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Abstract

A Markov chain is geometrically ergodic if it converges to its invari-
ant distribution at a geometric rate in total variation norm. We study
geometric ergodicity of deterministic and random scan versions of the
two-variable Gibbs sampler. We give a sufficient condition which si-
multaneously guarantees both versions are geometrically ergodic. We
also develop a method for simultaneously establishing that both ver-
sions are subgeometrically ergodic. These general results allow us to
characterize the convergence rate of two-variable Gibbs samplers in a
particular family of discrete bivariate distributions.
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1 Introduction

Let $ be a probability distribution having support X × Y ⊆ Rk × Rl,
k, l ≥ 1 and $X|Y and $Y |X denote the associated conditional distributions.
We assume it is possible to simulate directly from $X|Y and $Y |X . Then
there are two Markov chains having $ as their invariant distribution, each of
which could be called a two-variable Gibbs sampler (TGS). The most common
version of a TGS is the deterministic scan Gibbs sampler (DGS), which is
now described. Suppose the current state of the chain is (Xn, Yn) = (x, y),
then the next state, (Xn+1, Yn+1), is obtained as follows.

Iteration n+ 1 of DGS:

1. Draw Xn+1 ∼ $X|Y (·|y), and call the observed value x′.

2. Draw Yn+1 ∼ $Y |X(·|x′).

An alternative TGS is the random scan Gibbs sampler (RGS). Fix p ∈
(0, 1) and suppose the current state of the RGS chain is (Xn, Yn) = (x, y).
Then the next state, (Xn+1, Yn+1), is obtained as follows.

Iteration n+ 1 of RGS:

1. Draw B ∼ Bernoulli(p).

2. If B = 1, then draw Xn+1 ∼ $X|Y (·|y) and set Yn+1 = y.

3. If B = 0, then draw Yn+1 ∼ $Y |X(·|x) and set Xn+1 = x.

Despite the simple structure of either TGS, these algorithms are widely
applicable in the posterior analysis of complex Bayesian models. A TGS
also arises naturally when $ is created via data augmentation techniques
(Hobert, 2011; Tanner and Wong, 1987).

Inference based on $ often requires calculation of an intractable expecta-
tion. Let g : X×Y → R and let E$g denote the expectation of g with respect
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to $. If a TGS Markov chain is ergodic (see Tierney, 1994) and E$|g| <∞,
then

ḡn :=
1

n

n−1∑
i=0

g(Xi, Yi)
a.s.−→ E$g as n→∞.

Thus estimation of E$g is simple. However, the estimator ḡn will be more
valuable if we can attach an estimate of the unknown Monte Carlo error
ḡn − E$g. An approximation to the sampling distribution of the Monte
Carlo error is available when a Markov chain central limit theorem (CLT)
holds √

n(ḡn − E$g)
d→ N(0, σ2

g) as n→∞
with 0 < σ2

g < ∞. The variance σ2
g accounts for the serial dependence

in a TGS Markov chain and consistent estimation of it requires specialized
techniques such as batch means, spectral methods or regenerative simulation.
Let σ̂2

n be an estimator of σ2
g . If, with probability 1, σ̂2

n → σ2
g as n→∞, then

an asymptotically valid Monte Carlo standard error is σ̂n/
√
n. These tools

allow the practitioner to use the results of a TGS simulation with the same
level of confidence that one would have if the observations were a random
sample from $. For more on this approach the interested reader can consult
Geyer (1992), Geyer (2011), Flegal et al. (2008), Flegal and Jones (2010),
Flegal and Jones (2011), Hobert et al. (2002), Jones et al. (2006), and Jones
and Hobert (2001).

The CLT will obtain if E$|g|2+ε <∞ for some ε > 0 and the Markov chain
is rapidly mixing (Chan and Geyer, 1994). In particular, we require that the
Markov chain be geometrically ergodic; that is, converge to the target $
in total variation norm at a geometric rate. Under these same conditions
methods such as batch means and regenerative simulation provide strongly
consistent estimators of σ2

g . Thus establishing geometric ergodicity is a key
step in ensuring the reliability of a TGS as a method for estimating features
of $.

The convergence rate of DGS Markov chains has received substantial at-
tention. In particular, sufficient conditions for geometric ergodicity have been
developed for several DGS chains for practically relevant statistical models
(see e.g. Hobert and Geyer, 1998; Johnson and Jones, 2010; Jones and Hobert,
2004; Marchev and Hobert, 2004; Roberts and Polson, 1994; Roberts and
Rosenthal, 1999; Román and Hobert, 2011; Román, 2012; Rosenthal, 1996;
Roy and Hobert, 2007; Tan and Hobert, 2009). The convergence rates of
RGS chains has received almost no attention despite sometimes being useful.
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Liu et al. (1995) did investigate geometric convergence of RGS chains, but
the required regularity conditions are daunting and, to our knowledge, have
not been applied to practically relevant statistical models. Recently John-
son et al. (2011) gave conditions which simultaneously establish geometric
ergodicity of both the DGS chain and the corresponding RGS chain. These
authors also conjectured that if the RGS chain is geometrically ergodic, then
so is the DGS chain. That is to say, the qualitative convergence properties of
TGS chains coincide. We are not able to resolve this conjecture in general,
but in our main application (see Section 5) this is indeed the case.

A TGS chain which converges subgeometrically (ie, slower than geomet-
ric) would not be as useful as another chain which is geometrically ergodic–
although with additional moment conditions it is still possible for a CLT to
hold (Jones, 2004). Thus it would be useful to have criteria to check for sub-
geometric convergence. We are unaware of any previous work investigating
subgeometric convergence of TGS Markov chains.

In the rest of this paper, we extend the results of Johnson et al. (2011) and
provide a condition which can be used to simultaneously establish geometric
ergodicity of DGS and RGS Markov chains. We then turn our attention
to development of a condition which ensures that both the DGS and RGS
chains converge subgeometrically. Finally, we apply our results to a class
of bivariate distributions where we are able to characterize the convergence
properties of the DGS and RGS chains. But we begin with some Markov
chain background and a formal definition of the Markov chains we study.

2 Background and Notation

Let Z be a topological space and B(Z) denote its Borel σ-algebra. Also,
let Φ = {Z0, Z1, Z2, . . .} be a Markov chain having Markov transition kernel
P . That is, P : Z × B(Z) → [0, 1] such that for each A ∈ B(Z), P (·, A) is a
nonnegative measurable function and for each z ∈ Z, P (z, ·) is a probability
measure. As usual, P acts to the left on measures so that if ν is a measure
on (Z,B(Z)) and A ∈ B(Z), then

νP (A) =

∫
Z

ν(dz)P (z, A) .

For any n ∈ Z+, the n-step Markov transition kernel is given by P n(z, A) =
Pr(Zn+j ∈ A|Zj = z).
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Let w be an invariant probability measure for P , that is, wP = w. Denote
total variation norm by ‖ · ‖TV . If Φ is ergodic, then for all z ∈ Z we have
||P n(z, ·) − w(·)||TV → 0 as n → ∞. Our goal is to study the rate of
this convergence. Suppose there exist a real-valued function M(z) on Z and
0 < t < 1 such that for all z

||P n(z, ·)− w(·)||TV ≤M(z)tn . (1)

Then Φ is geometrically ergodic, otherwise it is subgeometrically ergodic.

2.1 Two-variable Gibbs samplers

In this section we define the Markov kernels associated with the DGS and
RGS chains described in Section 1. We also introduce a third Markov chain
which will prove crucial to our study of the other Markov chains.

Recall that $ is a probability distribution having support X×Y ⊆ Rk×Rl,
k, l ≥ 1. Let π(x, y) be a density of $ with respect to a measure µ = µX×µY .
Then the marginal densities are given by

πX(x) =

∫
Y

π(x, y)µY (dy)

and similarly for πY (y). The conditional densities are πX|Y (x|y) = π(x, y)/πY (y)
and πY |X(y|x) = π(x, y)/πX(x).

Consider the DGS Markov chain ΦDGS = {(X0, Y0), (X1, Y1), . . .} and let

kDGS(x′, y′|x, y) = πX|Y (x′|y)πY |X(y′|x′) .

Then the Markov kernel for ΦDGS is defined by

PDGS((x, y), A) =

∫
A

kDGS(x′, y′|x, y)µ(d(x′, y′)) A ∈ B(X)× B(Y) .

It is well known that the two marginal sequences comprising ΦDGS are them-
selves Markov chains (Liu et al., 1994). We now consider the marginal se-
quence ΦX = {X0, X1, . . .} and define

kX(x′|x) =

∫
Y

πX|Y (x′|y)πY |X(y|x)µY (dy) .
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The Markov kernel for ΦX is

PX(x,A) =

∫
A

kX(x′|x)µX(dx′) A ∈ B(X) .

Note that PDGS has $ as its invariant distribution while PX has the marginal
$X as its invariant distribution.

Finally, consider the RGS Markov chain ΦRGS = {(X0, Y0), (X1, Y1), . . .}.
Let p ∈ (0, 1) and δ denote Dirac’s delta. Define

kRGS(x′, y′|x, y) = pπX|Y (x′|y)δ(y′ − y) + (1− p)πY |X(y′|x)δ(x′ − x) .

Then the Markov kernel for ΦRGS is

PRGS((x, y), A) =

∫
A

kRGS(x′, y′|x, y)µ(d(x′, y′))

It is easy to show via direct computation that $ is invariant for PRGS.
It is well known that PX and PDGS converge to their respective invariant

distributions at the same rate (Diaconis et al., 2008; Liu et al., 1994; Robert,
1995; Roberts and Rosenthal, 2001). Thus if one is geometrically ergodic,
then so is the other. This relationship has been routinely exploited in the
study of TGS chains for practically relevant statistical models (cf. Hobert
and Geyer, 1998; Johnson and Jones, 2010; Jones and Hobert, 2004; Roy
and Hobert, 2007; Tan and Hobert, 2009) since one of the two chains may be
easier to analyze than the other. Recently, Johnson et al. (2011) showed that
if PX or PDGS is geometrically ergodic, then so is PRGS. Thus the analysis of
the convergence rate of TGS algorithms often comes down to analyzing PX .
This is exactly the approach we take in Sections 3 and 5.

3 Conditions for Geometric Ergodicity

In this section we develop general conditions which ensure that PX , PDGS
and PRGS are geometrically ergodic. First we need a couple of concepts from
Markov chain theory. Recall the notation from Section 2. That is, P is a
Markov kernel on (Z,B(Z)). Then P is Feller if for any open set O ∈ B(Z),
P (·, O) is a lower semicontinuous function. The Markov kernel P acts to the
right on functions so that for measurable f

Pf(z) =

∫
Z

f(z′)P (z, dz′) .
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A drift condition holds if there exists a function U : Z→ R+, and constants
0 < λ < 1 and L <∞ satisfying

PU(z) ≤ λU(z) + L for all z ∈ Z . (2)

Recall that a function U is said to be unbounded off compact sets if the
sublevel set {z ∈ Z : U(z) ≤ d} is compact for every d > 0. If P is Feller,
U is unbounded off compact sets and satisfies (2), then Φ is geometrically
ergodic. See Meyn and Tweedie (1993) and Roberts and Rosenthal (2004)
for details while Jones and Hobert (2001) give an introduction to the use of
drift conditions.

3.1 Two-variable Gibbs samplers

Johnson et al. (2011) gave a set of conditions which simultaneously prove
that ΦX , ΦDGS and ΦRGS are geometrically ergodic. We build on their work
and show how a drift condition for PX naturally provides a drift condition
for PRGS. This allows us to develop an alternative set of conditions which are
sufficient for the geometric ergodicity of PX , PDGS and PRGS. The application
of this method is illustrated in Section 5.

The following result was essentially proved by Johnson et al. (2011), but
it was not stated in their paper. Thus we provide a proof for the sake of
completeness. First we set some notation. Suppose V : X→ R+ and let

G(y) =

∫
X

V (x)πX|Y (x|y)µX(dx) .

Also, for c > 0 define

W (x, y) = V (x) + cG(y) . (3)

Lemma 1. Suppose there exist constants 0 < λ < 1 and L < ∞ such that
for all x ∈ X

PXV (x) ≤ λV (x) + L .

If 0 < p < 1 and p(1− p)−1 < c < p[λ(1− p)]−1, then there exists λ < γ < 1
such that

PRGSW (x, y) ≤ γW (x, y) + (1− p)cL .
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Proof. Notice that∫
Y

G(y)πY |X(y|x)µY (dy) =

∫
Y

∫
X

V (x′)πX|Y (x′|y)πY |X(y|x)µX(dx′)µY (dy)

=

∫
X

V (x′)

∫
Y

πX|Y (x′|y)πY |X(y|x)µY (dy)µX(dx′)

=

∫
X

V (x′)kX(x′|x)µX(dx′)

≤ λV (x) + L

Since
p

1− p
< c <

p

λ(1− p)
(4)

there exists γ such that

(1− p)(cλ+ 1) ∨ p(1 + c)

c
≤ γ < 1 . (5)

PRGSW (x, y) =

∫
X

∫
Y

W (x′, y′)kRGS(x′, y′|x, y)µX(dx′)µY (dy′)

= p

∫
X

∫
Y

W (x′, y′)πX|Y (x′|y)δ(y′ − y)µX(dx′)µY (dy′)

+ (1− p)
∫

X

∫
Y

W (x′, y′)πY |X(y′|x)δ(x′ − x)µX(dx′)µY (dy′)

= p

∫
X

W (x′, y)πX|Y (x′|y)µX(dx′) + (1− p)
∫

Y

W (x, y′)πY |X(y′|x)µY (dy′)

= p

∫
X

[V (x′) + cG(y)]πX|Y (x′|y)µX(dx′)

+ (1− p)
∫

Y

[V (x) + cG(y′)]πY |X(y′|x)µY (dy′)

= pcG(y) + (1− p)V (x) + pG(y) + (1− p)c
∫

Y

G(y′)πY |X(y′|x)µY (dy′)

= p(1 + c)G(y) + (1− p)V (x) + (1− p)c
∫

Y

G(y′)πY |X(y′|x)µY (dy′)

≤ (1− p)cλV (x) + (1− p)cL+ p(1 + c)G(y) + (1− p)V (x)

= (1− p)(cλ+ 1)V (x) + p(1 + c)G(y) + (1− p)cL
≤ γW (x, y) + (1− p)cL
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All that remains is to show that γ > λ. Now

γ ≥ (1− p)(cλ+ 1) by (5)

> (1− p)
(

p

1− p
λ+ 1

)
by (4)

= pλ+ (1− p)
> λ since λ, p ∈ (0, 1) .

The following is an easy consequence of Lemma 1 and the material stated
at the beginning of this section.

Proposition 1. Suppose PX and PRGS are Feller. If there exists a function
V : X → R+ such that both V and the corresponding W (as defined at (3))
are unbounded off compact sets, and there exist constants 0 < λ < 1 and
L <∞ such that for all x ∈ X

PXV (x) ≤ λV (x) + L,

then ΦX , ΦDGS and ΦRGS are geometrically ergodic.

4 Conditions for Subgeometric Convergence

Our goal in this section is to develop a condition which ensures that ΦX ,
ΦDGS and ΦRGS converge subgeometrically, but first we need a few concepts
from general Markov chain theory. Recall the notation of Section 2. In
particular, P is a Markov kernel on (Z,B(Z)) having invariant distribution
w. A Markov kernel defines an operator on the space of measurable functions
that are square integrable with respect to the invariant distribution, denoted
L2(w). Also, let

L2
0,1(w) =

{
f ∈ L2(w) : Ewf = 0, and Ewf

2 = 1
}
.

For f, g ∈ L2(w), define the inner product as

〈f, g〉 =

∫
Z

f(z)g(z)w(dz)
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and ‖f‖2 = 〈f, f〉. The norm of the operator P is

‖P‖ = sup
f∈L2

0,1(w)

‖Pf‖ .

If P is symmetric with respect to w, that is, if

P (z, dz′)w(dz) = P (z′, dz)w(dz′), (6)

then P is self-adjoint so that 〈Ph1, h2〉 = 〈h1, Ph2〉. If P is w-symmetric, then
Φ is geometrically ergodic if and only if ‖P‖ < 1 (Roberts and Rosenthal,
1997). Moreover, if Z ∼ w and Z ′|Z = z ∼ P (z, ·), then

‖P‖ = sup
f∈L2

0,1(w)

|〈Pf, f〉| = sup
f∈L2

0,1(w)

|E [f(Z ′)f(Z)] | . (7)

The first equality is a property of self-adjoint operators while the second
equality follows directly from the definition of inner product.

4.1 Two-variable Gibbs samplers

It is easy to see that PX is $X-symmetric and PRGS is $-symmetric,
but PDGS is not $-symmetric. Because PX and PRGS are symmetric, the
operator theory described above applies. In particular, if X ∼ $X and
X ′|X = x ∼ PX(x, ·), then

‖PX‖ = sup
f∈L2

0,1($X)

|Ef(X ′)f(X)|

while if (X, Y ) ∼ $ and (X ′, Y ′)|(X, Y ) = (x, y) ∼ PRGS((x, y), ·), then

‖PRGS‖ = sup
f∈L2

0,1($)

|Ef(X ′, Y ′)f(X, Y )| .

Note that despite our use of ‖ · ‖ for both operator norms, these are different
since they are based on different L2 spaces.

If we can show that ‖PX‖ = ‖PRGS‖ = 1, then we will be able to conclude
that ΦX , ΦDGS, and ΦRGS are subgeometrically ergodic. First, we need
convenient characterizations of the operator norms.
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Lemma 2. If (X, Y ) ∼ $, then

‖PX‖ = 1− inf
f∈L2

0,1($X)
E(Var(f(X)|Y ))

and

‖PRGS‖ = 1− inf
f∈L2

0,1($)
{pE(Var(f(X, Y )|Y )) + (1− p)E(Var(f(X, Y )|X))} .

Proof. Suppose X ∼ $X , X ′|X = x ∼ PX(x, ·) and (X, Y ) ∼ $. Then

‖PX‖ = sup
f∈L2

0,1($X)

|Ef(X ′)f(X)|

= sup
f∈L2

0,1($X)

Var(E(f(X)|Y ))

= 1− inf
f∈L2

0,1($X)
E(Var(f(X)|Y )) .

In the above, the second equality follows from Liu et al. (1994, Lemma 3.2)
and the last equality holds since for f ∈ L2

0,1($X)

1 = E(Var(f(X)|Y )) + Var(E(f(X)|Y )) .

Now consider ‖PRGS‖. Suppose (X, Y ) ∼ $ and (X ′, Y ′)|(X, Y ) =
(x, y) ∼ PRGS((x, y), ·). Then

E [h(X ′, Y ′)h(X, Y )]

=

∫
h(x′, y′)h(x, y)kRGS(x′, y′|x, y)π(x, y)µX(dx′)µY (dy′)µX(dx)µY (dy)

=

∫
h(x′, y′)h(x, y)π(x, y)[pπX|Y (x′|y)δ(y′ − y)

+ (1− p)πY |X(y′|x)δ(x′ − x)]µX(dx′)µY (dy′)µX(dx)µY (dy)

=

∫
ph(x′, y)h(x, y)πX|Y (x′|y)π(x, y)µX(dx′)µX(dx)µY (dy)

+

∫
(1− p)h(x, y′)h(x, y)πY |X(y′|x)π(x, y)µY (dy′)µX(dx)µY (dy)

=

∫
ph(x, y)E[h(X ′, Y )|Y = y]π(x, y)µX(dx)µY (dy)

+

∫
(1− p)h(x, y)E[h(X, Y ′)|X = x]π(x, y)µX(dx)µY (dy)
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=

∫
ph(x, y)E[h(X ′, Y )|Y = y]πX|Y (x|y)πY (y)µX(dx)µY (dy)

+

∫
(1− p)h(x, y)E[h(X, Y ′)|X = x]πY |X(y|x)πX(x)µX(dx)µY (dy)

=

∫
pE[h(X, Y )|Y = y]E[h(X ′, Y )|Y = y]πY (y)µY (dy)

+

∫
(1− p)E[h(X, Y )|X = x]E[h(X, Y ′)|X = x]πX(x)µX(dx)

=

∫
p(E[h(X, Y )|Y = y])2πY (y)µY (dy)

+

∫
(1− p)(E[h(X, Y )|X = x])2πX(x)µX(dx)

= pE
[
(E [h(X, Y )|Y ])2]+ (1− p)E

[
(E [h(X, Y )|X])2] .

Now since h ∈ L2
0,1($) ,

Var(E[h(X, Y )|Y ]) = E[(E [h(X, Y )|Y ])2]

and
Var(E[h(X, Y )|X]) = E[(E [h(X, Y )|X])2] .

Moreover,

1 = Var$[h(X, Y )] = Var(E[h(X, Y )|Y ]) + E(Var[h(X, Y )|Y ])

and

1 = Var$[h(X, Y )] = Var(E[h(X, Y )|X]) + E(Var[h(X, Y )|X]) .

The result follows easily.

Proposition 2. Suppose there exists a sequence {hi ∈ L2
0,1($X)} such that

if (X, Y ) ∼ $, then

lim inf
i→∞

E[V ar(hi(X)|Y )] = 0 . (8)

Then ‖PX‖ = ‖PRGS‖ = 1. Hence ΦX , ΦRGS and ΦDGS are subgeometrically
ergodic.
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Proof. The claim that ‖PX‖ = 1 follows easily from the first part of Lemma 2.
Now consider ‖PRGS‖. Note that if f ′(x, y) := f(x) ∈ L2

0,1($X), then f ′ ∈
L2

0,1($). From the second part of Lemma 2 we have

‖PRGS‖ = 1− inf
f∈L2

0,1($)
{pE(Var[f(X, Y )|Y ]) + (1− p)E(Var[f(X, Y )|X])} .

The claim now follows easily since if f(x, y) = hi(x), then

E(Var[f(X, Y )|X]) = E(Var[hi(X)|X]) = 0

and
E(Var[f(X, Y )|Y ]) = E(Var[hi(X)|Y ]) .

Thus we conclude that ΦX and ΦRGS are subgeometrically ergodic. Since
ΦX and ΦDGS are either both geometrically ergodic or both subgeometric, it
follows that ΦDGS also converges subgeometrically.

5 A Discrete Example

We introduce a family of simple discrete distributions which admit us-
age of the TGS algorithms. We then apply our general results which will
allow us to very nearly characterize the members of the family which admit
geometrically ergodic TGS Markov chains.

Let {ai}∞i=1 and {bi}∞i=1 be strictly positive sequences satisfying

∞∑
i=1

ai +
∞∑
i=1

bi = 1 .

Also, let b0 = 0. Let the family consist of the discrete bivariate distributions
having density π with respect to counting measure on N× N given by

π(x, y) =


ax x = y, y = 1, 2, 3, . . . ;

by x = y + 1, y = 1, 2, 3, . . . ;

0 otherwise .

Hence the marginals are given by

πX(x) =
∞∑
y=1

π(x, y) =
∞∑
y=1

axI(x = y) + byI(y = x− 1) = ax + bx−1
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and

πY (y) =
∞∑
x=1

π(x, y) =
∞∑
x=1

axI(x = y) + byI(y = x+ 1) = ay + by .

Then the full conditionals are easily seen to be

πX|Y (x|y) =
ay

ay + by
I(x = y) +

by
ay + by

I(x = y + 1) y = 1, 2, 3, . . .

and

πY |X(y|x) =
ax

ax + bx−1

I(x = y) +
bx−1

ax + bx−1

I(y = x− 1) x = 1, 2, 3, . . . .

Define

px =
axbx

(ax + bx−1)(ax + bx)
and qx =

ax−1bx−1

(ax + bx−1)(ax−1 + bx−1)
.

Then for the DGS

kDGS(x′, y′|x, y) = πX|Y (x′|y)πY |X(y′|x′)

and hence for the marginal chain ΦX

kX(x′|x) =
∞∑
y=1

πX|Y (x′|y)πY |X(y|x) =



1− p1 x′ = x = 1;

px x′ = x+ 1, x ≥ 1;

qx x′ = x− 1, x ≥ 2;

1− px − qx x′ = x, x ≥ 2; and

0 otherwise .

It is easy to see that the kernel PX is Feller. Now let p ∈ (0, 1) and let δ
denote the Dirac delta function. For the random scan Gibbs sampler (RGS)
we have

kRGS(x′, y′|x, y) = pπX|Y (x′|y)δ(y′ − y) + (1− p)πY |X(y′|x)δ(x′ − x) .

Since for any open set O

PRGS((x, y), O) = p

∞∑
x′=1

πX|Y (x′|y)I((x′, y) ∈ O)+(1−p)
∞∑
y′=1

πY |X(y′|x)I((x, y′) ∈ O)

14



it is easy to see that PRGS(·, O) is lower semicontinuous and hence ΦRGS is
Feller.

We are now in position to establish sufficient conditions for the geometric
ergodicity of ΦX , ΦDGS and ΦRGS.

Lemma 3. If

lim sup
x→∞

px
qx

< 1 and lim inf
x→∞

qx > 0, (9)

then ΦX , ΦDGS and ΦRGS are geometrically ergodic.

Proof. We need only verify the conditions of Proposition 1 and we’ve already
seen that both PX and PRGS are Feller. Set V (x) = zx for some z > 1 which
will be determined later and note that

G(y) =
∞∑
x=1

V (x)πX|Y (x|y) =

(
ay + zby
ay + by

)
zy .

For any d > 0, the sublevel set Ad := {x : V (x) ≤ d} = {x : zx ≤ d} is
bounded. Since V is a continuous function, Ad is also closed, hence compact.
Therefore V is unbounded off compact sets on X. On the other hand, for
any d > 0, the sublevel set Bd := {y : G(y) ≤ d} ⊂ {y : zy ≤ d} is bounded.
Then for any b > 0, W (x, y) = V (x) + bG(y) is unbounded off compact sets
on X×Y because for any d > 0, {(x, y) : W (x, y) ≤ d} ⊂ Ad×Bd is bounded
and closed, hence compact. Now, all that remains is to construct a drift
condition for V . Note that for x ≥ 2,

PXV (x) =
∞∑
x′=1

zx
′
kX(x′|x)

= pxz
x+1 + qxz

x−1 + (1− px − qx)zx

=
[
zpx +

qx
z

+ 1− px − qx
]
zx

=

[
px(z − 1) + qx

(
1

z
− 1

)
+ 1

]
V (x) . (10)

We next try to bound the coefficient of V (x) in the right hand side of (10)
for all large values of x. Set

r := lim sup
x→∞

px
qx

and q := lim inf
x→∞

qx

15



and note that r < 1 and q > 0 by assumption. Then there exists x0 ≥ 2 such
that

px
qx

<
r + 1

2
and qx >

q

2
for all x > x0 .

For any z ∈ (1, 2/(r + 1)) and x > x0 ,

px(z − 1) + qx

(
1

z
− 1

)
+ 1 <

r + 1

2
qx(z − 1) +

qx(1− z)

z
+ 1

= qx(z − 1)

(
r + 1

2
− 1

z

)
+ 1

<
q

2
(z − 1)

(
r + 1

2
− 1

z

)
+ 1

since z ∈ (1, 2/(r + 1)) implies

r + 1

2
− 1

z
< 0 .

Next note that

0 < q < 1 , 0 < z − 1 <
1− r
1 + r

< 1 and − 1

2
<
r + 1

2
− 1

z
< 0,

which guarantees

0 <
q

2
(z − 1)

(
r + 1

2
− 1

z

)
+ 1 < 1 .

Thus there exists 0 < ρ < 1 such that

q

2
(z − 1)

(
r + 1

2
− 1

z

)
+ 1 ≤ ρ < 1 . (11)

Finally, to bound PXV (x) for x ≤ x0, set

L := max
x≤x0

PXV (x) . (12)

Putting together equations (10) to (12), we have

PXV (x) ≤ ρV (x) + L

with 0 < ρ < 1 and L <∞. The conclusion now follows from Proposition 1.
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The above sufficient condition for geometric ergodicity involves transi-
tion probabilities of the chain ΦX . Alternatively, we could state a sufficient
condition in terms of the probabilities {ai, bi} which define the density π.

Define

A := lim sup
i→∞

ai
ai−1

; m := lim inf
i→∞

ai
bi

; and M := lim sup
i→∞

ai
bi
.

Corollary 1. If

lim sup
i→∞

ai
bi−1

<∞, lim sup
i→∞

bi
ai
<∞

and A(1 + M)/(1 + m) < 1, then ΦX , ΦDGS, and ΦRGS are geometrically
ergodic.

Proof. We verify the conditions of Lemma 3. Note that

qi =
bi−1

ai + bi−1

ai−1

ai−1 + bi−1

=
1

1 + ai

bi−1

1

1 + bi−1

ai−1

.

Hence

lim inf
i→∞

qi ≥
1

1 + lim supi→∞
ai

bi−1

1

1 + lim supi→∞
bi−1

ai−1

> 0 .

Next observe that

pi
qi

=
ai
ai−1

bi
bi−1

ai−1 + bi−1

ai + bi
=

ai
ai−1

1 + ai−1

bi−1

1 + ai

bi

.

Hence

lim sup
i→∞

pi
qi
≤
[
lim sup
i→∞

ai
ai−1

] [
1 + lim supi→∞

ai−1

bi−1

1 + lim infi→∞
ai

bi

]
= A

1 +M

1 +m
< 1 .

So far in this section, we have used Proposition 1 to get sufficient con-
ditions for the geometric ergodicity of the Markov chains. Next, we use
Proposition 2 to study the conditions under which the Markov chains are
subgeometrically ergodic.
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Lemma 4. The Markov chains ΦX , ΦDGS and ΦRGS are subgeometrically
ergodic if any one of the following conditions hold:

1.

lim sup
i→∞

∑∞
x=i(ax + bx)

ai−1

=∞ ;

2.

lim sup
i→∞

∑∞
x=i(ax + bx)

bi−1

=∞ ; or

3.

lim sup
i→∞

bi
ai

=∞ .

Proof. Let (X, Y ) ∼ $. For i = 1, 2, 3, . . . let Hi(x) = I(x ≥ i). Then

µi := E[Hi(X)] = E[H2
i (X)] =

∞∑
x=i

(ax + bx−1) <∞

and
vi := Var[Hi(X)] = µi(1− µi) <∞ .

Define hi(x) = [Hi(x)− µi]/
√
vi and note that hi ∈ L2

0,1($X). We will show
that

lim inf
i→∞

E[V ar(hi(X)|Y )] = 0 ,

and appeal to Proposition 2 for the conclusion. Let

βy =
by

ay + by
= πX|Y (y + 1|y) .

Then

E[Hi(X)|Y = y] = E[H2
i (X)|Y = y]

= πX|Y (y|y)Hi(y) + πX|Y (y + 1|y)Hi(y + 1)

=


0 y ≤ i− 2,

βi−1 y = i− 1,

1 y ≥ i .

18



Hence

V ar[Hi(X)|Y = y] =

{
βi−1(1− βi−1) y = i− 1,

0 otherwise .

Therefore,

E(V ar[Hi(X)|Y = y]) =
∞∑
y=1

πY (y)V ar[Hi(X)|Y = y]

= πY (i− 1)V ar[Hi(X)|Y = i− 1]

= (ai−1 + bi−1)βi−1(1− βi−1)

=
ai−1bi−1

ai−1 + bi−1

.

Finally,

E[V ar(hi(X)|Y )] = v−1
i E[V ar(Hi(X)|Y )] = [µi(1− µi)]−1 ai−1bi−1

ai−1 + bi−1

.

Note that

(E[V ar(hi(X)|Y )])−1 = µi(1− µi)
ai−1 + bi−1

ai−1bi−1

= (1− µi)

[
∞∑
x=i

(ax + bx) + bi−1

](
1

ai−1

+
1

bi−1

)
= (1− µi)

[∑∞
x=i(ax + bx)

ai−1

+

∑∞
x=i(ax + bx)

bi−1

+
bi−1

ai−1

+ 1

]
and that

lim
i→∞

(1− µi) = lim
i→∞

i−1∑
x=1

(ax + bx−1) = 1 .

Hence equation (8) holds if and only if

lim sup
i→∞

∑∞
x=i(ax + bx)

ai−1

=∞,

or lim sup
i→∞

∑∞
x=i(ax + bx)

bi−1

=∞,

or lim sup
i→∞

bi
ai

=∞ .
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Finally, we can use the previous results to characterize the conditions
for geometric ergodicity of TGS Markov chains for a large subfamily of our
discrete distributions.

Corollary 2. Assume that both A := limi→∞
ai

ai−1
and limi→∞

ai

bi
exist. Then

all the limits below are well defined and the following statements are equiva-
lent:

(a)

lim
i→∞

ai
bi−1

<∞, lim
i→∞

bi
ai
<∞, and A < 1 .

(b)

r = lim
i→∞

pi
qi
< 1 and q = lim

i→∞
qi > 0 .

(c) ΦX is geometrically ergodic.

(d) ΦDGS is geometrically ergodic.

(e) ΦRGS is geometrically ergodic.

Proof. As we noted in Section 2.1, the equivalence of (c) and (d) is well
known.
(a) ⇒ (b): Note that

q = lim
i→∞

qi =
1

1 + limi→∞
ai

bi−1

1

1 + limi→∞
bi−1

ai−1

> 0

and

r = lim
i→∞

pi
qi

=

[
lim
i→∞

ai
ai−1

] [
1 + limi→∞

ai−1

bi−1

1 + limi→∞
ai

bi

]
= A < 1 .

(b) ⇒ (c) and (b) ⇒ (e): The same argument holds for ΦX and ΦRGS. Im-
mediate by Lemma 3.

(c) ⇒ (a) and (e) ⇒ (a): The same argument holds for ΦX and ΦRGS. If the

chain is geometrically ergodic, then limi→∞
ai

bi−1
<∞ and limi→∞

bi
ai
<∞ by

conditions 2 and 3 of Lemma 4. Next, if A = 1, then for any fixed positive
integer K, we have

lim
i→∞

ai+1

ai
= 1, lim

i→∞

ai+2

ai
= 1, . . . , lim

i→∞

ai+K
ai

= 1 .
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Then there exists i0 such that for any i ≥ i0,

ai+1

ai
>

1

2
,
ai+2

ai
>

1

2
, . . . ,

ai+K
ai

>
1

2
.

Hence, given any K, there exists i0 such that for any i > i0,∑∞
x=i(ax + bx)

ai−1

≥
∑i+K−1

x=i ax
ai−1

>
K

2

which implies

lim sup
i→∞

∑∞
x=i(ax + bx)

ai−1

=∞ .

Thus by condition 1 of Lemma 4, the chains are subgeometrically ergodic–a
contradiction of (c). So A 6= 1. But A cannot be greater than 1 either since
otherwise

∑∞
x=1 ax =∞ which contradicts the fact that

∑∞
x=1 ax+

∑∞
x=1 bx =

1. Therefore, A < 1.

To better understand the conditions for geometric ergodicity provided
in Corollary 2, we hereby explain its condition (a) explicitly. First, the re-
quirement that A = limi→∞

ai

ai−1
< 1 implies that for any 0 < A1 < A <

A2 < 1, there exists i0 such that for any i > i0, ai/ai−1 ∈ (A1, A2), hence
ai ∈ (ai0A

i−i0
1 , ai0A

i−i0
2 ). In other words, the sequence {ai} decays at a geo-

metric rate as i increases. Secondly, the requirements limi→∞
ai

bi−1
< ∞ and

limi→∞
bi
ai
<∞ imply that there exist 0 < B1, B2 <∞ such that, for any i >

i0, ai+1/bi < B1 and bi/ai < B2, hence bi ∈ (ai+1B1, aiB2) ⊂ (aiA1B1, aiB2).
That is, bi = O(ai) as i → ∞. In summary, Condition (a) requires that
the sequences {ai} and {bi} both decay geometrically at the same rate as i
increases.

We close this section by considering four concrete examples.

Example 1. Let ax = c1x
−d and bx = c2x

−d where d > 1 and (c1+c2)
∑∞

x=1 x
−d =

1. Then both limi→∞
ai

ai−1
and limi→∞

ai

bi
exist, with A = 1. Therefore, ΦX ,

ΦDGS and ΦRGS are subgeometrically ergodic by Corollary 2.

Example 2. Let c satisfy (1 + c)e−1/(1 − e−1) = 1. Set ax = ce−x and
bx = e−x. Then both limi→∞

ai

ai−1
and limi→∞

ai

bi
exist, with A = e−1 <

1. Furthermore, lim supi→∞
ai

bi−1
= limi→∞ ce

−1 < ∞ and lim supi→∞
bi
ai

=

c−1 < ∞. Therefore, ΦX , ΦDGS and ΦRGS are all geometrically ergodic by
Corollary 2.

21



Example 3. Let c satisfy ce−1/(1− e−1) + e−2/(1− e−2) = 1. Set ax = ce−x

and bx = e−2x. Then both limi→∞
ai

ai−1
and limi→∞

ai

bi
exist. Also,

lim sup
i→∞

ai
bi−1

= lim
i→∞

cei−2 =∞ .

Therefore, ΦX , ΦDGS and ΦRGS are subgeometrically ergodic by Corollary 2.

Example 4. Let c satisfy ce−1/(1− e−1) + e−2(1− e−2) = 1. Set

ax =

{
ce−x x even

e−2x x odd
and bx =

{
e−2x x even

ce−x x odd
.

Then limi→∞
ai

bi
does not exist. Hence Corollary 2 is not applicable. Instead

we have to use Lemma 4. Notice that

lim sup
i→∞

bi
ai
≥ lim

i→∞

b2i+1

a2i+1

= lim
i→∞

ce−(2i+1)

e−2(2i+1)
= lim

i→∞
ce2i+1 =∞

and hence ΦX , ΦDGS and ΦRGS are subgeometrically ergodic.
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