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1. THE MNET PENALTY FUNCTION AND ITS SPECIAL CASES

We mentioned five penalty functions in Table 1 of the main text. They are the ridge, the lasso,
the enet, the mcp and the mnet penalty functions. The first four are indeed special cases of the
mnet penalty function, and Figure 1 provides one way to display their relationship.
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Figure 1: Relationship between the five penalty functions and the corresponding priors.

3.1 The Bayesian mnet model
Let N(t|µ, V ) denote the multivariate normal density with mean µ and variance covariance
matrix V , evaluated at t. The general form of a BVS model is given by

f(Y |β, γ, σ2, λ, w) = N(Y |Xγβγ, σ2In) , (3a)

f(β|γ, σ2, λ, w) = Πq
j=1

�
γjfλ,σ2(βj) + (1− γj)δ0

�
, (3b)

f(σ2|λ, w) ∝ (σ2)−1 , (3c)
f(γ|w) ∼ fw(γ) . (3d)

Here, a q-dim binary vector γ = (γ1, . . . , γq) ∈ {0, 1}q =: Γ indicates a selected set of predic-
tors, and βγ denotes the subvector of coefficients for the predictors selected by γ. Prior of the
BVS model are specified in (3b) – (3d).

In this BVS model, (3c) specifies a uniform prior on log σ2, a typical choice of non-informative
prior for these parameters in linear regression models. And (3d) specifies a prior on the indica-
tor vector γ. A simple choice is the independent Bernoulli distribution with success probability
w. We consider w a hyperparameter and discuss ways to specify its value in the next section.
We mention that there are other dependent priors proposed for γ, that could take advantage of
known structure of the predictors when that information is available. See for example, Chip-
man (1995), Geweke (1996), Yuan and Lin (2005), and Li and Zhang (2010). In the special case
where each γj is fixed at 1, model (3) reduces to a Bayesian model that does not do variable
selection directly, which we mentioned in the Introduction.

Expression (3b) assines a prior to the regression coefficients. The prior comprises a point
mass at zero, δ0, and a continuous part, fλ,σ2(βj). Given a penalty function p(·; λ), one can
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FIGURE 1: Relationship between the five penalty functions and the corresponding priors.

2. CORRESPONDENCE BETWEEN THE BAYESIAN MNET PRIOR AND ITS
PENALIZED REGRESSION COUNTERPART

Besides the formal correspondence between the prior fλ,σ2(βj) and the penalty function p(·; λ),

fλ,σ2(βj) = σ−1cλ exp
{
− p

(
βj
σ

; λ
)}

, (1)

* Author to whom correspondence may be addressed.
E-mail: aixin-tan@uiowa.edu

c© 20?? Statistical Society of Canada / Société statistique du Canada
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the Bayesian posterior and the penalized regression (PR) solution are related in the following
way. When conditional on a fixed (σ2,λ), the posterior distribution of β is given by

π(β|Y, σ2,λ) ∝ exp
{
− ‖Y −Xβ‖2

2σ2
− pmn

(
β

σ
;λ1, λ2, κ

)}

= exp
{
− n

σ2

[‖Y −Xβ‖2
2n

+
σ2

n
pmn

(
β

σ
;λ1, λ2, κ

)]}

= exp
{
− n

σ2

[‖Y −Xβ‖2
2n

+ pmn

(
β;
λ1σ

n
,
λ2

n
,
κ

n

)]}
,

where the last equality follows from the fact that, for any a, b > 0,

a pmc

(
t

b
;λ1, κ

)
= pmc

(
t;
aλ1

b
,
aκ

b2

)
and a

λ2

2

(
t

b

)2

=
aλ2

2b2
t2 .

Hence, the mode of the above posterior density coincides with the solution to the mnet PR model
with penalty parameter

(λ∗1, λ
∗
2, κ
∗) =

(
λ1σ

n
,
λ2

n
,
κ

n

)
. (2)

Recall that the mnet penalty function pmn(· ; λ) reduces to the normal, the lasso, and the
enet penalty functions under special choices of λ = (λ1, λ2, κ). Naturally, we will refer to the
corresponding priors in (1) in these special cases as the normal, the lasso, and the enet priors, re-
spectively. Comparing to existing literature, the way in which σ2 enters our definition of the lasso
prior agrees with that of the double exponential prior of Park & Casella (2008). And our defini-
tion of the enet prior and the mnet prior can be considered a natural extension to this lasso prior.
But our definition of the enet prior is different from that of Hans (2011) and Li & Lin (2010).
Specifically, the conditional prior for βj in their Bayesian enet model is fen(βj |λ1, λ2, σ

2) ∝
exp{− 1

2σ2 (λ1|βj |+ λ2β
2
j )}, hence the mode of its conditional posterior density πen(β|Y, σ2,λ)

is the naive enet solution with penalty parameter (λ∗1, λ
∗
2) = (λ1/2n, λ2/n), which unlike (2), is

free of σ. Hence, their Bayesian enet model can not be re-parameterized to match ours. It is be-
yond the scope of this paper to study how the two versions of the Bayesian enet models compare,
as we will focus on models allowed within the Bmnet framework defined in sec. 3 of the paper.

3. QUANTITIES NEEDED IN THE BLOCK GIBBS SAMPLER

Recall in sec. 4 of the main text, integrals I1, I2 and I3 are needed in updating (βj , γj) for
j = 1, . . . , p. We have

I1 =
∫ λ1σ

κ

0

exp

{
− nt

2

2σ2
+
XT
j rjt

σ2
− λ1t

σ
− λ2 − κ

2σ2
t2

}
dt

=
∫ λ1σ

κ

0

exp
{
−A1

2
t2 +B1t

}
dt ,

where

A1 =
n+ λ2 − κ

σ2
and B1 =

XT
j rj

σ2
− λ1

σ
.
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Note that A1 > 0 because κ/n corresponds to the κ parameter in the classical mcp or mnet
penalty function, and is always set below 1. Therefore, I1 can be expressed in terms of the pdf
and the cdf of certain normal distributions:

I1 = exp
{
B2

1

2A1

}∫ λ1σ
κ

0

exp

{
−A1

2

(
t− B1

A1

)2
}
dt = Φ

((
0,
λ1σ

κ

)
;
B1

A1
,

1
A1

)/
φ

(
0;
B1

A1
,

1
A1

)
,

where Φ((a, b);µ, v) represents the probability that a Normal random variable with mean µ and
variance v falls in the interval (a, b). Similarly, we have

I2 =
∫ 0

−λ1σ
κ

exp

{
− nt

2

2σ2
+
XT
j rjt

σ2
+
λ1t

σ
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2σ2
t2

}
dt

=
∫ 0
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κ

exp
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2
t2 +B2t
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κ
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)
,

where

A2 = A1 =
n+ λ2 − κ

σ2
and B2 =

XT
j rj

σ2
+
λ1

σ
.

Finally, we have

I3 =
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where

A3 =
n+ λ2

σ2
and B3 =

XT
j rj

σ2
.

Further, the conditional distribution of βj given the others can be expressed as a mixture of
three truncated normal distributions,

π(βj |γ, β(j), Y ) = I1 · TN
(
B1

A1
,

1
A1

;
(

0,
λ1σ

κ

))
+

I2 · TN
(
B2

A2
,

1
A2

;
(
−λ1σ

κ
, 0
))

+ I3 · TN
(
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,

1
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(
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)
∪
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,
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where TN (µ, v; (a, b)) stands for the truncated normal density with mean µ, standard deviation
v, and support [a, b].

4. SUMMARY STATISTICS FOR THE SIMULATION STUDIES IN SEC. 5.1.

This section complements the graphical comparisons of different methods in sec. 5.1 with nu-
merical ones. The tables below provide the median of the prediction mean squared error (pmse),
the false discoveries (FD), the false negatives (FN), and the number of variables selected (NVS)
of several methods, under different combinations of correlation strength ρ and signal to noise
ratio s. Recall from sec. 5 that, at each (ρ, s), 200 datasets are randomly generated, each con-
tains n = 100 observations and q = 150 predictors, while the number of true predictors is 10.
The bootstrap standard error is reported for the median pmse. Specifically, we draw B = 1000
samples with replacement, each of size 200, from the 200 pmse values obtained in the simulation
study. We calculate their sample medians, (m1, · · · ,mB), and report their standard deviation as
an approximation to the standard error of the median pmse.

TABLE 1: Under two simulation setups of ρ = 0.3 and ρ = 0.9, with signal to noise ratio fixed at s = 2,
this table provides median of the prediction mean squared error (pmse), the false discoveries (FD), the

false negatives (FN), and the number of variables selected (NVS) of several methods. For each setup, 200

datasets were randomly generated, each contains n = 100 observations and q = 150 potential predictors,
while the number of true predictors is 10. Means of the 200 repetitions yield similar results, and hence are

not shown.

cvnorm cvlasso cvenet cvenet.n cvmcp cvmnet benet bmnet-fx bmnet-rd nlp

ρ = 0.3

pmse 6.23 4.10 4.30 4.38 5.15 4.59 4.46 4.69 4.23 5.65

std. err. 0.05 0.15 0.12 0.10 0.25 0.11 0.07 0.12 0.09 0.27

FD 140.00 20.00 25.00 30.00 10.00 22.00 7.00 3.00 3.00 2.00

FP 0.00 1.00 1.00 1.00 2.00 1.00 3.00 4.50 4.00 6.00

NVS 150.00 29.00 34.00 39.50 18.00 30.50 14.50 8.00 9.00 6.00

ρ = 0.9

pmse 1.25 2.36 2.17 1.74 5.84 2.91 1.57 1.79 1.48 2.48

std. err. 0.07 0.06 0.09 0.07 0.09 0.25 0.04 0.04 0.03 0.10

FD 140.00 12.50 22.50 52.50 2.00 20.00 1.00 1.00 1.00 2.00

FP 0.00 8.00 7.00 4.00 9.00 7.00 10.00 10.00 10.00 10.00

NVS 150.00 15.00 25.00 57.50 2.00 22.50 2.00 1.00 1.00 2.00
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TABLE 2: Medians over 200 replications of various statistics for different methods at ρ = .3 and .9. Signal
to noise ratio is fixed at s = 4.

cvnorm cvlasso cvenet cvenet.n cvmcp cvmnet benet bmnet-fx bmnet-rd nlp

ρ = 0.3

pmse 6.15 1.10 1.15 1.20 0.58 0.47 0.65 0.59 0.59 0.41
std. err. 0.03 0.04 0.03 0.04 0.07 0.03 0.02 0.02 0.02 0.02

FD 140.00 23.00 25.00 25.00 3.00 3.00 1.00 1.00 1.00 0.00

FP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NVS 150.00 33.00 35.00 35.00 13.00 13.00 11.00 11.00 11.00 10.00

ρ = 0.9

pmse 1.29 1.24 1.09 1.01 3.05 1.22 0.99 1.09 0.97 1.81

std. err. 0.02 0.02 0.03 0.03 0.05 0.06 0.02 0.02 0.02 0.06

FD 140.00 18.00 25.00 52.00 3.00 25.50 9.50 2.00 4.00 2.00

FP 0.00 5.00 3.50 2.00 8.00 4.00 6.00 8.00 8.00 9.00

NVS 150.00 22.50 30.50 59.50 4.00 31.00 13.00 4.00 6.00 4.00

TABLE 3: Medians over 200 replications of various statistics for different methods at ρ = .3 and .9. Signal
to noise ratio is fixed at s = 8.

cvnorm cvlasso cvenet cvenet.n cvmcp cvmnet benet bmnet-fx bmnet-rd nlp

ρ = 0.3

pmse 6.14 0.29 0.29 0.32 0.07 0.07 0.09 0.08 0.08 0.08
std. err. 0.02 0.01 0.02 0.01 0.00 0.01 0.00 0.00 0.00 0.00

FD 140.00 22.00 24.00 24.50 0.00 0.00 0.00 0.00 0.00 0.00

FN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NVS 150.00 32.00 34.00 34.50 10.00 10.00 10.00 10.00 10.00 10.00

ρ = 0.9

pmse 1.30 0.55 0.57 0.61 1.31 0.72 0.61 0.59 0.60 0.74

std. err. 0.02 0.01 0.01 0.01 0.04 0.02 0.01 0.01 0.01 0.03

FD 140.00 20.00 24.00 33.00 4.00 14.00 21.00 5.00 8.00 2.00

FN 0.00 1.00 1.00 1.00 5.00 2.00 1.00 3.00 3.00 5.00

NVS 150.00 29.00 33.00 42.00 8.00 22.00 30.00 12.00 16.00 7.00
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