of the selected model is important yet challenging,
and is the subject of an active research area (see Lockhart et al. (2014)).

It is well known that PR solutions can be interpreted as the posterior mode of Bayesian
models under appropriately specified priors (Tibshirani, 1996; Zou & Hastie, 2005), and many
Bayesian models have been developed upon such connections. For instance, inspired by the lasso
penalty function, Park & Casella (2008) assigned an independent double exponential prior on 3,

f(Blo?,A) 11 exp {_M} And inspired by the enet penalty function, Li & Lin (2010)

o
>\1|ﬁj|+)\2ﬁ_?
52

proposed an independent enet prior, f(3|o%,A) o II; exp {— } These Bayesian

models are completed by assigning a prior to (o2, ). Compared to their PR counterparts, the
Bayesian models are advantageous in having the entire posterior distributions to draw inference
from. Note that the above priors for 3 are continuous, hence the posterior probability is concen-
trated on the full model. Various follow-up procedures are available to exclude predictors, such
as dropping coefficients with close-to-zero posterior means (Ishwaran & Rao, 2005).

In this paper, we adopt an alternative framework, namely, the Bayesian variable selection
(BVS) framework, given in Equations (2a) to (2d). Briefly, a binary vector v = (y1,- -+ ,74) i8
introduced to denote a subset of predictors, where v; equals 1 if predictor j is included. A prior is
assigned over the space of the 29 models, which leads to a posterior distribution of ~y that reflects
the plausibility of each model. Conditional on a given -y, a continuous prior is assigned to the
coefficients of the selected predictors, ,B,Y ={ Bitv = 1}, while the other coefficients are fixed
at zero. Mitchell & Beauchamp (1988) was among the first to propose a BVS model, and many
variations of it have been studied, see, for e.g., George & McCulloch (1993, 1997), Geweke
(1996), Smith & Kohn (1996), Liang et al. (2008), O’Hara & Sillanpia (2009). In existing litera-
ture, the priors for 3., are often related to different penalty functions. For example, Johnstone &
Silverman (2005) and Yuan & Lin (2005) specified an independent double-exponential prior for
By f(B4l0? ) o< I, =1} €xp {—% }, that corresponds to the lasso penalty. And Hans
(2011) considered a Bayesian enet model that uses the same enet prior as that of Li & Lin (2010),
but for 3, instead of 3.

Our paper adds to the literature by proposing a new, versatile family of priors for the coef-
ficients. The new prior is related to the minimax concave (mc) penalty function (Zhang, 2010),
and an extension of it called the mnet penalty function (Huang et al., 2016+), to be introduced
in sec. 2. We refer to the new prior as the mnet prior, and the corresponding BVS model as the
Bayesian mnet (bmnet) model. An mnet prior is indexed by a vector of hyperparameters A, anal-
ogous to the “penalty parameters” in the mnet PR method. Certain choices of A reduce the mnet
prior to its special cases including the normal, the double exponential and the enet priors. Further,
A can be treated as random in the fully Bayesian approach. That is, instead of debating between
a normal and a double exponential prior in practice, it’s convenient to use the mnet prior, and let
the data dictate an appropriate combination of the two through dynamic calibration of .

The posterior distribution of the proposed bmnet model does not have an analytical expres-
sion. We develop a new MCMC algorithm, specifically an adaptive Metropolis-Hastings within
block Gibbs sampler, that enables computing for the bmnet model in high dimensional problems.

Finally, we demonstrate different ways to present inferential results based on BVS models,
that PR methods can not produce. These results include, but are not limited to, inclusion probabil-
ities for potential predictors, credible intervals for regression coefficients, and credible intervals
for predicting the response of new observations. We highlight a novel graphical display that
combines the importance and the impact of predictor variables, which can be found in Figure 5.
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TABLE 1: Five penalty functions.

penalty parameter(s) penalty function
ridge A= X € RT pr(t;A) = ’\72152
lasso A=X eR" pr(t;A) = Avlt]
enet A= (A,A)eRT xRT Pe(t; A) = Aaft] + 22¢°
)\1|t| — £t2, |t‘ < )\1/KZ
A=(x R* x [0,1 me(t; ) = :
mc ( 17”)6 X[: ) p (a ) {)\%/2/‘6, |t‘2)\1//€

mnet A= (A1, A2, Kk) € RT xRT x [0,1)  pan(t; A) = pme(t; A1, k) + %2752

The rest of the paper is organized as the following. A few PR methods are reviewed in sec. 2.
The BVS framework and the mnet prior are introduced in sec. 3. Computing for the proposed
bmnet model is handled by an adaptive MCMC algorithm in sec. 4. In sec. 5, simulation studies
show good prediction and variable selection performances of our model in bothqg < nand ¢ > n
situations with both moderately and highly correlated predictors. In sec. 6, analysis of a breast
cancer dataset is used to showcase various ways of making inference with our model, and with
BVS models in general. The paper concludes with a discussion in sec. 7. Certain technical details
and graphs are left for a supplement. All data analysis were done in R (R Core Team, 2015).

2. ABRIEF REVIEW OF PENALIZED REGRESSION METHODS

The penalty function in (1) usually takes an additive form,

p(B;A) = Zp(ﬁj;k%

Jj=1

Table 1 lists five popular penalty functions, among many others, from a rich literature on PR
methods. The ridge penalty is known for stabilizing the coefficient estimates when predictors are
highly correlated. But with probability 1, all coefficients have nonzero estimates. In comparison,
the lasso penalty produces sparse estimates. But the estimates are biased, and do not predict
as well under multicollinearity. The enet penalty adds an Ly term to the lasso penalty, which
encourages highly correlated predictors to be added or dropped together, and often results in
better variable selection performance than the lasso (Zou & Hastie, 2005).

The fourth function in Table 1 is the minimax concave penalty (mcp) proposed by Zhang
(2010). The mcp has two tuning parameters, A; and x. Here, x is the maximum concavity pa-
rameter, such that the mcp approaches the lasso penalty when x — 0, and the hard-thresholding
penalty when x — 1. As shown in Figure 1, at ¢ = 0, the mcp function applies penalization at the
same rate, p’, as that of lasso, but continuously relaxes the penalization until [¢| > % when the
rate drops to 0. In effect, using the mcp results in nearly unbiased estimates for large coefficients.
Here, we mention the scad penalty function (Fan & Li, 2001), which produces estimators with
three desirable properties: unbiasedness, sparsity and continuity. In fact, estimators from the mcp
method enjoy all these properties, while the mcp has a simper derivative than that of scad.

The fifth penalty in Table 1 is the mnet penalty proposed by Huang et al. (2016+), which
adds an additional Lo term to the mcp. Similar to how the enet improves upon the lasso, the
mnet has an advantage over the mcp in variable selection, especially when the correlation matrix
of the predictors has a blocking structure. The enet and the mnet methods have been shown to
have selection consistency under different conditions. The conditions on the mnet are usually
less restrictive, especially in cases where g is large relative to n. Further, the enet produces
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FIGURE 1: The lasso, the mcp and the scad penalty functions and their derivatives.

asymptotically biased estimators due to its L; component, a drawback that is overcame by the
mnet. The first four penalty functions in Table 1 are indeed special cases of the mnet penalty.
For example, the mnet penalty reduces to (a) the ridge penalty when A; = 0, (b) the mcp when
A2 = 0, and (c) the enet penalty when x = 0. Further, the mcp reduces to the lasso penalty when
x = 0. The supplement contains a graphical display of the relationship among these penalties.
Specifying the penalty parameter A in any penalty function is critical, and is typically done
by a k-fold cross-validation, with £ = 5 or 10. The chosen value of X then leads to a final model
that minimizes the penalized log-likelihood (1). Since the final model is usually sensitive to the
observed dataset, as well as the random procedure used to select A, it is important to report the
uncertainty of the selected model, as well as the estimates and predictions based on it. This is a
challenging task, and the subject of much research in the PR community. In this paper, we take a
Bayesian approach to regression problems, for which measuring model uncertainty is routine.

3. BAYESIAN VARIABLE SELECTION MODELS UNDER MNET PRIORS
3.1. The structure of the Bayesian mnet model

Let N,, (11, V') denote the n-dimensional multivariate normal distribution with mean x and co-
variance matrix V. The general form of a BVS model is given by

Y|B,7,0% A w~Nn (X408, ,0°1,), (2a)

Bil 7, 0% A w B v fa o2 (B)) + (1= 7;)d0, forj=1,---,q, (2b)

a2\, w~ f(o?), (2¢)

Ylw~ fu(v). (2d)

Here, v = (71,...,7) € {0,1}?2 =: T indexes a set of selected predictors, and (3 is a vector

containing {/3; : 7; = 1}. The hierarchical prior is given in (2b) — (2d). Specifically, (2c) assigns
a prior to o2, that is independent of A and w. A common non-informative prior for o2 is an
inverse-gamma distribution with large mean and variance, as it is a conditionally conjugate prior
for the Bayesian normal and the Bayesian lasso model. Alternatively, one can assign log(o) a
uniform prior over (— log(o), log(og)) for some large constant oy. Next, (2d) specifies a prior
on . A simple choice is the independent Bernoulli distribution with success probability w. Here
w is a hyperparameter and we discuss ways to specify it in sec. 3.2. We mention that «y can also
be assigned priors that incorporate information on the covariance structure of the predictors. See,
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for e.g., Chipman (1996), Geweke (1996), Yuan & Lin (2005), Li & Zhang (2010).
The regression coefficients are assigned a prior in (2b), that comprises a point mass at zero,
do, and a continuous part, f ,2(/3;). Given a penalty function p(-; X), we specify

fao2(B;) =0 teaexp {—p (ij A) } .

When the penalty function is taken to be ppy, (- ; A), the mnet penalty in Table 1, we call the model
in (2) the Bayesian mnet (bmnet) model. Any mnet prior with x > 0 is a proper prior, which has
a normalizing constant ¢y = 1 / fR exp { — %p(t; A) }dt, that either has an analytical form or is
easy to approximate numerically. Note that proper priors must be assigned for 3., in the BVS
model (2), as improper priors cause indeterminacies in posterior model probabilities (Liang et al.,
2008; Berger & Pericchi, 2001). So we eliminate any mnet prior with x = 0, namely any “mc
prior”, from further discussion.

3.2. Choice of hyperparameters

The bmnet model provides users a lot of flexibility, as it becomes the Bayesian normal, lasso,
enet models, or any particular bmnet model by varying the hyperparameter A. Nevertheless,
as A resides deep in the hierarchy of the bmnet model, it is challenging to specify the value
for some or all of (A, w) = (A1, A2, k,w) based on intuition. Three possible solutions are,
choosing the hyperparameter values using cross-validation, estimating them using the empiri-
cal Bayes (EB) method, and imposing a prior on them. Performing a k-fold cross-validation
requires fitting the bmnet model k times for each combination of (A1, A2, &, w) over a grid in
the four dimensional space, hence expensive computationally. The EB method refers to setting
(X, w) to its maximum likelihood estimate (mle), (A*®, wF8) = arg max(x .,y (Y|, w), where
fYxNw)y =3 [ [ f(Y]B,7, o2, A\, w)f(B,7, %A, w) dBdo?. Although the exact mle is
hard to obtain, it is possible to approximate it with a Monte Carlo EM algorithm (Casella, 2001).
We do not pursue the EB solution in this paper, other than mentioning that, a simple modification
to our MCMC algorithm in sec. 4 allows one to carry out the needed Monte Carlo EM algorithm.

In this paper, we focus on the third solution, namely the fully Bayesian approach, that assigns
a prior on (X, w). Of course, we still have to specify the prior distribution for (A, w). But this
is an easier task than before because the posterior is usually more robust to different choices of
priors on the hyperparameters than to the hyperparameters themselves. Similar to Hans (2011),
we assign the following independent priors to the hyperparameters:

v v ky
A1 ~ Gamma (L, 5) , Ay ~ Gamma (R, 5) , k ~ Gamma (ka, 2) , and w ~ Beta(a, b) ,
3

such that A; has prior mean 2L /v and so on. The above prior amounts to assigning independent
priors for A = (A1 + A2) ~ Gamma(L + R,v/2) and o = % ~ Beta(L, R). By default, we
set L = R = a = b = 1, resulting in a uniform prior on o and w respectively. Otherwise, if we
have prior knowledge, say, that the proportion of true predictors is mostly likely to be within .1
and .3, then (a,b) can be specified as the solution to B, 4)(.1) = .025 and B, )(.3) = .975,
where B, 5 is the cdf of Beta(a, b). Further, we set v = 1, so that the variance of A is 2/v = 2
times as large as its mean. (We experimented with smaller values of v, that is, larger prior mean
and variability in Ay, and they yield similar posterior distributions of A;, A, and other variables
in our studies, and hence are not presented.) To set k, and k;, we aim for relatively flat priors on
& such that the maximum concavity parameter of its mnet PR counterpart, k* = x/n, centers at
the default value, 1/3, as recommended in Huang et al. (2016+). The correspondence between
and * is explained in the supplement.

DOL: The Canadian Journal of Statistics/ La revue canadienne de statistique



6 AIXIN TAN AND JIAN HUANG Vol. xx, No. yy

3.3. Inference based on the posterior distribution

Recall that Y denotes the observed data, with model (2), they yield the posterior
7(8,7,0%, X, w|Y), on which all inference will be based. One may use different ways to sum-
marize the posterior distribution for different tasks such as variable selection and prediction.

For variable selection, the first method we consider is the median probability model (MPM),
which consists of variables with inclusion probabilities 7(-y; = 1|Y") greater than .5. Barbieri &
Berger (2004) shows that the MPM is predictively optimal in some sense, and is also frequently
the model that has the highest posterior probability. Another method is to obtain a credible inter-
val for each coefficient, say at level 90%, and consider a predictor important if the corresponding
credible interval excludes zero. We will compare these methods in sec. 5.2.

For predicting the response y"™" of a new observation z"*" = (z]®V,... ,x‘;ew)T, the
Bayesian solution that counts for model uncertainty is an average over all models (or a few
top models) according to their posterior probabilities (Raftery et al., 1997), namely (m“eW)TB,
where 3 = E(8]Y) = L E(Bl7,Y)m(v]Y). In addition to point estimates, credible intervals
provide a range of most probable values for parameters or predictions. For example, a (1 — «)
credible interval for E(y|2"") consists of the upper and the lower «/2 quantile of the distribution
of (z"¥) "3 where 3 ~ (3]Y), and a (1 — «) credible interval for ™" consists of the upper
and the lower «/2 quantile of the posterior predictive distribution, given by

(YY) = Sy (@) " B, 0%) (B, v, 0%, A, w]Y) dB do® dhdw . (4)
/1]

Note that there are no analytical expressions for the above estimators and credible intervals, and
we develop MCMC algorithms in sec. 4 to solve the computing problem.

4. COMPUTING FOR THE BAYSIAN MNET MODEL

In this section, we develop MCMC algorithms for the posterior distribution of the model in (2).
First, we consider fixing A and w, and denote the posterior distribution by 7(3, v, o2|Y, X, w).
Note that the simple Gibbs sampler that updates each component of (3,,0?) in turn will
not work. Because if 3; = 0 then ~; will remain 0 given (8,v(_;)), and if 3; # 0 then ;
will remain 1, making the Markov chain reducible. One solution is to include a latent vari-
able 7 for j=1,---,q, such that 3; = (377;. A continuous prior can then be assigned to
B* = (8%, ,B;), resulting in a posterior for (3%, ~, 0?), for which the simple Gibbs sampler
is irreducible. Successful execution of this idea in certain BVS models include Kuo & Mallick
(1998), Carlin & Chib (1995), and Dellaportas et al. (2002), to list a few. The latter two allow
dependent priors for 37 and 7;, hence requires specifying a “pseudo prior” on 37|y; = 0. Pseudo
priors are named so because they do not affect the posterior of (3,7, c?), yet they can greatly
influence the efficiency of the corresponding Gibbs samplers.

To avoid tuning pseudo priors in the above solution, we introduce a block Gibbs sampler in
sec. 4.1 that updates the (q + 1) blocks {(81,71), " , (B4,74), >} in turn. This algorithm has
a similar structure to one developed in Geweke (1996). It can be extended to compute Bayesian
models that assign priors to all or some of the hyperparameters in (X, w). For example, if a
non-degenerate prior is assigned to (A1, A2, k,w), then one can run a block Gibbs sampler that
updates the (g + 5) blocks {(B1,71)," "+ (BgsVq)s 0%, A1, A2, 5, w} in turn. The challenge is
that all conditional distributions of the hyperparameters given other components do not follow
standard distributions. To solve this problem, we develop an adaptive random-walk Metropolis-
Hastings (ARWMH) within Gibbs sampler in sec. 4.2. Finally, in sec. 4.3, we discuss how to
estimate various posterior quantities using the Monte Carlo sample produced by our algorithm.
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4.1. Updating (81,71),- - , (84, 7¢) With @ Gibbs sampler
First, we consider updating (3,7) conditional on o2, A and w. The posterior distribution
7(8,~|0%, A, w,Y) is written in short as (3, ~|Y) in this section. Let v(;) denote the vector v
deprived of its jth component. We form a block Gibbs sampler that updates (-y;, 3;) as a block
for j =1,...,¢q, according to 7 (7;, 3|7 (;), B(j), Y ). Each update can be done by first drawing
from 7 (v;[v(jy, B(;), Y ), @ Bernoulli distribution with success rate (1 + Oj)_l, and then draw-
ing from 7(53;|v,8(;),Y), a piecewise normal density. Specifically, let r; =Y — X’m)ﬁwm’
then

0. = f(y =087, Y) _ f(45 =0,83),7¢). Y)

! f(’yj :1|ﬁ(])a7(])7y) f(’)/] :17ﬁ(3)37(3)ay)
_ FYVIB G Y5 ) By lvi) f (i)
fR fWlBs v = 1,5(j)”7(j))f(5j|7j =1)f(v = 1)f(ﬁ(j)|’)’(j))f(’)’(j))dﬂj

T
7"j7"

exp{ - 202j }Hs;ﬁj:ws:l [% exp {—pmn (%7 )‘)}}wwml(l - w)qil’y(j)‘

=X BT (ri—X B X § . — =
fRexp{ — X ];UQ(TJ Jﬁ])}ns:mzl {% exp{*Pmn <%;A)}}wh(-7)‘+1(1 —w)? 7@ ldﬁj

oo ol e ()]
—(1— w)/{w?(h + 1 +13)} ,

where Iy, I and I3 are integrals over (0,\o/k), (—A10/k,0) and (—o0,\jo/K)U
(Ao /K, 00), respectively. All three integrals have analytical expressions based on the standard
Normal cdf and pdf, which we provide in the supplement. Further,

(Y = XyB) (Y = Xy) = D Prm @3; )‘ﬂ }

siys=1

1
W(ﬂjh»ﬁ(g‘)a Y) o exp {M

1 T B
o exp {—%2 [(7“1‘ = X;8;) (rj = X;8;) — Pmn (UJ )] } :
This is a mixture of three truncated Normal distributions weighted by (I7, I», I3), hence easy to
draw samples from. Detailed expressions of the truncated Normals are again in the supplement.

4.2. Updating (02, A\, w) with an adaptive random-walk Metropolis-Hastings within
Gibbs sampler

To explore the posterior distribution 7 (3., 7, %, A, w|Y") for model (2) with prior (3), we next
develop ways to update (o2, A, w), where X denotes (A1, Ao, k) for the mnet prior. Let || =
>~ 7;- The distribution of w conditioning on all others is simply Beta(|y| + a,p — || + b). For
o2 and ), their respective conditional distributions are not standard, and require a Metropolis-
Hastings (MH) step within the Gibbs sampler. Following the examples in Roberts & Rosenthal
(2009), we choose to update the logarithm of each of these components one at a time, using a
random-walk MH (RWMH) scheme with a N(0, v?) increment from the current value, subject to
the usual MH acceptance rate. The key to an efficient RWMH algorithm is selecting a good “step
size” v. If v is too large, the acceptance rate will be low, and the Markov chain rarely moves;
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and if v is too small, despite a high acceptance rate, the Markov chain moves in tiny steps. In
either situation, it takes a long time for the Markov chain to explore the state space of the posterior
distribution properly. Note that optimal values of v differ for different components, and are highly
dependent on the posterior distribution itself, which is influenced by model specification as well
as the data. Therefore, it is very difficult to select good values of v in practice. Indeed, an earlier
version of our RWMH algorithm based on predetermined values of v converges slowly, despite
a lot of effort spent on tuning v for each data analysis problem. We resort to an adaptive strategy
that adjusts v gradually, that drives the acceptance rate to near .44, the optimal acceptance rate
for one-dimensional proposals under certain assumptions (Roberts et al., 1997). Also, Roberts &
Rosenthal (2001) suggests there is no need to fine tune the acceptance rate, as any rate between
0.1 and 0.5 usually performs close to optimal for RWMH on smooth target densities.

Take the component « for example, we start with an arbitrary log(x(?)) and v = v(9). Then
at the ith iteration, given the current value log(x(*)), we propose log(x’) ~ N(log(x("), v?), and

%&T;?;). Here, 7(-) denotes the conditional posterior density
(g+1)r

of log(k) given other variables. To update v every r iterations, let ald =1 >l gr1 Qi for

accept it with probability o; =

q=0,1,2,---. Typically, acceptance rate decreases in v, which prompts us to lower v if @ >
.44, and vice versa. Hence, for the next r iterations, we use v(4+1) = (@) 4 g (E(Q) —.44), with
0 = v(©® /q, following Atchadé & Rosenthal (2005). Trials of » = 1,5, 10 did not yield much
difference for our examples, and we set r = 1.

Further, since d, is small for a large ¢, changes in the adaptive algorithm are negligible after,
say, 1000 iterations. For the examples in this project, the step size for each sampled variable
appears stabilized by the end of the burn-in period, and running plots of the acceptance rate sug-
gest they have reached close-to-optimal values. So, we run the adaptive version of the algorithm
only during the burn-in period. This strategy avoids the theoretical complications that accompany
adaptive algorithms, which we remark in sec. 4.3.

4.3. Computing posterior features based on the Monte Carlo sample

Denote the Monte Carlo sample by {(,B(i), ~(0) (02)(2) A9, w(i)) ii=1..., N} , which is
obtained after discarding a burn-in period of length N/10 to reduce the influence of the start-
ing point of the Markov chain. We use the sample means and quantiles to estimate the posterior
means and quantiles. For example, the posterior mean and the ath quantile of (3; are estimated
by the sample mean and the sample ath quantile of { ﬁ;z)}, respectively, and a credible interval
for E(y"™"|Y) can be estimated using a pair of sample quantiles of {(z"")T 8% i =1,... N}.
Consider a more complicated example of approximating a (1 — «) credible interval for the pre-
diction of y™". We need g, the ath quantile for 7(y""|Y") in (4), which can be approximated
as the following. Step one, we screen a coarse grid of values, say @)1 < --- < Qx, and es-
timate the lower tail probability of each using F(Qy) = + vazl (Q; (2" T B, 02(1)).
Here, ® is the standard Normal cdf. Step two, we find the pair of grid points (Q;, Q),,) such that
F(Q) < a < F(Qu). I F(Q)) (or F(Q,)) is close enough to a, then Q; (or Q,,) is our estimate
for ¢. Otherwise, we zoom in on (Q;, Q,,) by setting anew grid @Q; = Q] < -+ < Q% = Qu
for some K’ > 3, and repeat steps one and two, until some grid point ) is found, for which
a (Q) is as close as desirable to «. Then @ is our estimate for g,.

All the aforementioned Monte Carlo estimators are consistent. Firstly, our bmnet models use
proper priors, which result in proper posteriors. Secondly, for the non-adaptive version of our
RWMH within Gibbs sampler, the transition density from any one point in the state space to any
other is positive. Therefore, the corresponding Markov chain is Harris ergodic (Tan, 2009), and
the ergodic theorem holds. That is, sample averages and quantiles are strongly consistent for the
corresponding posterior means and quantiles, respectively.
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Remark 1.  For the adaptive version of our algorithm, there is currently no easy-to-check
condition to show that the ergodic theorem hold. The closest result that we are aware of concerns
RWMH (Atchadé & Rosenthal, 2005), but the transition kernel of our algorithm is a composition
of several such RWMH kernels. Hence, we avoid such theoretical issues by running the adaptive
scheme only during the burn-in period. We enjoy benefits of both worlds: there is no need to
manually tune the step sizes, and Monte Carlo estimators are easily consistent.

5. SIMULATION STUDIES

For simulations conducted in this section, the design matrix X contains n observations of g¢-
dimensional predictor vectors drawn from the multivariate normal distribution N, (0, X), where
Y is a “uniform” covariance matrix such that 3;; = pfor4 # j and 1 otherwise. The response Y,
is generated from N,,(X 3, 021,,), where 3 denotes the true vector of coefficients. We consider a
sparse situation where the first 10 elements of 3 are 1, and the rest are 0. We consider two levels
of correlation, p = .3 and .9.

Also, various signal to noise ratios, s = \/E[(X3)T (X 3)]/o are investigated. We achieve
different s by varying o against fixed 3, to simulate various levels of contamination of fixed sig-
nals. For readers who understand relative effect sizes better, s = (1,2, 4, 8) convert to | 31|/ =
(.16, .33,.66,1.32) for p = .3, and (.10, .21, .41,.84) for p = .9, respectively, for the given
setup. Note that Johnson & Rossell (2010) defined practical significance in linear regression
to be |31|/c > 0.2. Hence s € (1, 8) represents a fairly wide range of values.

5.1. Setups with various correlation and signal strength at n = 100 and ¢ = 150

In this section, we demonstrate the potential advantage of using the bmnet model in high-
dimensional regression problems with correlated predictors. We consider the simulation setup
described above, with 200 datasets of size (n,q) = (100, 150) generated at each combina-
tion of p € {.3,.9} and s € {1,2,4,8}. We compare eight different methods, the lasso, the
enet, the mcp, the mnet, three bmnet models (benet, bmnet-fx, and bmnet-rd), and an exam-
ple of the Bayesian model with a non-local prior (nlp). The penalty parameters in the first
four methods are chosen by ten-fold cross-validations. Here, the \’s are screened over a fine
grid, while the % in the mcp and the mnet method is chosen from {1/6,1/3}, based on the
recommendation of Huang et al. (2016+). Also, we follow Zou & Hastie (2005) and refer to

B = arg ming <||Y = XBI+ A X2, 18] + 22 > 5]2) as the naive enet solution. The enet es-

timator is (1 + %)B, that corrects the bias in B due to over-shrinkage. For the three bmnet

models, the hyperpriors for A are chosen as described in sec. 3.2. Specifically, the benet fixes
k at 0, the bmnet-fx fixes x at n/3, while the bmnet-rd uses a hyperprior on x. Recall setting
k = n/3 corresponds to specifying the maximum concavity parameter x* = 1/3 in the mnet PR
method in some sense. Fixing « this way is not necessarily optimal, rather, it is natural to want to
compare this naive strategy to other methods. Indeed, the simulation results in sec. 5 suggest that
the bmnet model with random &« either performs the best, or very close to being the best among
the three bmnet models. For inference, the overall posterior mean E(3|Y"), namely the BMA, is
used to estimate 3, and the MPM is the selected model. The last Bayesian model uses a non-
local prior called the product inverse moment (piMOM) prior. Following the practice in Johnson
& Rossell (2012) and Rossell & Telesca (2016+), the prior dispersion is set to 7 = 0.133, which
assigns prior probability 0.01 to |3;|/o < 0.2. Then 3 is estimated by BMA, and numerical
approximation to the highest posterior probability model (HPM) is used for variable selection.
Define the prediction mean squared error (pmse) as (3 — 8)T X(3 — 3), where (3 is the co-
efficient estimates. Figure 2 shows the median of the relative pmse of each method against a
benchmark, the mnet. Figure 3 shows the false discovery proportion (FDP), the false negative
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proportion (FNP), and the number of variables selected (NVS) by each method. Only 6 methods
are graphed for clarity, with the lasso and the mcp left out due to their poor performances in sev-
eral high correlation cases. Summary statistics for all methods are presented in the supplement,
including the standard errors of the median pmse’s.

0.3 0.9
144

1.2 / AN

method

benet
bmnet—fx
bmnet-rd

m— == nlp

relative pmse

=== == cvenet

« = = = cvmnet

FIGURE 2: Medians of the relative pmse of different methods to that of the mnet, calculated over 200 repli-
cations at each (s, p). The left and the right panels correspond to the p = 0.3 and 0.9 cases, respectively.
(Color online.)

Figure 2 and 3 show that, in the high correlation case, the bmnet methods have much lower
pmse than the PR methods and the nlp. And in the low correlation case, the bmnet methods are
comparable to the mnet in prediction and variable selection, when the latter is designed to be the
most effective (Huang et al., 2016+).

For variable selection, FDP and FNP of the bmnet methods decrease toward 0 at comparable
rate to the best performers for both p, as s increases. At low s, all Bayesian methods select
very few predictors, which results in larger FNR and smaller FDR compared to the PR methods.
This is a reasonable strategy of variable selection given the effect sizes are barely practically
significant. (Nevertheless, the threshold for the posterior inclusion probabilities can be easily
lowered from 0.5 for the MPM, if the user intend to find the most relevant predictors despite
their small impact on the response.) At moderate to high s, models selected by the Bayesian
methods are equal to or close to the true model. In comparison, the enet tends to over-fit, even
when the signal is strong; while the mnet over-fits when the signal is weak, but becomes more
accurate as the signal grows stronger. The comparison of variable selection performances among
different methods is not clear at p = .9, which is understandable given all predictors, true or null,
are highly correlated.

Regarding nlp, it appears the strongest in both prediction and variable selection in the less
challenging cases of small p and large s, for which the bmnet methods perform almost as well.
In the more challenging cases, especially when p is high, the bmnet has much smaller pmse than
the nlp at any signal strength.

After all, the bmnet methods predict the best or close to the best in all cases, and have clear
advantage over other methods in the high collinearity cases. Further, their FDP and FNP decrease
toward O at comparable rates to the best performers. Among the three bmnet methods, bmnet-
rd has the best overall prediction performance, though their differences are not great. We view
the robustness of the benet and the bmnet methods to the hyperpriors as a valuable quality. In
contrast, depending on whether the enet or the mnet penalty function is used in a PR framework,
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FIGURE 3: Variable selection performances of six methods at each (s, p). Variables are selected using the

MPM for the three bmnet methods (including the benet), and the HPM for the nlp method, respectively.

The top, the middle, and the bottom panels display the median over 200 replications of the FDP, the FNP

and the NVS, respectively. The left and the right panels correspond to p = 0.3 and 0.9, respectively. (Color
online.)

users often obtain fairly different models and inference results.

Remark 2.  The lasso and the enet models are fitted using the R package glmnet (Friedman
etal., 2010); the naive enet, the mcp and the mnet methods are fitted using the R package ncvreg
(Breheny & Huang, 2011); the nlp method is carried with the R package mombf (Rossell et al.,
2014); and all Bayesian mnet models are fitted using R code developed for this paper. To carry
out each bmnet method, we ran the MCMC algorithm for 10* iterations beyond a burn-in period
of size 103. Each run took less than five minutes on a 2.93GHz Intel Xeon W3540 running Linux.
We experimented with random starts for the Markov chains, and estimates for various posterior
features such as the posterior inclusion probability and the posterior mean of coefficients were
fairly stable. The Monte Carlo standard error of various estimates are calculated using the R
package memcse (Flegal & Hughes, 2012), and are less than 1% the size of the estimates.

5.2. Variable selection by the Bayesian mnet method and other methods as n
increases

Recall we mentioned two ways to do variable selection based on a BVS model with the mnet
prior, one using the MPM and the other using credible intervals of 3. Here, we demonstrate
their selection consistency under the simulation setup described in the beginning of section 5.
In particular, we fix the number of true predictors at 10, and let the number of null predictors
to grow with n, such that ¢ = 5/n. This setup is more challenging than those with fixed g. For
clarity, only the bmnet method with random & is shown. In addition, thanks to the suggestion of
a referee, we also experiment with a version of the Bayesian model with the mnet that does not
have the ~ variable, for which a predictor is selected if the 80%, 90%, or 95% credible interval
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for its coefficient excludes zero. A few other popular variable selection methods are also included
for comparison.

Simulations are ran for 100 replications each for various s, at (n,q) = (25, 25), (100, 50)
and (400, 100). Figure 4 displays result for s = 8 only, due to space limit. Recall s = 8 converts
to f1/0 = 1.32 and .84 for p = .3 and .9 respectively. The figure suggests that, the chance that
the bmnet MPM (bmnet-rd, in solid line) pinpointing the true model increases towards 1 as n
increases. As for variable selection based on credible intervals of the Bayesian mnet models,
the bmnet model without  (bmnet-rd-ng 0.9CI, in dotted line) performs poorly, which is not
surprising given g is large and the true model is sparse. However, the credible interval methods
are among the best when applied to the bmnet models with v (bmnet-rd 0.9CI, in dashed line).
Variable selection results based on 80% and 95% credible intervals are not much different from
the ones shown, and are omitted for clarity of the graphs.

For other methods, the success rates of the cvmnet and the nlp also converge to 1 respectively,
with nlp performing particularly well when p = .3. Whilst the enet always over-fit the true model.

When p = .3, the plot (not shown) at s = 4 looks similar to that at s = 8, but the probabilities
are lower in general. For much smaller s, the signals are too weak for any of these methods to
find the true model exactly. The results at p = .9 are similar, but the task is more challenging: at
s = 4, none of the methods we studied perfectly identified the true model in any repetition.

03,8 | 09,8
1.00 4
-
-—
- -
-—

0.754 / —— method
= bmnet-rd
5]
2 A/ . - < bmnet-rd 0.9CI
5] ro= Ve
S 0.50 / . b bmnet-rd-ng 0.9CI
= ! /// m— = nlp
£ 7 B
= y - — = — cvenet

’
0254 - + =+ = cvmnet
000 *—=— - -
1 1 1 1 1 1 1 1
100 200 300 400 100 200 300 400

FIGURE 4: The left and the right plots show the proportion of times the selected model equals the true
model for p = 0.3 and 0.9, at s = 8. (Color online.)

6. BREAST CANCER DATA EXAMPLE

Here, we study a breast cancer dataset obtained from http://cancergenome.nih.gov, that consists
of expression measurements in the log scale of 17814 genes from 536 patients. One of the genes
is BRCA1, which is the first gene identified that increases the risk of early onset breast cancer. It
is of interest to find other genes that have expression levels related to BRCA1. An initial screen-
ing is used to find genes that have sufficient expression levels and variations across subjects.
Besides BRCA1, 654 genes are identified that meet the following requirements: (a) the coeffi-
cient variation exceeds 1, (b) the range exceeds 1, (c) the standard deviation exceeds 0.5, and (d)
the absolute value of the marginal correlation to the response variable exceeds 0.2.

We randomly split the data into a training set of 400 patients to build models, and a test set of
136 patients to help evaluate the models. For clarity of presentation, we focus on six methods. The
three PR methods are the naive enet (enet.n), the mcp, and the mnet method, each based on a 10-
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fold cross-validation. And the three BVS methods are the Bayesian enet model (benet), the bmnet
model with * = x/n fixed at 1/3 (bmnet-fx), and the bmnet model that assigns a Gamma prior
on x* (bmnet-rd) with mean 1/3. For all three BVS methods, we assign the Beta(2, 10) prior
for w, so that the expected number of selected genes, ||, follows a beta-binomial(654, 2, 10)
distribution. This reflects our prior belief that useful subsets of predictors include between 8 to
309 genes (these are the .005 and the .995 quantiles of |v|), and the prior mode equals || = 65,
one-tenth the number of candidate genes.

For each Bayesian method, a Markov chain is run for N = 10° iterations after a burn-in
period of 10* iterations. We examined the trace plot of many parameters and found no flag
for mixing problems. We also obtained Monte Carlo standard errors (mcse) of the estimates for
various posterior means and quantiles using the batch means method with batch size v/ N, carried
out using the R package mcmcse. For example, under the bmnet-fx model, the posterior mean
of the coefficient for the gene “RUNDCI1” is estimated to be 0.1442, with an mcse of 0.0008;
and the first and the third posterior quartiles of this coefficient are estimated to be 0.1135 and
0.1767, respectively, each with a mcse of 0.0008, which is negligible relative to the size of the
estimates.

For the bmnet-rd method, over 99% of the sample of x* falls in the interval (0, 0.007). Since
the mnet penalty function reduces to the enet penalty function when x* = 0, the above suggests
that the posterior distribution of the bmnet-rd model and that of the benet model are very close
to each other. Indeed, the MPMs selected by the benet and the bmnet-rd method contain 52 and
49 genes each, and they both include all 32 genes selected by the bmnet-fx method. Figure 5
demonstrates how we can visualize the selection results together with estimates for the coeffi-
cients (shown only for the most different pair of bmnet methods, the benet and the bmnet-fx, due
to space limit). Selected genes are shown in black discs, where the size of a disc is proportional
to the posterior inclusion probability of the corresponding gene. In addition, posterior means of
the coefficients determine the position of the discs, and the 50% credible intervals correspond to
the line segments that extend above and below the disc. (Note that credible intervals at any level
can be easily provided. But had credible intervals at a higher level, say 90%, been drawn, the
line segments would contain zero for any predictor with inclusion probability lower than 0.95,
which holds for almost all predictors. Hence, we choose to plot at level 50% to convey more
information in one graph.)

Despite the similarity in pattern of the two graphs in Figure 5, it is interesting to note how
they differ in the details. Relative to the benet method, the bmnet-fx method selects fewer genes
(fewer black discs), assigns most of the selected genes larger coefficients in absolute value (larger
distance of black discs from 0), and assigns other genes smaller inclusion probabilities (smaller
grey discs). For the genes selected by bmnet-fx, all but one has larger coefficient in absolute value
than that by benet, and the estimates are on average 23% larger. This is a result of enforcing a
relatively large x* value to discourage the shrinking of large coefficients.

Using (4), we make predictions and construct prediction intervals for the response variable
of the subjects in the test set. As shown in Figure 6, the 90% (80%) prediction intervals contain
the true responses for 84% (77%) of the subjects, respectively. That is, the coverage rates of the
prediction intervals agree with their nominal levels.

We also analyzed the breast cancer data using several PR methods. The naive enet method,
the mcp method, and the mnet method selected 112, 24 and 84 genes respectively. Note that the
naive enet method and the mnet methods produced two sets of B that agree well with each other,
while the mcp method fitted a much more parsimonious model, with much higher coefficient
estimates for the selected genes. With these methods, limited inference procedures were avail-
able, including obtaining point estimates of the coefficients, B as shown in Figure 7, and making
predictions for new observations using (z"*) T 3. Although not the main focus of this section,
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FIGURE 5: Inference for coefficients based on (a) the bmnet model with fixed «, and (b) the benet model.

For either model, each disc represents a gene, where the posterior mean of its coefficient determines the

center of the disc, and the 50% credible interval of the coefficient (the inter-quartile range) determines

whiskers that extend above and below the disc. Further, the size of each disc is proportional to the inclusion

probability of the corresponding predictor. Color is used to distinguish the selected predictors (in black) and
the unselected ones (in grey) according to the MPM.

we evaluated the pmse of each method for the test data, which can be found in Table 2.

For the different Bayesian methods allowed in our bmnet framework, instead of claiming
which one is preferred over the others for analyzing this dataset, we believe it is a desirable
feature that different Bayesian models produce agreeable results and reasonable predictions, yet
users with different goals in selecting variables have the flexibility to adjust the prior on hyper-
parameters such as « to achieve different models, all of which predict well.
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FIGURE 6: To predict the expression level of BRCA1 for the 146 subjects in the test set, the upper and

the lower bounds of their 90% prediction intervals are connected and displayed using two lines. The ob-

served expression levels are shown in dots, with 123, that is, a little over 84% of them captured by the
corresponding prediction intervals.
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FIGURE 7: Estimated coefficients based on the naive enet, the mcp and the mnet method.

7. DISCUSSIONS

In this paper, we introduced a new class of prior, called the mnet prior, for BVS models. This
results in a general bmnet framework that allows more flexibility in modeling and variable se-
lection compared to existing methods. Compared to the mnet PR method that inspired the mnet
prior, many more useful inferences can be done based on our bmnet model. We highlight the
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TABLE 2: The breast cancer data was split in to a training set of size 400 and a test set of size 136. This
table provides, the pmses and the number of genes selected (# VS) for each method.

enetn mcp mnet benet bmnet-fx bmnet-rd
Pmse 32.54 3820 3325 30.21 30.81 30.36
#VS 112 24 84 52 32 49

type of graph that is shown in Figure 5, which displays the practical significance, the statistical
significance and the importance of each potential predictor simultaneously.
On variable selection consistency We used simulation studies to heuristically check the vari-
able selection consistency of our method, in the sense that the chance that the selected model
equals the true model approaches one. Still, it is desirable to establish selection consistency in
different situations in theory. Note that the mnet prior is a kind of “local prior” using the terminol-
ogy of Johnson & Rossell (2012). They showed that a common problem for local priors is that, if
all the hyperparameter values are fixed as n grows, strong consistency can not be achieved when
q is greater than O(4/n), in the sense that the posterior probability of the true model does not
converge to one. However, Narisetty & He (2014), among others, has demonstrated that scaling
the priors properly as functions of n and ¢ will allow strong consistency under mild conditions,
even when ¢ grows with n at a nearly exponential rate. Still, the proper scaling is only known
up to a constant, and hence simulation studies like those conducted in this paper are still helpful
to obtain practical guidance. One major advantage of using local priors than the non-local pri-
ors in practice is that, local priors are much less sensitive to the choice of hyperparameters than
that of non-local priors. Another challenge of using non-local prior is that they produce highly
multi-modal posterior distributions for the coefficients unless when n is large and ¢ is small
(such as an example of n = 1000 and ¢ = 2 in Rossell & Telesca (2016+)). The multi-modality
makes it controversial to perform estimation and prediction through BMA and requires more
investigation.
On computing An important part of the proposed bmnet method is an algorithm that handles
its computation. Specifically, we developed an ARWMH within Gibbs sampler to draw samples
from the posterior distribution, and listed several ways to estimate posterior quantities based on
the samples. When applied to the simulation study and the real data examples, basic diagnos-
tics for the convergence of the Markov chain suggest that our algorithm works reasonably well.
However, there is much work to do to evaluate the convergence of the Markov chains. For ex-
ample, despite reporting the Monte Carlo standard error for various estimates, we stopped short
of proving that the Central limit theorems (CLT) hold for the estimators. Such result would hold
(under additional moment conditions) if the Markov chain is geometrically ergodic, that is, if
the chain converges to the posterior distribution at a geometric rate. But these are indeed hard
analytical exercises, and remain open questions. Also, note that we did not try to identify the
HPM for bmnet models in any of our examples. This is due to the large size of ¢ we considered.
Indeed, with any ¢ > 20, the number of models, 2¢ will exceed one million. And any affordable
Monte Carlo sample size is unlikely to be large enough to well explore the entire model space,
or to approximate the probability of individual models. This is indeed the curse of dimension-
ality that we do not expect to solve perfectly using any MCMC method, not even if iid samples
can be drawn from the posterior distribution. Therefore, when ¢ is large, we focus on inference
procedures that only require quantities related to low-dimensional marginals of the posterior dis-
tribution. For example, the MPM is much less demanding to compute, and usually predicts better
than the HPM.

While focusing on relatively easy inference targets in high-dimensional problems, it is de-
sirable to lessen the computing burden by developing MCMC algorithms that are more efficient
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than our ARWMH within Gibbs sampler. One idea is to explore within the current block Gibbs
sampler framework. Our algorithm adopted a strategy that updates each block in turn, which is
called a systematic scan. Other strategies are available, such as a random scan that updates the
more important and the slower-mixing blocks more often. Indeed, the scanning scheme itself
can be adaptive, as was carried out successfully in Richardson et al. (2010) for high-dimensional
problems.
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