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Abstract

Consider a parametric statistical model,P (dx|θ), and an improper prior distribution,ν(dθ), that

together yield a (proper) formal posterior distribution,Q(dθ|x). The prior is calledstrongly admis-

sible if the generalized Bayes estimator of every bounded function ofθ is admissible under squared

error loss.? showed that a sufficient condition for strong admissibility ofν is thelocal recurrence

of the Markov chain whose transition function isR(θ, dη) =
∫

Q(dη|x)P (dx|θ). Applications of

this result and its extensions are often greatly simplified when the Markov chain associated withR is

irreducible. However, establishing irreducibility can be difficult. In this paper, we provide a charac-

terization of irreducibility for general state space Markov chains, and we use this characterization to

develop an easily-checked, necessary and sufficient condition for irreducibility of Eaton’s Markov

chain. All that is required to check this condition is a simple examination ofP andν. Application

of the main result is illustrated using two examples.
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1 Introduction

Consider a parametric statistical decision problem with sample spaceX and parameter spaceΘ. BothX

andΘ are assumed to be Polish spaces equipped with their Borelσ-algebrasB(X) andB(Θ). Suppose

that P : B(X) × Θ → [0, 1] represents a parametric statistical model; i.e., for eachθ, P (·|θ) is a

probability measure and, for eachA, P (A|·) is a measurable function. As usual, the idea is that we will

observe a random element whose distribution isP (dx|θ) and the goal is to use the observation to make

inferences about the unknown parameterθ. This will be done within the Bayesian paradigm using an

improperprior distribution. In particular, letν(dθ) denote aσ-finite measure withν(Θ) = ∞. Define

the marginal measure as

M(dx) =
∫

Θ
P (dx|θ)ν(dθ) .

? shows that ifM is σ-finite, then there exists a formal posterior distribution,Q, defined as follows.

Definition 1. A functionQ : B(Θ)× X → [0, 1] is called a formal posterior distribution (FPD) if

1. Q(·|x) is a probability measure for eachx,

2. Q(B|·) is a measurable function for eachB, and

3. Q(dθ|x)M(dx) = P (dx|θ)ν(dθ); that is, for all A ∈ B(X) andB ∈ B(Θ),∫
A

Q(B|x)M(dx) =
∫

B
P (A|θ)ν(dθ) .

The FPD is unique in the sense that ifQ̃ is another FPD, then there is anM -null setA0 such that

x /∈ A0 impliesQ(dθ|x) = Q̃(dθ|x). Throughout this paper,M is assumed to beσ-finite so an FPD is

guaranteed to exist. We now briefly describe a method of evaluating improper prior distributions that is

due to M.L. Eaton. (For a more in depth review of this area, see?.)

Consider the problem of estimating a bounded, real-valued functionγ(θ) under squared error loss.

Of course, the formal Bayes estimator ofγ(θ) is γ̂(x) =
∫
Θ γ(θ)Q(dθ|x). The risk function of a generic

estimator, sayδ, is its mean squared error; i.e.,

r(δ, θ) =
∫

X

(
δ(x)− γ(θ)

)2
P (dx|θ) .

The estimatorδ is calledalmost-ν-admissibleif for any estimatorδ′ such that

r(δ′, θ) ≤ r(δ, θ) ∀ θ ∈ Θ ,

the set
{
θ ∈ Θ : r(δ′, θ) < r(δ, θ)

}
hasν-measure zero. IfP (dx|θ) andν(dθ) combine to yield an

FPD that generates (almost) admissible estimators for a large class of functions ofθ, then we would

be willing to endorseν as a good “all purpose” prior to use in conjunction with the statistical model

P (dx|θ). This idea provides motivation for the following definition.
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Definition 2. The priorν is called strongly admissible if̂γ is almost-ν-admissible for every bounded,

real-valued functionγ.

? developed a sufficient condition for strong admissibility that involves the Markov transition function

R : Θ× B(Θ) → [0, 1] given by

R(θ, dη) =
∫

X
Q(dη|x)P (dx|θ) .

Before we can state the result, we need a couple of concepts from general state space Markov chain

theory. LetW = {Wn}∞n=0 denote the Markov chain onΘ driven byR and letPrθ denote the overall

probability law governing the chain whenW0 = θ. ForB ∈ B(Θ), let σB denote the first return toB;

i.e.,

σB = min
{
n ≥ 1 : Wn ∈ B

}
,

with the understanding thatσB = ∞ if Wn ∈ B for all n ≥ 1.

Definition 3. The Markov chainW is called locally-ν-recurrent if, for eachB with 0 < ν(B) < ∞,

the set {
θ ∈ B : Prθ

(
σB < ∞

)
< 1

}
hasν-measure 0.

In words, the chain is locally-ν-recurrent if, when started inside the setB, then aside from a set of start-

ing values that hasν-measure 0, the chain returns toB with probability 1. Note that, unlike the standard

definition of recurrence (see; e.g.,?, Chapter 8), this definition pertains to both reducible and irreducible

chains. Indeed, just before defining local-ν-recurrence on page 1174,? states: “The following defini-

tion, a modified notion of recurrence, allows us to circumvent a discussion of irreducibility issues while

relating our previous admissibility results to the recurrence ofW .” The following was proven in?.

Theorem 1. If W is a locally-ν-recurrent Markov chain, thenν is a strongly admissible prior.

Establishing local-ν-recurrence directly using the definition (or the characterization based on the

Dirichlet form of R) is typically infeasible. However, ifW is ν-irreducible; that is, any setB with

ν(B) > 0 is accessible from anyθ ∈ Θ, then recurrence and local-ν-recurrence are equivalent (?).

Hence, ifν-irreducibility of W can be demonstrated, then all of the techniques that have been developed

for establishing recurrence can be brought to bear on the problem. Indeed, nearly all of the applications

of Theorem 1 have involved first demonstrating thatW is ν-irreducible and then showing thatW is

recurrent. Examples can be found in?, ?, ? and?. Similarly, ? have recently extended and generalized

the theoretical results of? and? under the assumption that the chains of interest are irreducible.

There is one very simple sufficient condition forν-irreducibility of W and this was used in most

of the applications mentioned above. If the support of the statistical model does not depend on the
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parameter; i.e., if the set{A ∈ B(X) : P (A|θ) > 0} is the same for allθ ∈ Θ, thenW is ν-irreducible

(?). Until now, however, there has been no easy way to check forν-irreducibility of Eaton’s Markov

chain when this condition fails. In this paper, we provide an easily-checked, necessary and sufficient

condition forν-irreducibility ofW . This result cannot be stated precisely at this point, but the sufficiency

half, which is the practically important part, can be.

Theorem 2. The Markov chainW is ν-irreducible if there do not exist two setsA ∈ B(X) andC ∈
B(Θ) with the following properties:C is nonempty,ν

(
C

)
> 0, P

(
A|θ

)
= 0 for everyθ ∈ C and

P (A|θ) = 0 for ν-almost allθ ∈ C.

This result allows one to establishν-irreducibility of Eaton’s Markov chain through a simple examina-

tion of P andν. Neither the posterior distribution,Q, nor the Markov transition function,R, is required

to check the condition. It is interesting that, if the setsA andC do exist, thenP (dx|θ) andP (dx|θ′)
are mutually singular probability measures wheneverθ ∈ C andθ′ ∈ C (aside from aν-null set ofθs

in C). Thus, the statistical model is, in a sense, an artificial concatenation of two different models.

The rest of the paper is organized as follows. Section 2 contains a new characterization of irre-

ducibility for general state space Markov chains. This characterization is used in Section 3 to prove the

main result. Section 3 also contains two examples.

2 A characterization of irreducibility for general Markov chains

Let S(y, dz) be a Markov transition function on a general state space(Y,B(Y)) as described, for ex-

ample, in?, Section 3.4. Denote the corresponding Markov chain asY = {Yn}∞n=0. For n ∈ N :=

{1, 2, 3, . . .}, let Sn(y, dz) denote then-step Markov transition function corresponding toS, which is

defined inductively by

Sn+1(y, dz) =
∫

Y
Sn(w, dz) S(y, dw) ,

whereS1 ≡ S. Of course,Sn(y, A) = Pry

(
Yn ∈ A), wherePry(·) denotes the overall law governing

Y on Y∞ assuming thatY0 = y. Let ϕ denote a non-trivial,σ-finite measure on(Y,B(Y)). Here is a

standard definition of irreducibility for general state space Markov chains.

Definition 4. (?, p.87). The Markov chainY is calledϕ-irreducible if, for every measurableA with

ϕ(A) > 0 and everyy ∈ Y, there exists ann ∈ N (which may depend ony andA) such thatSn(y, A) >

0.

In words,ϕ-irreducibility means that every setA with ν(A) > 0 is accessiblefrom anyy ∈ Y. We will

call the Markov chainϕ-reducible when it is notϕ-irreducible; that is, when there existy andA with

ϕ(A) > 0 such thatSn(y, A) = 0 for all n ∈ N. We will sometimes find it convenient to apply the
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phrases “ϕ-irreducible” and “ϕ-reducible” to the Markov transition function,S. Our first result shows

that, if the chain isϕ-reducible, then we may assume thaty ∈ A.

Proposition 1. The Markov chainY is ϕ-reducible if and only if there existA ∈ B(Y) with ϕ(A) > 0

andy ∈ A such thatSn(y, A) = 0 for all n ∈ N.

Proof. The sufficiency part is obvious. Now assume that the chain isϕ-reducible so there existy ∈ Y

andA ∈ B(Y) with ϕ(A) > 0 such thatSn(y, A) = 0 for all n ∈ N. If y ∈ A, then there is nothing to

prove, so assume thaty ∈ A. We will establish the existence ofy′ ∈ A such thatSn(y′, A) = 0 for all

n ∈ N. First, for eachm ∈ N, define

Bm =
{
w ∈ A : Sm(w,A) > 0

}
,

and setB = ∪∞m=1Bm. Now fix m ∈ N and note that

0 = Sm+1(y, A) =
∫

Y
Sm(z,A)S(y, dz) ≥

∫
Bm

Sm(z,A)S(y, dz) .

SinceSm(z, A) > 0 for z ∈ Bm, we must haveS(y, Bm) = 0. But this result holds for everym ∈ N,

so it follows thatS(y, B) = 0. Note thatY can be partitioned intoA, B andA− B, and we know that

S(y, A) = S(y, B) = 0. Therefore,S(y, A−B) = 1, which implies thatA−B is not empty. Clearly,

anyy′ ∈ A−B satisfiesSn(y′, A) = 0 for all n ∈ N.

In the classical case whereY is countable, the chain is calledirreducible (with no prefix) if, for

eachi, j ∈ Y, there is ann ∈ N such thatSn(i, {j}) > 0. This is equivalent toc-irreducibility wherec

denotes counting measure onY. In this context, a nonempty setC ⊂ Y is calledclosedif, once the chain

entersC, it cannot leave. Formally,C is closed if
∑

j∈C S(i, {j}) = 1 for all i ∈ C. Obviously, the

state space,Y, is closed. In fact, the Markov chain is irreducible if and only ifY has no proper, closed

subset (see; e.g.,?, Problem 8.21). We now extend these ideas to handle Markov chains on general state

spaces.

Definition 5. A setC ∈ B(Y) is called closed if it is nonempty andS
(
y, C

)
= 0 for all y ∈ C.

Here is the general state space version of the result in?’s (?) Problem 8.21.

Theorem 3. The Markov chainY isϕ-reducible if and only if there exists a closed setC withϕ
(
C

)
> 0.

Proof. To prove sufficiency, supposeC is a closed set withϕ
(
C

)
> 0. Assume that for somen ∈ N,

Sn
(
y, C

)
= 0 for all y ∈ C. Then, for anyy ∈ C, we have

Sn+1
(
y, C

)
=

∫
Y

Sn
(
z, C

)
S(y, dz) =

∫
C

Sn
(
z, C

)
S(y, dz) = 0 .
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Hence, by induction,Sn
(
y, C

)
= 0 for all y ∈ C and alln ∈ N. Therefore, sinceC is nonempty and

ϕ
(
C

)
> 0, the chain isϕ-reducible.

Now to prove necessity, assume that the chain isϕ-reducible. By Proposition 1, there exist a mea-

surableA with ϕ(A) > 0 and ay ∈ A such thatSn(y, A) = 0 for all n ∈ N. For eachm ∈ N,

define

Bm =
{
w ∈ Y : Sm(w,A) > 0

}
,

and setB = ∪∞m=1Bm. We will show that the measurable setC := A∩B is the closed set that we seek.

First,y ∈ C soC is nonempty. Now supposey′ ∈ C is such thatS
(
y′, C

)
> 0. Then

S(y′, A) + S(y′, B) ≥ S
(
y′, A ∪B

)
= S

(
y′, C

)
> 0 .

Sincey′ ∈ C ⇒ y′ ∈ B ⇒ y′ ∈ B1, we knowS(y′, A) = 0, so it must be the case thatS(y′, B) > 0.

Hence, there must exist ak ∈ N such thatS
(
y′, Bk

)
> 0, which implies that

Sk+1(y′, A) =
∫

Y
Sk(z, A)S(y′, dz) =

∫
Bk

Sk(z,A)S(y′, dz) > 0 .

But this implies thaty′ ∈ Bk+1, which contradicts the fact thaty′ ∈ C. Therefore, it must be the case

thatS
(
y, C

)
= 0 for all y ∈ C, and this implies thatC is closed. Finally,ϕ

(
C

)
≥ ϕ(A) > 0.

In the next section, we use Theorem 3 to develop an easily-checked, necessary and sufficient condi-

tion for ν-irreducibility of Eaton’s Markov chain.

3 Conditions for irreducibility of Eaton’s Markov chain

? studied the Markov transition function

R(θ, dη) =
∫

X
Q(dη|x)P (dx|θ) ,

whereP is the statistical model andQ is a FPD. Since any FPD can be used to constructR, R is not

unique. For example, if̃Q 6= Q is another FPD, then

R̃(θ, dη) =
∫

X
Q̃(dη|x)P (dx|θ)

is an equally valid version of the Markov transition function. However, the following result shows that

R enjoys a uniqueness property similar to the uniqueness property of the FPD that was discussed in

Section 1.

Proposition 2. If R andR̃ are two different versions of Eaton’s Markov transition function, then there

exists aν-null setB0 ∈ B(Θ) such thatθ /∈ B0 impliesR(θ, ·) = R̃(θ, ·).
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Proof. SinceQ andQ̃ are both FPDs, there exists anM -null setA0 such thatx /∈ A0 ⇒ Q(dθ|x) =

Q̃(dθ|x). Fix B ∈ B(Θ) and note that

R(θ, B)− R̃(θ, B) =
∫

A0

[
Q(B|x)− Q̃(B|x)

]
P (dx|θ) .

Now since0 = M(A0) =
∫
Θ P (A0|θ)ν(dθ), there exists aν-null setB0 such thatP (A0|θ) = 0 for all

θ ∈ B0. Hence,θ /∈ B0 ⇒ R(θ, B) = R̃(θ, B). Finally, note thatA0 is determined byQ andQ̃, andB0

is determined byA0. Therefore,B0 doesn’t depend on the setB, soθ /∈ B0 ⇒ R(θ, ·) = R̃(θ, ·).

Remark1. An important consequence of Proposition 2 is that either all versions ofR are locally-ν-

recurrent, or none of them is.

Every FPD satisfiesP (dx|θ)ν(dθ) = Q(dθ|x)M(dx), and it follows that every version ofR is

reversible (or symmetric) with respect toν; that is, iff andg are bounded, real-valued functions onΘ,

then ∫
Θ

∫
Θ

f(θ)g(η)R(θ, dη)ν(dθ) =
∫

Θ

∫
Θ

f(θ)g(η)R(η, dθ)ν(dη) .

This property is key in the proof of our main result, which we now state and prove.

Theorem 4. There exists aν-reducible version ofR if and only if there exist a nonempty setC ∈ B(Θ)

with ν
(
C

)
> 0 and another setA ∈ B(X) such thatP

(
A|θ

)
= 0 for everyθ ∈ C andP (A|θ) = 0 for

ν-a.e.θ ∈ C.

Proof. To prove sufficiency, suppose thatA andC exist. Using property 3 of Definition 1, we have∫
A

Q
(
C|x

)
M(dx) =

∫
C

P (A|θ)ν(dθ) = 0 .

Hence, if

D =
{
x ∈ A : Q

(
C|x

)
> 0

}
,

thenM(D) = 0 and, obviously,Q
(
C|x

)
= 0 for all x ∈ A −D. Fix θ0 ∈ C and letδθ0(dθ) denote a

probability measure concentrated on the pointθ0. Now define

Q̃(dθ|x) =

{
Q(dθ|x) if x /∈ D

δθ0(dθ) if x ∈ D

Clearly, Q̃ satisfies the first and third properties of Definition 1. Moreover, we show in the Appendix

that, for anyB ∈ B(Θ), Q̃(B|·) is measurable. Therefore,̃Q is a FPD and we now show that

R̃(θ, dη) =
∫

X
Q̃(dη|x)P (dx|θ)
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is theν-reducible version ofR that we seek. By construction,̃Q
(
C|x

)
= 0 for all x ∈ A. It follows

that, for everyθ ∈ C,

R̃
(
θ, C

)
=

∫
X

Q̃
(
C|x

)
P (dx|θ) =

∫
A

Q̃
(
C|x

)
P (dx|θ) = 0 .

Consequently,C is a closed set withν
(
C

)
> 0, and it follows from Theorem 3 that̃R is ν-reducible.

To prove necessity, assume thatR is ν-reducible. By Theorem 3 there exists a closed setC with

ν
(
C

)
> 0. Using the reversibility ofR, we have∫

C
R(θ, C)ν(dθ) =

∫
C

R
(
θ, C

)
ν(dθ) = 0 .

This, of course, implies thatR(θ, C) = 0 for ν-a.e.θ ∈ C. Now defineF1 = {x ∈ X : Q(C|x) > 0}
andF2 =

{
x ∈ X : Q

(
C|x

)
> 0

}
. SinceQ(C|x)+Q

(
C|x

)
= 1 for everyx ∈ X, we haveF1∪F2 = X.

Consequently,F 2 ⊂ F1. SinceC is closed, we know that for anyθ ∈ C,

0 = R
(
θ, C

)
=

∫
X

Q
(
C|x

)
P (dx|θ) =

∫
F2

Q
(
C|x

)
P (dx|θ) .

Thus,P (F2|θ) = 0 for all θ ∈ C. Similarly, forν-a.e.θ ∈ C, we have

0 = R(θ, C) =
∫

X
Q(C|x)P (dx|θ) =

∫
F1

Q(C|x)P (dx|θ) .

Therefore,P (F1|θ) = 0 for ν-a.e.θ ∈ C, and sinceF 2 ⊂ F1, it follows thatP
(
F 2|θ

)
= 0 for ν-a.e.

θ ∈ C. LettingA = F 2, we haveP
(
A|θ) = 0 for all θ ∈ C andP (A|θ) = 0 for ν-a.e.θ ∈ C.

Obviously, a sufficient condition forν-irreducibility of R is the nonexistence of the setsA andC

in Theorem 4. This is precisely what Theorem 2 says. However, as will be clear from the examples

that follow, even when the setsA andC do exist, it is often the case that some versions ofR areν-

irreducible. One way to establish local-ν-recurrence (of all versions) ofR is to identify a single version

of R that isν-irreducible and then show that this version ofR is recurrent. The result then follows from

the equivalence of recurrence and local-ν-recurrence (under irreducibility) mentioned in Section 1. We

now illustrate the use of Theorem 4 with two examples.

Example1. Let X = Θ = R andP (dx|θ) = p(x|θ)dx where

p(x|θ) = I(θ,θ+1)(x) ,

and dx denotes Lebesgue measure onX. Take the prior distribution to beν(dθ) = dθ. A simple

calculation shows that the marginal measure isM(dx) = dx, which is clearlyσ-finite. This is all the

information we require to apply Theorem 4. LetC ∈ B(Θ) be a nonempty set such thatν
(
C

)
> 0. We

claim that there existθ′ ∈ C andD ⊂ C such thatν(D) > 0 and|θ − θ′| < 1/4 for everyθ ∈ D. To
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see this, letDi =
[

i
8 , i+1

8

)
for all i ∈ Z := {. . . ,−1, 0, 1, . . . }. ThenΘ = ∪i∈ZDi. If there exists an

i0 such thatC ∩Di0 is not empty andν
(
C ∩Di0

)
> 0, then we can simply takeθ′ to be any point in

C ∩Di0 andD to be the setC ∩Di0 . Otherwise, for everyi ∈ Z, eitherDi ⊂ C or ν
(
C ∩Di

)
= 0.

Sinceν(C) > 0, there must exist ani0 such thatν
(
C∩Di0

)
> 0, and it follows thatDi0 ⊂ C. Assume,

without loss of generality, thatC∩ [ i08 ,∞) is nonempty and leti1 = min{i > i0 : C∩Di is nonempty},
which is clearly finite. Now, any point inC ∩Di1 and the setDi1−1 play the roles ofθ′ andD. These

arguments show that there existθ ∈ C andθ′ ∈ C such that|θ−θ′| < 1/4 whereθ can be chosen outside

of any subset ofC having Lebesgue measure zero. It follows that ifI1 = (θ, θ+1), I2 = (θ′, θ′+1) and

I = I1 ∩ I2, thenν(I) > 0. Now, if there exists anA ∈ B(X) such thatP (A|θ) = 0 andP
(
A|θ′

)
= 0,

then

ν(I) = ν(A ∩ I) + ν
(
A ∩ I

)
≤ ν(A ∩ I1) + ν

(
A ∩ I2

)
= 0 ,

which is a contradiction. Hence, such anA cannot exist and it follows from Theorem 4 that every

version of Eaton’s Markov chain isν-irreducible.

For the sake of comparison, we now explain what is required to establish irreducibility in this situ-

ation if we make no appeal to Theorem 4. A version of the posterior is given byQ(dθ|x) = q(θ|x)dθ

where

q(θ|x) = I(x−1,x)(θ) .

It follows thatR(θ, dη) = r(η|θ)dη where

r(η|θ) =
(
1 + (η − θ)

)
I(−1,0)(η − θ) +

(
1− (η − θ)

)
I(0,1)(η − θ) .

Sinceθ is a location parameter in the densityr(η|θ), the Markov chainW can be expressed as a random

walk

Wn+1 = Wn + Zn+1 ,

whereZ1, Z2, . . . is an independent and identically distributed (iid) sequence of random variables with

density given by

f(z) = (1 + z)I(−1,0)(z) + (1− z)I(0,1)(z) .

For anyε ∈ (0, 1), we have

P
(
Z1 ∈ (0, ε)

)
= P

(
Z1 ∈ (−ε, 0)

)
> 0 .

This implies that the chainW can make arbitrarily small jumps in either direction. While this argument

makes it intuitively clear that the chain isν-irreducible, a formal proof requires a technical argument

similar to that used in Section 4.3.3 of?.

It turns out that this random walk is recurrent, which implies thatW is locally-ν-recurrent. Hence,

by Theorem 1,ν is strongly admissible. In fact,? shows that, under very mild conditions, Lebesgue

measure is a strongly admissible prior for one and two-dimensional location problems. This ends Ex-

ample 1.
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Example2. Let Θ = R+ := [0,∞) andX = Rn
+. Suppose that whenθ > 0 the statistical model

P (dx|θ) has a density (with respect to Lebesgue measure onX) given by

p(x|θ) =
n∏

i=1

1
θ

I[0,θ)(xi)

wherex = (x1, . . . , xn). In words, our statistical model stipulates thatX1, . . . , Xn are iid random

variables from the uniform distribution on[0, θ). Take the prior distribution to beν(dθ) = dθ
θ wheredθ

denotes Lebesgue measure onΘ. While we have yet to defineP (dx|θ) in the case whereθ = 0, from

a practical (statistical) standpoint this definition is irrelevant sinceν({0}) = 0. However, technically

speaking, this distribution must be specified to complete the model. (Note that we cannot simply remove

the point{0} from Θ because(0,∞) is not a Polish space.) We consider two alternatives forP (dx|0):

1. a unit point mass at(0, . . . , 0) ∈ Rn, and

2. n iid exponential random variables with unit scale.

We now apply Theorem 4. In case 1, there does exist aν-reducible version ofR since we can take

A to be the point(0, . . . , 0) ∈ Rn andC = {0}. However, in case 2, the setsA andC do not exist.

Indeed, letµ denote Lebesgue measure onX and note that it is impossible to satisfy the conditions of

Theorem 4 ifµ
(
A

)
= 0 since this yieldsP (A|θ) = 1 for all θ ∈ Θ. Now if µ

(
A

)
> 0 andP

(
A|θ

)
= 0,

then it must be true thatθ > 0 andµ
(
A ∩ [0, θ)n

)
= 0. Similarly, if θ∗ > 0 andP (A|θ∗) = 0, then

µ
(
A ∩ [0, θ∗)n

)
= 0. Now letθ0 = min{θ, θ∗} and note that

µ
(
[0, θ0)n

)
= µ

(
A ∩ [0, θ0)n

)
+ µ

(
A ∩ [0, θ0)n

)
≤ µ

(
A ∩ [0, θ∗)n

)
+ µ

(
A ∩ [0, θ)n

)
= 0 .

This is a contradiction, which implies that the setsA andC do not exist. It follows that every version of

R is ν-irreducible. Note that, by defining the statistical model carefully on an irrelevant (ν-null) set of

θs, we were able to employ Theorem 4 to show that all versions ofR areν-irreducible.

Regardless of howP (dx|0) is defined, the marginal measure is given by

M(dx) =
dx

nxn
(n)

,

wherex(n) := max{x1, . . . , xn} anddx denotes Lebesgue measure onX. Consider case 1 again. Forx

such thatx(n) > 0, define

q(θ|x) =
nxn

(n)

θn+1
I(x(n),∞)(θ) .

Since the point(0, . . . , 0) ∈ Rn hasM -measure 0,Q(dθ|x) can be chosen essentially arbitrarily when

x(n) = 0. We consider two different choices. Letδ0(dθ) denote the probability measure concentrated

at{0} and letδ1(dθ) denote a probability measure with supportR+. (It seems more appropriate to take
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Q(dθ|x) equal toδ0(dθ) whenx(n) = 0.) Two different versions of the posterior distribution are given

by

Qi(dθ|x) =

{
q(θ|x)dθ x(n) > 0

δi(dθ) x(n) = 0

for i ∈ {0, 1}. The version of Eaton’s chain associated withQ0 is ν-reducible since, if the chain is

started atθ = 0, it stays there forever. On the other hand,? show that the version associated with

Q1 is ν-irreducible, and they go on to show that this chain is recurrent. Consequently, this version of

Eaton’s chain is locally-ν-recurrent and it follows from Theorem 1 thatν is strongly admissible. This

ends Example 2.

A On the measurability of Q̃

Here we establish the measurability ofQ̃. Fix B ∈ B(Θ). It suffices to show that, for anyt ∈ R, the set

G̃t =
{
x ∈ X : Q̃(B|x) < t

}
is inB(X). We will accomplish this using the partition

G̃t =
(
G̃t ∩D

)
∪

(
G̃t ∩D

)
.

The setGt = {x ∈ X : Q(B|x) < t} ∈ B(X) sinceQ(B|·) is a measurable function. The measuresQ

andQ̃ agree onD, and hence

G̃t ∩D =
{
x ∈ D : Q̃(B|x) < t

}
=

{
x ∈ D : Q(B|x) < t

}
= Gt ∩D ∈ B(X) .

It remains to show that̃Gt ∩D ∈ B(X). There are four possible cases:

1. θ0 ∈ B andt ≤ 1

2. θ0 ∈ B andt > 1

3. θ0 /∈ B andt ≤ 0

4. θ0 /∈ B andt > 0

In the first two cases,̃Q(B|x) = 1 for all x ∈ D. Hence, in the first case,̃Gt ∩D = ∅ ∈ B(X), and in

the second,̃Gt ∩D = D ∈ B(X). In the last two cases,̃Q(B|x) = 0 for all x ∈ D. Hence, in the third

case,G̃t ∩D = ∅ ∈ B(X), and in the last̃Gt ∩D = D ∈ B(X).
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