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Abstract

Bayesian versions of the classical one-way random effects model are widely used to
analyze data. If the standard diffuse prior is adopted, there is a simple block Gibbs sam-
pler that can be employed to explore the intractable posterior distribution. In this pa-
per, theoretical and methodological results are developed that allow one to use this block
Gibbs sampler with the same level of confidence that one would have using classical (iid)
Monte Carlo. Indeed, a regenerative simulation method is developed that yields simple,
asymptotically valid standard errors for the ergodic averages that are used to estimate in-
tractable posterior expectations. These standard errors can be used to choose an appro-
priate (Markov chain) Monte Carlo sample size. The regenerative method rests on the
assumption that the underlying Markov chain converges to its stationary distribution at a
geometric rate. Another contribution of this paper is a result showing that, unless the data
set is extremely small and unbalanced, the block Gibbs Markov chain is geometrically er-
godic. We illustrate the use of the regenerative method with data from a styrene exposure
study. R code for the simulation is posted as an online supplement.

Key Words: Asymptotic variance, Central limit theorem, Convergence rate, Geometric ergod-
icity, Minorization condition, One-way model.

1 Introduction

Consider the classical one-way random effects model given by

Yij = θi + εij , i = 1, . . . , q , j = 1, . . . ,mi , (1)
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where the random effects θ1, . . . , θq are iid N(µ, σ2
θ), the εijs are iid N(0, σ2

e) and independent

of the θis, and (µ, σ2
θ , σ

2
e) is an unknown parameter. There is a long history of Bayesian analysis

using this model starting with Hill (1965) and Tiao and Tan (1965). A Bayesian version of the

model requires a prior distribution for (µ, σ2
θ , σ

2
e) and we consider the family of improper prior

densities given by

πa,b

(
µ, σ2

θ , σ
2
e

)
=

(
σ2

θ

)−(a+1)(
σ2

e

)−(b+1)
, (2)

where a and b are known hyper-parameters. Letting y = {yij} denote the vector of observed

data and θ = {θi} the vector of random effects, the (q + 3)-dimensional posterior density is

characterized by

π(θ, µ, σ2
θ , σ

2
e) ∝ f(y|θ, µ, σ2

θ , σ
2
e)f(θ|µ, σ2

θ , σ
2
e)πa,b

(
µ, σ2

θ , σ
2
e

)
, (3)

where

f(y|θ, µ, σ2
θ , σ

2
e) =

q∏
i=1

mi∏
j=1

(
2πσ2

e

)− 1
2 exp

{
− 1

2σ2
e

(yij − θi)
2
}

and
f(θ|µ, σ2

θ , σ
2
e) =

q∏
i=1

(
2πσ2

θ

)− 1
2 exp

{
− 1

2σ2
θ

(θi − µ)2
}
.

Note that, in order to simplify the notation, the posterior density’s dependence on the data is

being suppressed, and we will adhere to this convention throughout the paper.

Our reasons for considering the family of improper priors πa,b stem from recommendations

in the Bayesian literature. According to Gelman (2006), the choice of prior for (µ, σ2
e) is not

crucial since the data often contain a good deal of information about these parameters. On

the other hand, there is typically relatively little information in the data concerning σ2
θ , so the

choice of prior for this parameter is more important and subtle. A commonly used prior for

σ2
θ is a proper inverse gamma prior, which is a (conditionally) conjugate prior. When little or

no prior information concerning σ2
θ is available, the (shape and scale) hyper-parameters of this

prior are often set to very small values in an attempt to be “non-informative”. However, in the

limit, as the scale-parameter approaches 0 with the shape parameter either approaching 0 or

fixed, not only does the prior become improper, but the corresponding posterior also becomes

improper. Consequently, the posterior is not robust to small changes in these (somewhat ar-

bitrarily chosen) hyper-parameters. This problem has led several authors, including Daniels
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(1999) and Gelman (2006), to recommend that the proper inverse gamma prior not be used. In

contrast, Gelman (2006) illustrates that the improper prior
(
σ2

θ

)− 1
2 works well unless q is very

small (say, below 5). Combining this prior with a uniform prior on
(
µ, log(σ2

e)
)

leads to π− 1
2
,0.

van Dyk and Meng (2001) call π− 1
2
,0 the standard diffuse prior and we will refer to it as such

throughout this paper.

Of course, whenever an improper prior is used, one must check that the resulting posterior

is proper. Results in Hobert and Casella (1996) show that the posterior is proper if and only if

a < 0 , a+
q

2
>

1

2
, and a+ b >

1−M

2
, (4)

where M is the total sample size; that is, M =
∑q

i=1mi. Note that (4) implies q > 1− 2a > 1

so a necessary condition for propriety is q ≥ 2. Under the standard diffuse prior, the posterior

is proper if and only if q ≥ 3.

Making inference through the posterior distribution often boils down to computing expec-

tations with respect to the posterior density. Unfortunately, despite the fact that πa,b has a very

simple form, the posterior density is intractable. Indeed, letting R+ = (0,∞), the posterior

expectation of g(θ, µ, σ2
θ , σ

2
e) is given by∫

Rq

∫
R

∫
R+

∫
R+

g(θ, µ, σ2
θ , σ

2
e)π

(
θ, µ, σ2

θ , σ
2
e

)
dσ2

e dσ
2
θ dµ dθ . (5)

This is an intractable q + 3 dimensional integral.

Markov chain Monte Carlo (MCMC) methods, and, in particular, the Gibbs sampler, can

be used to approximate the posterior expectation in (5). The seminal paper by Gelfand and

Smith (1990) illustrated an application of the simple Gibbs sampler to a Bayesian version of

the one-way model with proper conjugate priors for µ, σ2
θ and σ2

e . Their Gibbs sampler cycles

through the q + 3 components of the vector (θ1, . . . , θq, µ, σ
2
θ , σ

2
e) one at a time and samples

each one conditional on the most current values of the other q + 2 components.

We study a block Gibbs sampler whose iterations have just two steps. Let σ2 =
(
σ2

θ , σ
2
e

)
,

ξ = (µ, θ) and suppose that the state of the chain at time n is
(
σ2

n, ξn
)
. One iteration of

our sampler entails drawing σ2
n+1 conditional on ξn, and then drawing ξn+1 conditional on

σ2
n+1. “Blocking” variables together in this way and doing multivariate updates often leads

to improved convergence properties relative to the simple (univariate) version of the Gibbs
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sampler (see, e.g., Liu, Wong and Kong, 1994). Straightforward manipulation of (3) shows that,

given ξ, σ2
θ and σ2

e are independent random variables each with inverse gamma distributions,

and given σ2, ξ is multivariate normal. (The specific forms of these distributions are given in

Section 3.) Thus, programming this block Gibbs sampler poses no difficulty.

In this paper, we develop theoretical and methodological results that allow one to use the

block Gibbs sampler with the same level of confidence that one would have using classical (iid)

Monte Carlo. In order to explain this more carefully, let us briefly consider how classical Monte

Carlo would be used to estimate intractable posterior expectations like (5). Let L1(π) denote

the set of functions h : Rq+1 × R2
+ → R such that

∫
Rq+1

∫
R2

+

∣∣h(σ2, ξ
)∣∣π(

σ2, ξ
)
dσ2 dξ < ∞ ,

and define L2(π) analogously as the set of functions that are square integrable with respect to

the posterior density. Also, let Eπh denote the posterior expectation of h. Suppose we wish

to approximate Eπg, where g ∈ L1(π), and imagine for a moment that we are able to make

iid draws
(
σ2∗

0 , ξ
∗
0

)
,
(
σ2∗

1 , ξ
∗
1

)
, . . . from the posterior. With an iid sample in hand, we would

estimate Eπg using the classical Monte Carlo estimator

g∗N =
1

N

N−1∑
n=0

g
(
σ2∗

n , ξ
∗
n

)
.

This estimator is unbiased and the strong law of large numbers (SLLN) implies that it converges

almost surely to Eπg; that is, it is also strongly consistent. In practice, we need to choose

the sample size, N , and this is where the central limit theorem (CLT) comes in. Indeed, if

g ∈ L2(π), then there is a CLT for g; that is, asN →∞, we have
√
N

(
g∗N−Eπg

) d→ N(0, v2) ,

where v2 = Eπg
2 −

(
Eπg

)2. Thus, we could first draw a preliminary sample of size N ′ from

π, and compute g∗N ′ and

v̂2 =
1

N ′ − 1

N ′−1∑
n=0

(
g
(
σ2∗

n , ξ
∗
n

)
− g∗N ′

)2
.

Of course, v̂2 is a strongly consistent estimator of v2. These quantities could then be used to

assemble the asymptotic 95% confidence interval (CI) for Eπg given by g∗N ′ ± 2v̂/
√
N ′. If we

are satisfied with the width of this interval, we stop, whereas if the width is deemed too large,

we continue the simulation. Indeed, given the pilot estimate v̂2, a CI of width l will require
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a sample size of around 16v̂2
/
l2. The message here is that routine use of the CLT allows for

determination of an appropriate Monte Carlo sample size.

In reality we are not able to make iid draws from the posterior, so we resort to an MCMC

technique such as the block Gibbs sampler. Let
{(
σ2

n, ξn
)}∞

n=0
denote the block Gibbs Markov

chain and consider applying the strategy outlined above with the Markov chain in place of the

iid sample. First, the analogue of g∗N is the ergodic average given by

gN =
1

N

N−1∑
n=0

g
(
σ2

n, ξn
)
.

If
(
σ2

0, ξ0
)

is some fixed point, as it would usually be in practice, then gN is not unbiased.

Nevertheless, the ergodic theorem (Meyn and Tweedie, 1993, Chapter 17) implies that it is a

strongly consistent estimator of Eπg. Because of this, many view MCMC as a “free lunch”

relative to classical Monte Carlo. Unfortunately, as we all know, there is no free lunch. Indeed,

choosing an appropriate sample size in the MCMC context requires much more than routine

use of the CLT. There are two reasons for this. First, when the iid sequence is replaced by a

Markov chain, the second moment condition
(
g ∈ L2(π)

)
is no longer enough to guarantee

that a CLT exists. Second, even when a CLT does hold, finding a consistent estimator of the

asymptotic variance is challenging because this variance has a complex form and because the

dependence among the variables in the Markov chain complicates the asymptotic analysis of

the estimators (see, e.g., Geyer, 1992; Chan and Geyer, 1994; Jones, Haran, Caffo and Neath,

2006).

In this paper, we overcome the problems described above for the block Gibbs sampler

through a convergence rate analysis and the development of a regenerative simulation method.

In general, regeneration allows one to break a Markov chain up into iid segments (called

“tours”) so that asymptotic analysis can proceed using standard iid theory. While the theo-

retical details are fairly involved (Mykland, Tierney and Yu, 1995), the results of the theory

and, more importantly, the application of the results, turns out to be quite straightforward.

Indeed, results in Hobert, Jones, Presnell and Rosenthal (2002) show that, if the underlying

Markov chain is geometrically ergodic and there exists an α > 0 such that Eπ|g|2+α <∞, then

we can easily calculate an asymptotic standard error for gN based on regenerative simulation
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of the chain and only stop the simulation when this standard error is acceptably small.

Our convergence rate analysis for the block Gibbs chain (Proposition 3) indicates that the

chain is geometrically ergodic unless M is very small and the group sizes, m1, . . . ,mq, are

highly unbalanced. This result applies to all priors πa,b defined in (2). Here is a special case.

Corollary 1. Under the standard diffuse prior, the block Gibbs chain is geometrically ergodic

if

1. q ≥ 4 and M ≥ q + 3, or

2. q = 3,M ≥ 6 and min

{( ∑3
i=1

mi

mi+1

)−1

, m∗

M

}
< 2e−γ , wherem∗ = max{m1,m2,m3}

and γ .
= 0.577 is Euler’s constant.

Recall that, under π− 1
2
,0, the posterior is proper if and only if q ≥ 3. When q ≥ 4, our condition

is satisfied for all reasonable data configurations. As for q = 3, it turns out that all balanced

data sets with min{m1,m2,m3} ≥ 2 satisfy the conditions, as do most reasonable unbalanced

configurations. Appendix B.4 contains a table of all unbalanced configurations of (m1,m2,m3)

with m∗ ≤ 12 that satisfy the conditions of Corollary 1. (The appendices can be found in the

online supplement to this article.)

Previous analysis of Gibbs samplers for Bayesian random effects models were performed

by Hobert and Geyer (1998), Johnson and Jones (2008) and Jones and Hobert (2001, 2004).

However, in each of these studies, the models that were considered have proper priors on all

parameters. In fact, our Proposition 3 is the first of its kind for random effects models with

improper priors, which, as we explained above, are the type of priors recommended in the

Bayesian literature. It turns out that using improper priors complicates the analysis that is

required to study the corresponding Markov chain. Indeed, Proposition 3 is much more than

a straightforward extension of the existing results for proper priors. Another related paper is

Papaspiliopoulos and Roberts (2008) who studied the convergence rates of Gibbs samplers

for hierarchical linear models with different symmetric error distributions. What separates

our results from theirs is that the variance components in our model are considered unknown

parameters, while in their model the variance components are assumed known.

6



The remainder of the paper is organized as follows. Section 2 contains background material

on general state space Markov chains. Section 3 contains a description of the block Gibbs

Markov chain as well as the statement and proof of our convergence rate result. In Section 4,

we develop our regenerative simulation method, which is based upon a minorization condition

on the block Gibbs Markov chain. The regenerative method is illustrated in Section 5 using a

real data set on styrene exposure. A short discussion appears in Section 6.

2 Background on General State Space Markov Chains

Let X be a set equipped with a countably generated σ-algebra σ(X) and let K : X × σ(X) →

[0, 1] be a Markov transition function that defines a discrete time, time homogeneous Markov

chainX = {Xn}∞n=0. Thus, for x ∈ X andA ∈ σ(X),K(x,A) = Pr(X1 ∈ A | X0 = x). Also,

let Kn : X× σ(X) → [0, 1], n = 2, 3, . . . , denote the n-step Markov transition functions. Sup-

pose that π is an invariant probability measure for the chain; i.e.,
∫

X K(x, dy)π(dx) = π(dy).

The chain X is called Harris ergodic if it is ψ-irreducible, aperiodic and Harris recurrent,

where ψ represents the maximal irreducibility measure of the chain. See Meyn and Tweedie

(1993) for definitions.

Suppose that µ is a σ-finite measure on X and that the function k : X × X → [0,∞)

satisfies K(x,A) =
∫

A
k(y | x)µ(dy) for any x ∈ X and any µ-measurable A. Then k is

called the Markov transition density of X with respect to µ. The following result, established

in Appendix A, shows that if X has a strictly positive density, then it is Harris ergodic.

Lemma 1. Suppose X is a Markov chain with transition function K, transition density k (with

respect to µ) and invariant probability measure π. If k(y | x) > 0 for all x, y ∈ X, then X is

Harris ergodic. Furthermore, µ is equivalent to the maximal irreducibility measure.

If X is Harris ergodic, then, for any x ∈ X,

‖Kn(x, ·)− π(·)‖ ↓ 0 as n→∞,

where ‖ · ‖ represents the total variation distance. Note that this tells us nothing about the rate

of convergence. A Harris ergodic chain X is said to be geometrically ergodic if there exists a
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function c : X → [0,∞) and a constant 0 < r < 1 such that, for all x ∈ X and all n = 0, 1, . . .

‖Kn(x, ·)− π(·)‖ ≤ c(x) rn .

Now suppose that X is topological and that σ(X) is the Borel σ-field. If, for any open set

O ∈ σ(X), K(·, O) is a lower semicontinuous function, then X is called a Feller chain (Meyn

and Tweedie, 1993, Chapter 6). The function w : X → R+ is said to be unbounded off compact

sets if the level set {x ∈ X : w(x) ≤ d} is compact for every d > 0. The following result is a

combination of Meyn and Tweedie’s (1993) Lemma 15.2.8 and Theorem 6.0.1.

Proposition 1. Let X be a Markov chain on a topological space X. Assume that X is Harris

ergodic and Feller and that the support of the maximal irreducibility measure has nonempty

interior. If there exist ρ < 1, L < ∞ and a function w : X → R+ that is unbounded off

compact sets such that

E[w(X1) | X0 = x] ≤ ρw(x) + L , (6)

then X is geometrically ergodic.

The inequality (6) is called a drift condition and the function w is called a drift function.

3 Geometric Ergodicity of the Block Gibbs Sampler

3.1 The block Gibbs sampler and the marginal chains

Recall that our block Gibbs sampler breaks the entire vector of variables into two blocks,

σ2 =
(
σ2

θ , σ
2
e

)
and ξ = (µ, θ), and updates them alternately. Formally, the block Gibbs chain,{(

σ2
n, ξn

)}∞
n=0

, has a Markov transition density (with respect to Lebesgue measure on R2
+ ×

Rq+1) given by

k
(
σ̃2, ξ̃ | σ2, ξ

)
= π

(
σ̃2 | ξ

)
π
(
ξ̃ | σ̃2

)
,

where (σ2, ξ) and (σ̃2, ξ̃) denote the current and next states, respectively. Routine manipulation

of (3) shows that σ2
θ and σ2

e are conditionally independent given ξ; that is,

π(σ2 | ξ) = π(σ2
θ | ξ)π(σ2

e | ξ) ,
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and that

σ2
θ | ξ ∼ IG

(
q

2
+ a,

1

2

∑
i

(θi − µ)2)

)
and σ2

e | ξ ∼ IG
(
M

2
+ b,

1

2

∑
i,j

(yij − θi)
2

)
.

We say X ∼ IG(α, β) if X is a random variable supported on R+ with density function

proportional to x−(α+1)e−β/x.

Further manipulation of (3) (see Tan (2008)) shows that, given σ2, ξ has a multivariate

normal density. To provide formulas for the elements of the mean vector and covariance matrix,

we need a bit more notation. Let yi = m−1
i

∑
j yij and t =

∑q
i=1(σ

2
e +miσ

2
θ)
−1mi . Using this

notation, we have

E
(
µ
∣∣σ2

θ , σ
2
e

)
=

1

t

q∑
i=1

miyi

σ2
e +miσ2

θ

,

and for k = 1, 2, . . . , q,

E
(
θk

∣∣σ2
θ , σ

2
e

)
=

σ2
e

σ2
e +mkσ2

θ

[
1

t

q∑
i=1

miyi

σ2
e +miσ2

θ

]
+

σ2
θmkyk

σ2
e +mkσ2

θ

.

The variances and covariances are given by

Var
(
θi

∣∣σ2
θ , σ

2
e

)
=

σ2
e

σ2
e +miσ2

θ

[
σ2

θ +
σ2

e(
σ2

e +miσ2
θ

)
t

]

Cov
(
θi, θj

∣∣σ2
θ , σ

2
e

)
=

(
σ2

e

)2(
σ2

e +miσ2
θ

)(
σ2

e +mjσ2
θ

)
t

Cov
(
θi, µ

∣∣σ2
θ , σ

2
e

)
=

σ2
e(

σ2
e +miσ2

θ

)
t

Var
(
µ
∣∣σ2

θ , σ
2
e

)
=

1

t
.

Since π(ξ | σ2) and π(σ2 | ξ) are both strictly positive for (σ2, ξ) ∈ R2
+ × Rq+1, it follows

that k is a strictly positive Markov transition density. Thus, Lemma 1 implies that the block

Gibbs Markov chain,
{(
σ2

n, ξn
)}∞

n=0
, is Harris ergodic. As we now explain, our proof that this

chain is also geometrically ergodic is indirect and rests upon an analysis of
{
ξn

}∞
n=0

.

It is well known that the two marginal sequences comprising a two-variable Gibbs chain are

themselves Markov chains (Liu et al., 1994). Moreover, the Gibbs chain and its two marginal

chains all converge at exactly the same rate (Diaconis, Khare and Saloff-Coste, 2008; Roberts

and Rosenthal, 2001). Therefore, we can prove that the block Gibbs chain is geometric by
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proving that the ξ-chain,
{
ξn

}∞
n=0

, is geometric. The ξ-chain has a Markov transition density

(with respect to Lebesgue measure on Rq+1) given by

k∗
(
ξ̃ | ξ

)
=

∫
R2

+

π
(
ξ̃ | σ2

)
π
(
σ2 | ξ

)
dσ2 . (7)

Clearly, k∗ is strictly positive on Rq+1 × Rq+1 so another application of Lemma 1 shows that

the ξ-chain is Harris ergodic. We also conclude from Lemma 1 that the maximal irreducibility

measure of the ξ-chain is equivalent to Lebesgue measure on Rq+1 and hence its support has

non-empty interior. Finally, a simple application of Fatou’s lemma shows that the ξ-chain is a

Feller chain. We are now ready to use Proposition 1 to prove that the ξ-chain is geometric.

3.2 A proof of geometric ergodicity

According to Proposition 1, we can prove that the ξ-chain is geometric by finding a function

w : Rq+1 → R+ that is unbounded off compact sets and satisfies the drift condition

E
(
w(ξ̃) | ξ

)
≤ ρw(ξ) + L for all ξ ∈ Rq+1, (8)

where ρ < 1 and L < ∞. Our drift function takes the form w(ξ) = ε
[
w1(ξ)

]s
+

[
w2(ξ)

]s
,

where w1(ξ) =
∑q

i=1(θi − µ)2, w2(ξ) =
∑q

i=1mi(yi − θi)
2 and ε > 0 and s ∈ (0, 1] are to be

determined. For fixed ε > 0 and s ∈ (0, 1], the function w is unbounded off compact sets (but

neither w1 nor w2 is by itself). Indeed, since w is continuous, it is enough to show that, in the

level set {ξ : w(ξ) ≤ d}, |µ| is bounded and |θi| is bounded for each i ∈ {1, 2, . . . , q}. Note

that w2 → ∞ as |θi| → ∞, and hence we have the θis contained. Now, given that the θis are

contained, w1 →∞ as |µ| → ∞, so µ is contained as well.

To keep the notation under control, we use w and w̃ to denote w(ξ) and w(ξ̃), respectively.

The left-hand side of (8) is

E
(
w(ξ̃) | ξ

)
= E(w̃ | ξ) = εE

(
w̃s

1 | ξ
)

+ E
(
w̃s

2 | ξ
)
.

Equation (7) shows that we can get the next state, ξ̃, by first drawing σ2 ∼ π(· | ξ), and then

drawing ξ̃ ∼ π(· | σ2), so graphically we have ξ → σ2 → ξ̃. Therefore, we have

E(w̃s
k | ξ) = E

[
E(w̃s

k | σ2, ξ) | ξ
]

= E
[
E(w̃s

k | σ2) | ξ
]

for k = 1, 2 , (9)
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where the second equality is true because ξ̃ is conditionally independent of ξ given σ2.

Since there are no restrictions on the constant L in (8), we do not have to keep track of

any constants when calculating E(w̃ | ξ). Hence, we will use the notation “const” to refer to a

generic constant. Let m∗ = max{m1, . . . ,mq}. It is shown in Appendix B.1 that

E(w̃1 | σ2) ≤ ∆1σ
2
θ + ∆2σ

2
e + const and E(w̃2 | σ2) ≤ (q + 1)σ2

e + const

where

∆1 = min

{
q

( q∑
i=1

mi

mi + 1

)−1

,
qm∗

M

}
and

∆2 =

q∑
i=1

1

mi

−
q∑

i=1

1

M(1 +mi)
+ max

{
q

( q∑
i=1

mi

mi + 1

)−1

,
q

M

}
.

For s ∈ (0, 1] and any A,B > 0, it is easy to see that (A + B)s ≤ As + Bs. Together with

Jensen’s inequality, this yields

E(w̃s
1 | σ2) ≤

[
E(w̃1 | σ2)

]s ≤
(
∆1σ

2
θ +∆2σ

2
e +const

)s ≤ ∆s
1

(
σ2

θ

)s
+∆s

2

(
σ2

e

)s
+const , (10)

and

E(w̃s
2 | σ2) ≤

[
E(w̃2 | σ2)

]s ≤
(
(q + 1)σ2

e + const
)s ≤ (q + 1)s

(
σ2

e

)s
+ const . (11)

To complete the calculation in (9), recall that

σ2
θ | ξ ∼ IG

(
q

2
+ a,

w1

2

)
and σ2

e | ξ ∼ IG
(
M

2
+ b,

w2 + SSE
2

)
,

where SSE =
∑

i,j(yij − yi)
2. This is where we have to make sure that s ∈ (0, 1] is not too

large. Define the set

S = (0, 1] ∩
(
0,min

{q
2

+ a,
M

2
+ b

})
.

Then, for any s ∈ S, E
((
σ2

θ

)s | ξ
)

and E
((
σ2

e

)s | ξ
)

are both finite. In fact, routine calcula-

tions show that

E
((
σ2

θ

)s | ξ
)

=
Γ( q

2
+ a− s)

2sΓ( q
2

+ a)
ws

1 , (12)

and

E
((
σ2

e

)s | ξ
)

=
Γ(M

2
+ b− s)

2sΓ(M
2

+ b)
(w2 + SSE)s ≤

Γ(M
2

+ b− s)

2sΓ(M
2

+ b)
ws

2 + const . (13)

11



Define

δ1(s) =
(q + 1)sΓ(M

2
+ b− s)

2sΓ(M
2

+ b)
, δ2(s) =

∆s
2Γ(M

2
+ b− s)

2sΓ(M
2

+ b)
and δ3(s) =

∆s
1Γ( q

2
+ a− s)

2sΓ( q
2

+ a)
.

Combining (9)-(13), we have

E(w̃s
1 | ξ) ≤ E

(
∆s

1

(
σ2

θ

)s
+ ∆s

2

(
σ2

e

)s
+ const

∣∣ ξ)
≤ ∆s

1

Γ( q
2

+ a− s)

2sΓ( q
2

+ a)
ws

1 + ∆s
2

Γ(M
2

+ b− s)

2sΓ(M
2

+ b)
ws

2 + const

= δ3(s)w
s
1 + δ2(s)w

s
2 + const .

(14)

and

E(w̃s
2 | ξ) ≤ E

(
(q + 1)s

(
σ2

e

)s
+ const

∣∣ ξ)
≤ (q + 1)s Γ(M

2
+ b− s)

2sΓ(M
2

+ b)
ws

2 + const

= δ1(s)w
s
2 + const .

(15)

The following result, which is established in Appendix B.2, provides conditions under which

(14) and (15) can be combined to yield a valid drift condition for the block Gibbs sampler.

Proposition 2. Fix s ∈ S. If δ1(s) < 1 and δ3(s) < 1, then there exist ε > 0, ρ < 1 and

L <∞ such that E
(
w(ξ̃) | ξ

)
≤ ρw(ξ) + L for all ξ ∈ Rq+1.

In conjunction with Proposition 1, Proposition 2 shows that the ξ-chain (and hence the

block Gibbs Markov chain) is geometrically ergodic as long as there exists an s ∈ S such

that both δ1(s) and δ3(s) are less than 1. Let Ψ(x) = d
dx

log
(
Γ(x)

)
denote the digamma

function. We show in Appendix B.3 that the desired s exists if M + 2b ≥ q + 3 and ∆1 <

2 exp
(
Ψ

(
q
2

+ a
))

. We can now state our main convergence rate result.

Proposition 3. The block Gibbs chain is geometrically ergodic if

1. qmin

{( ∑q
i=1

mi

mi+1

)−1

, m∗

M

}
< 2 exp

(
Ψ

(
q
2

+ a
))

, and

2. M + 2b ≥ q + 3 .

12



Loosely speaking, Proposition 3 shows that geometric ergodicity holds unless the data set

is both small and unbalanced. Indeed, consider the first condition. The left-hand side will

be large only if both
( ∑q

i=1
mi

mi+1

)−1 and m∗

M
are large. The first term increases as the mis

get smaller and the second term increases as m∗ gets larger relative to M ; that is, as the data

become more unbalanced. The second condition is a weak condition on the sample size. We

show in Appendix B.4 that Corollary 1 from the Introduction follows easily from Proposition 3.

4 Minorization, Regeneration and the CLT

In this section, we first explain how regeneration of a generic Markov chain can be used to

form a CLT whose asymptotic variance is easy to estimate. We then develop a regenerative

simulation method specifically for the block Gibbs Markov chain by constructing a minoriza-

tion condition for its transition density.

4.1 Regenerative simulation

Every ergodic Markov chain is a regenerative process (Meyn and Tweedie, 1993, Thm. 5.2.3).

Regeneration times are easy to find for discrete state space Markov chains. Indeed, if we fix

any particular state, then the chain probabilistically restarts at the random times immediately

following returns to that fixed state. Unfortunately, identification of regeneration times is not as

straightforward for general state space Markov chains. The most well known method of finding

regeneration times for these general chains is based on establishing the following minorization

condition:

k(x̃ | x) ≥ s(x) ν(x̃) for all x̃, x ∈ X , (16)

where s : X → [0, 1) is a (non-trivial) function and ν : X → [0,∞) is a density function.

Equation (16) allows the transition density k to be expressed as a mixture of two other transition

densities, one of which does not depend on the current state x. This mixture representation of

k allows for the introduction of regenerations into the chain (see, e.g., Jones and Hobert, 2001;

Mykland et al., 1995; Roberts and Rosenthal, 2004). We now describe a simple method of

identifying the regeneration times in practice.

13



The Markov chain is simulated as usual, but after each iteration, an extra Bernoulli variable

is drawn. To be more specific, suppose we start with X0 ∼ ν and then simulate the Markov

chain according to k. After we have simulated Xn+1 = x̃ using the current state, Xn = x, we

generate an extra Bernoulli variable δn whose success probability is a function of x and x̃ given

by

Pr
(
δn = 1 | Xn = x,Xn+1 = x̃

)
=
s(x) ν(x̃)

k(x̃ | x)
. (17)

Then the regeneration times are τ0 = 0 and, for t = 1, 2, 3, . . . , τt = min{n > τt−1 : δn−1 =

1}. Accordingly, the chain is broken up into “tours”,
{
(Xτ(t−1)

, · · · , Xτt−1), t = 1, 2, . . .
}

,

that are independent stochastic replicas of each other.

Now suppose the chain X is Harris ergodic with invariant probability density π. Sup-

pose that g ∈ L1(π) and consider using R tours of the Markov chain to estimate Eπg =∫
X g(x)π(x) dx. The total length of the simulation is τR, which is random. For t = 1, . . . , R,

define Nt = τt − τt−1, and St =
∑τt−1

n=τt−1
g(Xn). Then the (Nt, St) pairs are iid. We can write

the obvious estimator of Eπg in terms of these pairs as follows

g̃R =
1

τR

τR−1∑
n=0

g(Xn) =

∑R
t=1 St∑R
t=1Nt

.

The estimator g̃R is strongly consistent for Eπg as R → ∞. Moreover, Hobert et al. (2002)

show that, if the Markov chain X is geometrically ergodic and Eπ|g|2+α <∞ for some α > 0,

then
√
R

(
g̃R − Eπg

) d→ N
(
0, γ2

)
as R→∞,

where

γ2 =
Eν [(S1 −N1Eπg)

2]

[EνN1]
2 .

(The notation “Eν” is meant to remind the reader that each tour is started with a draw from ν.)

The entire motivation for using regeneration is that there is a simple, consistent estimator of

γ2. Indeed, Hobert et al. (2002) show that

γ̂2 =
R

∑R
t=1

(
St − g̃RNt

)2

τ 2
R

is a strongly consistent estimator of γ2 as R→∞.

14



In practice, we choose a preliminary value of R that we believe will lead to a reasonable

estimate of γ2. We drawX0 ∼ ν and simulate iterations of the chain and the Bernoulli variables

until the Rth time that δ = 1. We then calculate g̃R and γ̂2 and form the approximate 95% CI:

g̃R ± 2γ̂/
√
R. If this interval is acceptably short, we stop. If not, we continue the simulation.

Of course, given the pilot estimate γ̂2, we can calculate about how many tours will be required

for a given level of accuracy. For example, if a CI of length l is desired, this will require about

16γ̂2
/
l2 total tours. Note that the chain is started with X0 ∼ ν, and there is no need to throw

away an initial portion of the simulation. In other words, when the regenerative method is

employed, burn-in is a non-issue.

In the next subsection, we develop a minorization condition for our block Gibbs sampler.

4.2 Minorization for the block Gibbs sampler

The transition density of the block Gibbs chain is given by

k
(
σ̃2, ξ̃ | σ2, ξ

)
= π

(
σ̃2 | ξ

)
π
(
ξ̃ | σ̃2

)
.

We now construct a minorization condition for this transition density using a method outlined

in Mykland et al. (1995). Fix 0 < d1 < d2 < ∞ and 0 < d3 < d4 < ∞ and let D denote the

closed rectangle [d1, d2]× [d3, d4] ⊂ R2
+. Also, fix a distinguished point ξ∗ ∈ Rq+1. Then

k(σ̃2, ξ̃ | σ2, ξ) =
π(σ̃2 | ξ)
π(σ̃2 | ξ∗)

π(ξ̃ | σ̃2)π(σ̃2 | ξ∗)

≥
[

inf
σ2∈D

π(σ2 | ξ)
π(σ2 | ξ∗)

]
π(ξ̃ | σ̃2)π(σ̃2 | ξ∗)ID(σ̃2)

=

{
c
π(σ2 | ξ)
π(σ2 | ξ∗)

}{
1

c
π(ξ̃ | σ̃2)π(σ̃2 | ξ∗)ID(σ̃2)

}
=: s(ξ) ν(σ̃2, ξ̃)

where σ2 = (σ2
θ, σ

2
e) denotes the minimizer of π(σ2 | ξ)

/
π(σ2 | ξ∗) as σ2 ranges over the set

D, and c is the normalizing constant. The value of c is not required in practice. Indeed, we

can simulate from ν without knowledge of c by repeatedly drawing σ2 ∼ π(· | ξ∗) until the

first time σ2 ∈ D, and then drawing ξ ∼ π(ξ | σ2). Furthermore, the probability (17), which

must be calculated after each iteration of the Markov chain, involves s and ν only through their

product. Thus, c cancels out.
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We now develop a closed form expression for s. Since π(σ2 | ξ) factors into π(σ2
θ | ξ) and

π(σ2
e | ξ), the bivariate minimization problem becomes two separate univariate minimization

problems. Let w∗k stand for wk evaluated at ξ∗ for k = 1, 2. Then

π(σ2
θ | ξ)

π(σ2
θ | ξ∗)

=
(1

2
w1)

q
2
+a/Γ( q

2
+ a)

(1
2
w∗1)

q
2
+a/Γ( q

2
+ a)

(
σ2

θ

)−( q
2
+a+1)

exp[−1
2
w1/σ

2
θ ](

σ2
θ

)−( q
2
+a+1)

exp[−1
2
w∗1/σ

2
θ ]

=

(
w1

w∗1

) q
2
+a

exp

[
− 1

2
(w1 − w∗1)/σ

2
θ

]
,

and

π(σ2
e | ξ)

π(σ2
e | ξ∗)

=

[
1
2
(w2 + SSE)

]M
2

+b
/Γ(M

2
+ b)[

1
2
(w∗2 + SSE)

]M
2

+b
/Γ(M

2
+ b)

(
σ2

e

)−(M
2

+b+1)
exp

[
− 1

2
(w2 + SSE)/σ2

e

](
σ2

e

)−(M
2

+b+1)
exp

[
− 1

2
(w∗2 + SSE)/σ2

e

]
=

(
w2 + SSE
w∗2 + SSE

)M
2

+b

exp
[
− 1

2
(w2 − w∗2)/σ

2
e

]
.

Hence, σ2
θ = d1 when w1 > w∗1 and σ2

θ = d2 when w1 ≤ w∗1. Similarly, σ2
e = d3 when w2 > w∗2

and σ2
e = d4 when w2 ≤ w∗2. Finally,

Pr
(
δn = 1

∣∣ (σ2
n, ξn) = (σ2, ξ), (σ2

n+1, ξn+1) = (σ̃2, ξ̃)
)

=
s(ξ) ν(σ̃2, ξ̃)

k
(
σ̃2, ξ̃ | σ2, ξ

) =
π(σ2 | ξ)π(σ̃2 | ξ∗)
π(σ2 | ξ∗)π(σ̃2 | ξ)

ID(σ̃2)

=

(
w1

w∗1

) q
2
+a

exp
[
− 1

2
(w1 − w∗1)/σ

2
θ

](w2 + SSE
w∗2 + SSE

)M
2

+b

exp
[
− 1

2
(w2 − w∗2)/σ

2
e

]
×

(
w∗1
w1

) q
2
+a

exp
[
− 1

2
(w∗1 − w1)/σ̃

2
θ

](w∗2 + SSE
w2 + SSE

)M
2

+b

exp
[
− 1

2
(w∗2 − w2)/σ̃

2
e

]
ID(σ̃2)

= exp

{
1

2

[
(w1 − w∗1)

(
1

σ̃2
θ

− 1

σ2
θ

)
+ (w2 − w∗2)

(
1

σ̃2
e

− 1

σ2
e

)]}
ID(σ̃2) .

(18)

Theoretically, we could use any set D = [d1, d2] × [d3, d4] and any distinguished point ξ∗

to run the regenerative simulation. However, the asymptotics for γ̂2 involve R → ∞, so we

would like for the chain to regenerate fairly often. Thus, we should choose D and ξ∗ so that

the probability in (18) is frequently close to one. Not surprisingly, there is trade-off between

the size of the set D and the magnitude of the exponential term in (18) (when the indicator
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is unity). Our strategy for choosing D and ξ∗ is as follows. We run the block Gibbs sampler

for an initial n0 iterations (using starting value ξ0 = (y, y1, . . . , yq) for example). We take

[d1, d2] to be the shortest interval that contains 60% of the n0 values of σ2
θ , and we calculate

[d3, d4] similarly using the n0 values of σ2
e . The regeneration probability (18) involves ξ∗ only

through w1(ξ
∗) and w2(ξ

∗). Hence, instead of setting ξ∗ equal to the median, say, of the n0

values of ξ in the initial run of the chain, we calculate w1 and w2 for each of the n0 values

of ξ and we set w∗1 to be the median of the w1 values and w∗2 to be the median of the w2

values. There is one small caveat. This approach makes sense only if there happens to exist a

ξ̂ ∈ Rq+1 such that
(
w1(ξ̂), w2(ξ̂)

)
= (w∗1, w

∗
2). For balanced data, such a ξ̂ exists if and only

if
√

w∗
2

m
+
√
w∗1 ≥

√
SST
m

. See Tan (2008) for a proof of this result as well as guidelines for the

unbalanced case.

5 An example: Styrene exposure data

In this section, we illustrate the regenerative simulation method using a real data set from Lyles,

Kupper and Rappaport (1997). The computer simulation is coded in R and can be found in the

online supplement to this article, available from the journal’s website. The data set concerns

thirteen workers who were randomly selected from a group within a boat manufacturing plant

and each one’s styrene exposure was measured on three separate occasions. So we have q = 13,

mi ≡ m = 3 and M = m× q = 39. The data are summarized in Tables 1 and 2.

Consider modeling these data using the one-way model from Section 1 with the standard

diffuse prior on the unknown parameters. The goal will be to explore the posterior distribution

of (σ2, ξ) given the data using the block Gibbs sampler. With q = 13 and mi ≡ m = 3, the

conditions of Corollary 1 are clearly satisfied so the block Gibbs sampler for the styrene data is

geometrically ergodic. Suppose we want to approximate the posterior expectations of the two

variance components, σ2
θ and σ2

e , as well as the correlation between observations on the same

worker, σ2
θ/(σ

2
θ +σ2

e). Straightforward calculations show that all three of these functions satisfy

the “2 + α” moment condition. Therefore, all of the assumptions underlying the regenerative

simulation method are satisfied.

Implementation of the regenerative simulation requires us to specify R, the total number
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worker 1 2 3 4 5 6 7

yi 3.302 4.587 5.052 5.089 4.498 5.186 4.915

worker 8 9 10 11 12 13

yi 4.876 5.262 5.009 5.602 4.336 4.813

Table 1: Average styrene exposure level for each of the 13 workers.

y = M−1
∑13

i=1

∑3
j=1 yij = 4.809

SST = 3
∑13

i=1(yi − y)2 = 11.430

SSE =
∑13

i=1

∑3
j=1(yij − yi)

2 = 14.711

Table 2: Summary statistics for the styrene exposure data.

of regenerations. As we have mentioned in Section 4.1, the procedure to determine R has

two steps. In the first step, we run the chain for an initial number of regenerations, call it

R, that is believed to lead to a reasonable estimator of the asymptotic variance, γ2. Here,

we used R = 5, 000 which took 87,169 iterations and consumed 20 seconds. The simulation

results are summarized in Table 3. For each of the three parameters of interest, the table

provides the estimate, g̃τR
, the estimated asymptotic variance, γ̂2, the estimated standard error√

γ̂2/R, and an approximate 95% CI, gτR
± 2

√
γ̂2/R. Mykland et al. (1995) recommended

that γ̂2 not be used to estimate γ2 unless the average tour length, N = R−1
∑R

t=1Nt has a

coefficient of variation, CV(N̄) =
√

Var(N̄)/E(N̄), smaller than 0.1. A strongly consistent

estimator of CV(N̄) is given by ĈV(N) =
√∑R

t=1(Nt − N̄)2/(RN̄)2. For our simulation

above, ĈV(N) = 0.018 clearly meets the criteria. We also examined trace plots of γ̂2 for the

parameters of interest, σ2
θ , σ2

e and σ2
θ/(σ

2
θ + σ2

e), and all suggest that the variance estimators

have stabilized by the 5,000th regeneration. Hence they are reasonable approximations of their

respective estimands.

In the second step of the procedure, we decide how large R needs to be for the resulting CI

to be shorter than a user-specified width based on the preliminary analysis above. Take the 95%

CI of Eπσ
2
θ for example. Suppose that we desire its margin of error to be around 1% of the mag-
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g̃τR
γ̂2

√
γ̂2/R gτR

± 2
√
γ̂2/R

σ2
θ 0.19003 0.03463 0.00263 (0.18477, 0.19529)

σ2
e 0.61777 0.00883 0.00133 (0.61511, 0.62043)

σ2
θ

σ2
θ+σ2

e
0.21288 0.03532 0.00266 (0.20757, 0.21820)

Table 3: Results based on R = 5, 000 regenerations.

g̃τR
γ̂2

√
γ̂2/R gτR

± 2
√
γ̂2/R

σ2
θ 0.19023 0.03523 0.00094 (0.18835, 0.19210)

σ2
e 0.61849 0.00966 0.00049 (0.61751, 0.61947)

σ2
θ

σ2
θ+σ2

e
0.21304 0.03687 0.00096 (0.21112, 0.21496)

Table 4: Results based on R = 40, 000 regenerations. Note that the margin of error of the 95%

CI for Eπσ
2
θ is 2× 0.00094 = 0.00188, which is about 1% of the magnitude of the estimate of

Eπσ
2
θ .

nitude of Eπσ
2
θ . Since g̃τ5000 = 0.19003, the desired width of the 95% CI, l, is approximately

2×0.19003×1%
.
= 0.0038 and will require about 16γ̂2

/
l2 = 16×0.03074/0.00382 .

= 38, 371

regenerations. So we ran the chain for an additional 35,000 regenerations. The final chain with

40,000 regenerations accounted for 697,869 iterations and took 3 minutes to generate. The

simulation results are summarized in Table 4. Figure 1 shows trace plots associated with the

estimation of Eπσ
2
θ . These plots suggest that things have stabilized nicely by the 40,000th re-

generation. We also examined the trace plots associated with σ2
e and σ2

θ/(σ
2
θ + σ2

e). They look

very similar to the ones shown in Figure 1.

6 Discussion

Our block Gibbs sampler is a two-variable Gibbs sampler that updates σ2 = (σ2
θ , σ

2
e) and ξ =

(µ, θ) in turn. van Dyk and Meng (2001) studied an alternative two-variable Gibbs sampler in

which the two groups of parameters are θ and (µ, σ2
θ , σ

2
e). Given (µ, σ2

θ , σ
2
e), θ has a multivariate

normal distribution. On the other hand, the posterior density of (µ, σ2
θ , σ

2
e) given θ factors as
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Figure 1: The solid line in the upper graph is the trace plot of the estimator of Eπσ
2
θ . That is,

for R = 1, . . . , 40000, we plotted g̃R against R, where g̃R is the estimator based on the first R

tours out of the 40, 000 tours of our simulated chain. Similarly, the dashed lines are trace plots

of the upper and lower bounds of the estimated asymptotic 95% CIs for Eπσ
2
θ . The lower graph

is another trace plot that displays the convergence of the strongly consistent estimator, γ̂2, of

the asymptotic variance, γ2 .

π(µ, σ2
θ , σ

2
e | θ) = π(σ2

e | θ)π(µ, σ2
θ | θ) . That is, given θ, σ2

e and (µ, σ2
θ) are independent.

It’s easy to show that π(σ2
e | θ) has an inverse gamma density. Moreover, π(µ, σ2

θ | θ) can be

factored as π(σ2
θ | θ)π(µ | σ2

θ , θ) and routine calculations show that π(σ2
θ | θ) and π(µ | σ2

θ , θ)

have inverse gamma and normal forms, respectively. Thus, it is just as easy to implement this

two-variable Gibbs sampler as it is to implement our block Gibbs sampler. Unfortunately, our

proof of geometric ergodicity cannot be easily adapted to van Dyk and Meng’s chain because

the drift condition we used is not appropriate for their blocking scheme. We strongly suspect

that this alternative Markov chain is geometrically ergodic, but this remains an open question.
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Supplemental materials

appendices.pdf This document contains the proofs for the results in the article and other tech-

nical details.

regenerate.R This file contains code to calculate the consistent estimator of the asymptotic

variance using the regeneration method for the styrene exposure data set used in Sec-

tion 5.
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