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Abstract

Consider a parametric statistical mode(dx|¢), and an improper prior distribution(d6), that
together yield a (proper) formal posterior distributighdf|z). The prior is calledstrongly admis-
sibleif the generalized Bayes estimator of every bounded functighi@admissible under squared
error loss.? showed that a sufficient condition for strong admissibility/dé thelocal recurrence
of the Markov chain whose transition functionf&6, dn) = [ Q(dn|z)P(dz|#). Applications of
this result and its extensions are often greatly simplified when the Markov chain associat&dsvith
irreducible. However, establishing irreducibility can be difficult. In this paper, we provide a charac-
terization of irreducibility for general state space Markov chains, and we use this characterization to
develop an easily-checked, necessary and sufficient condition for irreducibility of Eaton’s Markov
chain. All that is required to check this condition is a simple examinatioR ahdwr. Application
of the main result is illustrated using two examples.



1 Introduction

Consider a parametric statistical decision problem with sample spaod parameter spaée Both X
and© are assumed to be Polish spaces equipped with their Beatlebras3(X) andB(©). Suppose
that P : B(X) x © — [0, 1] represents a parametric statistical model; i.e., for eégcR(-|0) is a
probability measure and, for eaeh P(A|-) is a measurable function. As usual, the idea is that we will
observe a random element whose distributioR (gx|0) and the goal is to use the observation to make
inferences about the unknown parameéteiThis will be done within the Bayesian paradigm using an
improper prior distribution. In particular, let(d¢) denote ar-finite measure withv(©) = oo. Define
the marginal measure as

M(dz) = / P(dz|0)v(do) .
? shows that ifM is o-finite, then there exists 2 formal posterior distributighdefined as follows.
Definition 1. A function@ : B(©) x X — [0, 1] is called a formal posterior distribution (FPD) if
1. Q(:|z) is a probability measure for each,

2. Q(B]-) is a measurable function for eadh, and

3. Q(db|z)M (dx) = P(dz|0)v(df); thatis, for all A € B(X) andB € B(0),

/QB|:1: (dz) /(A]H)u(d@).

The FPD is unique in the sense thaijfis another FPD, then there is ad-null set A, such that
x ¢ Ay impliesQ(df|z) = Q(df|z). Throughout this papei/ is assumed to be-finite so an FPD is
guaranteed to exist. We now briefly describe a method of evaluating improper prior distributions that is
due to M.L. Eaton. (For a more in depth review of this area,see

Consider the problem of estimating a bounded, real-valued fungti@hunder squared error loss.
Of course, the formal Bayes estimatongf) is¥(x) = [ v(6)Q(df|x). The risk function of a generic
estimator, say, is its mean squared error; i.e.,

r(8,0) = /X (5(x) —~(0))>P(dx|0) .
The estimatob is calledalmostz-admissiblef for any estimatow’ such that
r(8',0) <r(0,0) V€O,

the set{6 € © : r(§',0) < r(5,0)} hasv-measure zero. I(dz|§) andv(df) combine to yield an
FPD that generates (almost) admissible estimators for a large class of functiéntheh we would

be willing to endorse’ as a good “all purpose” prior to use in conjunction with the statistical model
P(dx|@). This idea provides motivation for the following definition.
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Definition 2. The priorv is called strongly admissible f is almosty-admissible for every bounded,
real-valued functiony.

? developed a sufficient condition for strong admissibility that involves the Markov transition function
R:0 x B(©) — [0,1] given by

Ri6.dn) = | Qinle)Pldslo).

Before we can state the result, we need a couple of concepts from general state space Markov chain
theory. LetW = {W,,}>2, denote the Markov chain o@ driven by R and letPr, denote the overall
probability law governing the chain whé#i, = 6. For B € B(©), let o denote the first return t&;
i.e.,

oB:min{nZLWneB},

with the understanding thatz = oo if W,, € B foralln > 1.

Definition 3. The Markov chairiV is called locallyz-recurrent if, for eachB with 0 < v(B) < oo,
the set
{0 €eB: Prg(aB < oo) < 1}

hasv-measure 0.

In words, the chain is locally-recurrent if, when started inside the g&tthen aside from a set of start-

ing values that has-measure 0, the chain returnsiBowith probability 1. Note that, unlike the standard
definition of recurrence (see; e.8,,Chapter 8), this definition pertains to both reducible and irreducible
chains. Indeed, just before defining loealecurrence on page 1174 states: “The following defini-

tion, a modified notion of recurrence, allows us to circumvent a discussion of irreducibility issues while
relating our previous admissibility results to the recurrencd’df The following was proven ir?.

Theorem 1. If W is a locallyv-recurrent Markov chain, then is a strongly admissible prior.

Establishing local-recurrence directly using the definition (or the characterization based on the
Dirichlet form of R) is typically infeasible. However, ifV is v-irreducible; that is, any seB with
v(B) > 0 is accessible from an§ € O, then recurrence and locatrecurrence are equivaleri)(
Hence, ifv-irreducibility of W can be demonstrated, then all of the techniques that have been developed
for establishing recurrence can be brought to bear on the problem. Indeed, nearly all of the applications
of Theorem 1 have involved first demonstrating thidtis v-irreducible and then showing th&ét’ is
recurrent. Examples can be found?s?, ? and?. Similarly, ? have recently extended and generalized
the theoretical results &f and? under the assumption that the chains of interest are irreducible.

There is one very simple sufficient condition fedirreducibility of W and this was used in most
of the applications mentioned above. If the support of the statistical model does not depend on the
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parameter; i.e., if the s¢td € B(X) : P(A|f) > 0} is the same for ah € ©, thenWV is v-irreducible

(?). Until now, however, there has been no easy way to check4arducibility of Eaton’s Markov

chain when this condition fails. In this paper, we provide an easily-checked, necessary and sufficient
condition forv-irreducibility of 7. This result cannot be stated precisely at this point, but the sufficiency
half, which is the practically important part, can be.

Theorem 2. The Markov chairl¥ is v-irreducible if there do not exist two sets € B(X) andC €
B(©) with the following properties:C is nonemptyy (C) > 0, P(A|¢) = 0 for everyd € C and
P(A]0) = 0 for v-almost all§ € C.

This result allows one to establishirreducibility of Eaton’s Markov chain through a simple examina-
tion of P andv. Neither the posterior distributio, nor the Markov transition functiorf, is required
to check the condition. It is interesting that, if the sdtandC do exist, thenP(dx|6) and P(dz|¢’)
are mutually singular probability measures whenévey C and¢’ € C (aside from as-null set offs
in C). Thus, the statistical model is, in a sense, an artificial concatenation of two different models.
The rest of the paper is organized as follows. Section 2 contains a new characterization of irre-
ducibility for general state space Markov chains. This characterization is used in Section 3 to prove the
main result. Section 3 also contains two examples.

2 A characterization of irreducibility for general Markov chains

Let S(y, dz) be a Markov transition function on a general state sgac#3(Y)) as described, for ex-
ample, in?, Section 3.4. Denote the corresponding Markov chaifras {Y,}°°,. Forn € N :=
{1,2,3,...}, let S"(y, dz) denote then-step Markov transition function correspondingSpwhich is
defined inductively by

§™ 1 (y, dz) = /Y S"(w, dz) S(y, dw) ,

whereS! = 5. Of course,S"(y, A) = Pry (Y, € A), wherePr,(-) denotes the overall law governing
Y on Y assuming that¥, = y. Lety denote a non-trivialg-finite measure oY, 5(Y)). Here is a
standard definition of irreducibility for general state space Markov chains.

Definition 4. (?, p.87). The Markov chaiiy” is calledp-irreducible if, for every measurabld with
»(A) > 0andevery €Y, there exists an € N (which may depend apand A) such thatS™(y, A) >
0.

In words, ¢-irreducibility means that every sdtwith v(A) > 0 is accessiblérom anyy € Y. We will
call the Markov chainp-reducible when it is nop-irreducible; that is, when there exigtand A with
©(A) > 0 such thatS™(y, A) = 0 for all n € N. We will sometimes find it convenient to apply the



phrases {-irreducible” and %-reducible” to the Markov transition functio,. Our first result shows
that, if the chain isp-reducible, then we may assume that A.

Proposition 1. The Markov chairt” is ¢-reducible if and only if there exist € B(Y) with ¢(A) > 0
andy € A such thatS"(y, A) = 0 for all n € N.

Proof. The sufficiency part is obvious. Now assume that the chajnrieducible so there exigt € Y
andA € B(Y) with ¢(A) > 0 such thats"(y, A) = 0 foralln € N. If y € 4, then there is nothing to
prove, so assume thate A. We will establish the existence gf € A such thatS™(y’, A) = 0 for all
n € N. First, for eachn € N, define

By ={weA:S™(w,A) >0},
and setB = U°_; B,,. Now fix m € N and note that
0=5"*(y,4) = / S"(z, A)S(y,dz) = | 5™ (2, 4)S(y, dz) .
Y Bm

SinceS™(z, A) > 0 for z € B,,, we must have5(y, B,,) = 0. But this result holds for every: € N,
so it follows thatS(y, B) = 0. Note thatY can be partitioned intel, B andA — B, and we know that
S(y, A) = S(y, B) = 0. Therefore,S(y, A — B) = 1, which implies thatd — B is not empty. Clearly,
anyy’ € A — B satisfiesS™(y', A) = 0 for all n € N. O

In the classical case wheMis countable, the chain is callededucible (with no prefix) if, for
eachi, j € Y, there is am € N such thatS” (i, {j}) > 0. This is equivalent te-irreducibility wherec
denotes counting measure¥nin this context, a nonempty s€tC Y is calledclosedif, once the chain
entersC, it cannot leave. Formally,' is closed ify . S(i,{j}) = 1 foralli € C. Obviously, the
state spacey, is closed. In fact, the Markov chain is irreducible if and onlyihas no proper, closed
subset (see; e.d?, Problem 8.21). We now extend these ideas to handle Markov chains on general state
spaces.

Definition 5. A setC' € B(Y) is called closed if it is nonempty ar{y, C') = 0 forall y € C.
Here is the general state space version of the res@lsi(?) Problem 8.21.
Theorem 3. The Markov chair” is o-reducible if and only if there exists a closed §atvith ¢ (C) > 0.

Proof. To prove sufficiency, suppoge is a closed set witbo(@) > 0. Assume that for some € N,
Sm(y,C) =0forally € C. Then, for anyy € C, we have

n—+1 M\ _—_ nzi 2) = nzi z)=0U.
S (y,C’)—/YS(,C)S(y,d) /CS(,C’)S(y,d) 0



Hence, by inductions™ (y,?) = 0 forall y € C and alln € N. Therefore, sincé€' is nonempty and
¢(C) > 0, the chain isp-reducible.

Now to prove necessity, assume that the chaip-reducible. By Proposition 1, there exist a mea-
surableA with ¢(A) > 0 and ay € A such thatS™(y, A) = 0 for all » € N. For eachm ¢ N,
define

By ={weY:S(w,A) >0},

and setB = U%_, B,,,. We will show that the measurable €et= AN B is the closed set that we seek.
First,y € C soC is nonempty. Now supposg € C'is such thaS(y’,?) > 0. Then

Sy, A)+S,B)>S(y,AuB)=S(y,C) >0.

Sincey’ € C =y € B = ¢ € By, we knowS(y/, A) = 0, so it must be the case théfy’, B) > 0.
Hence, there must existiac N such thatS(y/, By,) > 0, which implies that

SEHL(y, ) = / SH(z A)S( dz) = [ §*(z, A)S(ydz) > 0.
Y By,

But this implies that/ € By 1, which contradicts the fact thgt € C. Therefore, it must be the case
thatS(y,C) = 0forally € C, and this implies that’ is closed. Finallyy (C) > ¢(A) > 0. O

In the next section, we use Theorem 3 to develop an easily-checked, necessary and sufficient condi-
tion for v-irreducibility of Eaton’s Markov chain.

3 Conditions for irreducibility of Eaton’s Markov chain

? studied the Markov transition function
R(6. dy) = /X Q(dn|x)P(da]6)

where P is the statistical model an@ is a FPD. Since any FPD can be used to constRjck is not
unique. For example, if) # Q is another FPD, then

R(6, dn) = /X Oldn|x) P(dz|9)

is an equally valid version of the Markov transition function. However, the following result shows that
R enjoys a uniqueness property similar to the uniqueness property of the FPD that was discussed in
Section 1.

Proposition 2. If R and R are two different versions of Eaton’s Markov transition function, then there
exists av-null setB, € B(O) such that ¢ B, impliesR(6,-) = R(9,-).



Proof. Since@ and@ are both FPDs, there exists afi-null set A, such that: ¢ Ag = Q(df|z) =
Q(db|z). Fix B € B(©) and note that

R6.5) - 70, 5) = [ [@(Bla) - Q(Bl0)] Pl

Now since0 = M (Ag) = [ P(Ao|0)v(db), there exists a-null setB, such thatP(A,|¢) = 0 for all
6 € Bo. Hencef) ¢ By = R(0,B) = R(Q, B). Finally, note that4, is determined by) andQ, andB,
is determined byd,. Therefore,B; doesn’t depend on the sBt sof ¢ By = R(6,-) = R(6,-). [

Remarkl. An important consequence of Proposition 2 is that either all versior? aife locally-
recurrent, or none of themiis.

Every FPD satisfied(dx|0)v(df) = Q(df|z)M (dz), and it follows that every version aR is
reversible (or symmetric) with respect#othat is, if f andg are bounded, real-valued functions ©n

then
//f R(0, dn)v(do) //f Ry, d0)w(dn) -

This property is key in the proof of our main result, which we now state and prove.

Theorem 4. There exists &-reducible version oR if and only if there exist a nonempty étc 3(0)
with v(C) > 0 and another setl € B(X) such thatP(A|#) = 0 for everyd € C and P(A|f) = 0 for
v-a.e.feC.

Proof. To prove sufficiency, suppose thatandC' exist. Using property 3 of Definition 1, we have

/ Q(Clx) M (dz) = / P(A|0)v(df) =0 .
A C

Hence, if
D={zeA:Q(Clz) >0},

thenM (D) = 0 and, obviouslyQ(C|z) = 0 forallz € A — D. Fix 6, € C and letdy, (d¢) denote a
probability measure concentrated on the péintNow define

[ Qblz) gD
Qdble) = { 50, (d0) fazeD

Clearly, ) satisfies the first and third properties of Definition 1. Moreover, we show in the Appendix
that, for anyB € B(©), Q(B|-) is measurable. Therefor@,is a FPD and we now show that

R0, dn) = /X Oldn|x) P(dz|9)



is thev-reducible version ofk that we seek. By constructio@(@x) = 0 forall x € A. It follows
that, for everyd € C,

R(6,0) :/XQ(C:C)P(dmw):/Ac}(mx)P(dxw):o.

Consequently is a closed set wittr(C') > 0, and it follows from Theorem 3 that is v-reducible.
To prove necessity, assume tHais v-reducible. By Theorem 3 there exists a closed(setith
v(C) > 0. Using the reversibility of?, we have

/R(G,C)y(dﬂ):/ R(0,C)v(d6) =0 .
C C

This, of course, implies thak (0, C) = 0 for v-a.e.f € C. Now defineF; = {z € X : Q(C|z) > 0}
andF, = {z € X: Q(Cl|z) > 0}. SinceQ(C|z)+Q(C|z) = 1foreveryz € X, we have;UF, = X.
ConsequentlyF'; C Fi. SinceC is closed, we know that for ary< C,

0=R(0,C) = /XQ(C'M)P(d:E\H) :/F Q(Clz)P(dx|6) .
Thus,P(F,|0) = 0 for all § € C. Similarly, forv-a.e.f € C, we have
0= R(0,C) = /XQ(C|x)P(d:p|9) _ /F Q(Clz) P(dz]0)

Therefore,P(F1|0) = 0 for v-a.e.6 € C, and sinceF’, C Fy, it follows that P(F,|6) = 0 for v-a.e.
¢ € C. Letting A = F'5, we haveP (A|f) = 0 for all § € C andP(A|f) = 0 for v-a.e.f € C. O

Obviously, a sufficient condition far-irreducibility of R is the nonexistence of the setsandC'
in Theorem 4. This is precisely what Theorem 2 says. However, as will be clear from the examples
that follow, even when the set$ andC' do exist, it is often the case that some versiongRadre v-
irreducible. One way to establish localrecurrence (of all versions) @t is to identify a single version
of R that isv-irreducible and then show that this versionfofs recurrent. The result then follows from
the equivalence of recurrence and loecalecurrence (under irreducibility) mentioned in Section 1. We
now illustrate the use of Theorem 4 with two examples.

Examplel. LetX = © = R andP(dx|0) = p(x|0)dxz where

p(z]0) = L9 p41)(7) ,

and dz denotes Lebesgue measure %n Take the prior distribution to be(df) = df. A simple
calculation shows that the marginal measuré/ig&dz) = dz, which is clearlyo-finite. This is all the
information we require to apply Theorem 4. l@&te B(0) be a nonempty set such tha(@) > 0. We
claim that there exis?’ € C andD c C such that/(D) > 0 and|§ — ¢'| < 1/4 for everyd € D. To
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see this, letD; = [£, @) foralli € Z :={...,—1,0,1,...}. Then® = U;c; D;. If there exists an
io such thaiC' N D;, is not empty and/(C' N D;,) > 0, then we can simply také to be any point in
C N D;, andD to be the seC N D,,. Otherwise, for every € Z, eitherD; c C orv(C N D;) = 0.
Sincer(C) > 0, there must exist aip such that’(C N D;,) > 0, and it follows thatD;, C C. Assume,
without loss of generality, that' N [%0, oo) is nonempty and let; = min{: > i : C'N.D; is nonempty,
which is clearly finite. Now, any point i’ N D;, and the seD;, _; play the roles of andD. These
arguments show that there exiist C andd’ € C suchthatf—6'| < 1/4 wheref) can be chosen outside
of any subset of’ having Lebesgue measure zero. It follows thdt it= (,0+1), I, = (¢,0'+1) and
I =1, N1, theny(I) > 0. Now, if there exists anl € B(X) such thatP(A|f) = 0 andP(A|¢') = 0,
then

v(I)=v(ANI)+v(ANI) <v(Anh)+v(Anl) =0,
which is a contradiction. Hence, such @dncannot exist and it follows from Theorem 4 that every
version of Eaton’s Markov chain isirreducible.

For the sake of comparison, we now explain what is required to establish irreducibility in this situ-
ation if we make no appeal to Theorem 4. A version of the posterior is givep(bg|x) = ¢(0|x)do
where

q(0lz) = I(z—1,2)(0) -
It follows that (6, dn) = r(n|¢))dn where

r(n|0) = (1 +(n - 9))1(—1,0)(77 —0) + (1 —(n— 9))1(0,1)@ —-0).

Sinced is a location parameter in the density)|#), the Markov chairi? can be expressed as a random
walk
Wn+1 = Wn + Zn+1 )

whereZ, Z, ... is an independent and identically distributed (iid) sequence of random variables with
density given by
f(z) =+ 2)[(—10)(2) + (1 = 2)L01)(2) -

For anye € (0,1), we have
P(Zy € (0,e)) = P(Zy € (—¢€,0)) > 0.

This implies that the chaild” can make arbitrarily small jumps in either direction. While this argument
makes it intuitively clear that the chain isirreducible, a formal proof requires a technical argument
similar to that used in Section 4.3.3f

It turns out that this random walk is recurrent, which implies fhats locally-v-recurrent. Hence,
by Theorem 1y is strongly admissible. In fac® shows that, under very mild conditions, Lebesgue
measure is a strongly admissible prior for one and two-dimensional location problems. This ends Ex-
ample 1.



Example2. Let ©® = Ry := [0,00) andX = R’. Suppose that whe > 0 the statistical model
P(dz|0) has a density (with respect to Lebesgue measub€)@iven by

p(x|6) :ﬁ;

wherex = (z1,...,x,). In words, our statistical model stipulates thdt, ..., X,, are iid random
variables from the uniform distribution df, 6). Take the prior distribution to be(df) = % whered¢
denotes Lebesgue measure@nWhile we have yet to defin®(dx|6) in the case wheré = 0, from

a practical (statistical) standpoint this definition is irrelevant sing@®}) = 0. However, technically
speaking, this distribution must be specified to complete the model. (Note that we cannot simply remove
the point{0} from © becaus€0, o) is not a Polish space.) We consider two alternativeg*atz|0):

1. aunit point mass db,...,0) € R", and
2. n iid exponential random variables with unit scale.

We now apply Theorem 4. In case 1, there does existeducible version of? since we can take
A to be the poin{0,...,0) € R® andC = {0}. However, in case 2, the setsandC do not exist.
Indeed, letu denote Lebesgue measure Xm@nd note that it is impossible to satisfy the conditions of
Theorem 4 ifu(A) = 0 since this yields”(A|§) = 1 forall§ € ©. Now if 2(A) > 0 andP(A]6) = 0,
then it must be true that > 0 andu(A N [0,6)") = 0. Similarly, if * > 0 and P(A|6*) = 0, then
pn(AN0,6%)") = 0. Now letfy = min{6,*} and note that

1(10,60)") = (AN [0,00)") + (AN 0,00)") < u(AN[0,6%)") + u(AN[0,6)") = 0.

This is a contradiction, which implies that the sdtandC' do not exist. It follows that every version of
R is v-irreducible. Note that, by defining the statistical model carefully on an irrelevantlf) set of
fs, we were able to employ Theorem 4 to show that all versiorg afev-irreducible.

Regardless of how?(dz|0) is defined, the marginal measure is given by

d
M(dz) = ——
nxr
(n)
wherex, := max{zy,...,r,} anddz denotes Lebesgue measurexarConsider case 1 again. For
such thatr(,,) > 0, define

Since the poinf0, ...,0) € R™ hasM-measure 0Q(df|x) can be chosen essentially arbitrarily when
zpy) = 0. We con5|der two different choices. L&f(df) denote the probability measure concentrated
at{0} and lety; (df) denote a probability measure with supp&rt. (It seems more appropriate to take
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Q(d0|z) equal tody (df) whenz,,y = 0.) Two different versions of the posterior distribution are given

by
q(0]z)do x>0

Qi(db|z) = { 5.(d0) gy =0

for i € {0,1}. The version of Eaton’s chain associated wilf is v-reducible since, if the chain is
started ath = 0, it stays there forever. On the other harrdshow that the version associated with

Q1 is v-irreducible, and they go on to show that this chain is recurrent. Consequently, this version of
Eaton’s chain is locally~recurrent and it follows from Theorem 1 thais strongly admissible. This
ends Example 2.

A On the measurability of Q)

Here we establish the measurability@f Fix B € B(0). It suffices to show that, for anye R, the set
Gy ={z € X:Q(Blr) <t}

is in B(X). We will accomplish this using the partition
Gy=(G:NnD)U(G,ND).

The setG; = {z € X : Q(B|z) < t} € B(X) sinceQ(B]-) is a measurable function. The measutes
andQ agree onD, and hence

GiND={zeD:Q(Blz)<t}={reD:QBlr) <t} =G,ND e B(X).
It remains to show tha®, N D € B(X). There are four possible cases:
1. pe Bandt <1
2. 0p € Bandt > 1
3.6y ¢ Bandt <0
4. 0y ¢ Bandt >0

In the first two cases)(B|z) = 1 for all z € D. Hence, in the first cas&; N D = () € B(X), and in
the secondi; N D = D € B(X). In the last two case€)(B|z) = 0 for all z € D. Hence, in the third
caseG, N D =0 € B(X), and inthe lasG; N D = D € B(X).
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