
APPENDICES

A Proof of Lemma 1

Proof. If µ(A) > 0 then K(x,A) =
∫

A
k(x′|x)µ(dx′) > 0 for all x ∈ X; i.e., it is possible

to get from any point x ∈ X to any non measure zero set A in one step. This implies that X

is aperiodic and µ-irreducible. Since X is µ-irreducible, it is also ψ-irreducible, where ψ is

the maximal irreducibility measure (Meyn and Tweedie, 1993, Section 4.2). The measure ψ

dominates all other irreducibility measures, so ψ dominates µ (denoted by ψ � µ). It is also

true that µ � ψ, so these two measures are actually equivalent. Indeed, if µ(A) = 0, then it

follows that K l(x,A) = 0 for all x ∈ X and all l ∈ N, which implies that ψ(A) = 0.

Since X is ψ-irreducible and admits an invariant probability distribution, it is positive,

hence recurrent (Meyn and Tweedie, 1993, Chap. 10). In order to establish Harris recurrence,

we must introduce the notion of harmonic functions. A function h : X → R is called harmonic

for K if h = Kh, where Kh(x) :=
∫

X h(x
′)K(x, dx′) for all x ∈ X. One method of establish-

ing Harris recurrence is to show that every bounded harmonic function is constant (Nummelin,

1984, Theorem 3.8). Suppose h is a bounded, harmonic function. Since X is ψ-irreducible and

recurrent, h is constant ψ-a.e. (Nummelin, 1984, Proposition 3.1.3). Thus, there exists a set N

with ψ(N) = 0 such that h(x) = c for all x ∈ N , where N denotes the complement set of N .

Since ψ � µ � K(x, ·) for all x ∈ X, K(x,N) = 0. Now, for any x ∈ X, we have

h(x) =

∫
X
h(x′)K(x, dx′) =

∫
N

h(x′)K(x, dx′) +

∫
N

h(x′)K(x, dx′) = c+ 0 = c,

which implies that h ≡ c. It follows that X is Harris recurrent. After all, X is positive and

Harris recurrent, hence positive Harris recurrent by definition (Meyn and Tweedie, 1993, Chap.

10).
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B Technical Details

B.1 Upper bounds for conditional expectations

We begin by establishing some inequalities involving t, which will help us evaluate conditional

expectations. First, note that

t =

q∑
i=1

mi

miσ2
θ + σ2

e

≥
q∑

i=1

mi

(1 +mi) max{σ2
e , σ

2
θ}

=

( q∑
i=1

mi

mi + 1

)
1

max
{
σ2

θ , σ
2
e

} . (1)

Lemma 2. Let m∗ = max{m1, . . . ,mq}. Then for each i = 1, ..., q, we have

m∗σ2
θ + σ2

e

M
≥ 1

t
≥ miσ

2
θ + σ2

e

M(1 +mi)
.

Proof. The first inequality holds because

1

t
=

( q∑
i=1

mi

miσ2
θ + σ2

e

)−1

≤
( q∑

i=1

mi

m∗σ2
θ + σ2

e

)−1

=
m∗σ2

θ + σ2
e

M
.

For the second inequality, first note that

t =

q∑
i=1

mi

miσ2
θ + σ2

e

≤
q∑

i=1

mi

miσ2
θ

=
q

σ2
θ

and t =

q∑
i=1

mi

miσ2
θ + σ2

e

≤
q∑

i=1

mi

σ2
e

=
M

σ2
e

.

If σ2
θ ≤ σ2

e , then
1

miσ2
θ + σ2

e

1

t
≥ σ2

e

M(miσ2
θ + σ2

e)
≥ 1

M(1 +mi)
,

else if σ2
θ > σ2

e , then

1

miσ2
θ + σ2

e

1

t
≥ σ2

θ

q (miσ2
θ + σ2

e)
>

1

q (1 +mi)
≥ 1

M (1 +mi)
.

Note that E
(
µ
∣∣σ2

θ , σ
2
e

)
is a convex combination of the yi. Hence, as a function of σ2

θ and

σ2
e , this conditional expectation is uniformly bounded by a constant. Along the same lines,

for each fixed k, E
(
θk

∣∣σ2
θ , σ

2
e

)
is a convex combination of E

(
µ
∣∣σ2

θ , σ
2
e

)
and yk, so it too is

uniformly bounded by a constant. Using these facts along with the forms of the conditional
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densities given in Subsection 3.1, we have

E(w̃1|σ2) = E
[∑

i

(θ̃i − µ̃)2
∣∣∣σ2

θ , σ
2
e

]
=

∑
i

[
Var

[
(θ̃i − µ̃)

∣∣σ2
θ , σ

2
e

]
+

(
E
[
(θ̃i − µ̃)

∣∣σ2
θ , σ

2
e

])2]
=

∑
i

σ2
θσ

2
e

σ2
e +miσ2

θ

+
∑

i

(
σ2

e

)2

(miσ2
θ + σ2

e)
2t
− 2

∑
i

σ2
e

(miσ2
θ + σ2

e)t
+
q

t
+ const

≤
∑

i

σ2
θσ

2
e

miσ2
θ + σ2

e

−
∑

i

σ2
e

(miσ2
θ + σ2

e)t
+
q

t
+ const

≤
∑

i

σ2
e

mi

−
∑

i

σ2
e

M(1 +mi)
+
q

t
+ const

where the final inequality uses Lemma 2. We now bound q
t

in two different ways. First,

applying (1), we have

q

t
≤ q

( q∑
i=1

mi

mi + 1

)−1

max
{
σ2

θ , σ
2
e

}
≤ q

( q∑
i=1

mi

mi + 1

)−1(
σ2

θ + σ2
e

)
.

For the other way, apply Lemma 2 and

q

t
≤ qm∗σ2

θ

M
+
qσ2

e

M
.

Hence,

E(w̃1|σ2) ≤ q

( q∑
i=1

mi

mi + 1

)−1

σ2
θ

+

[ ∑
i

1

mi

−
∑

i

1

M(1 +mi)
+ q

( q∑
i=1

mi

mi + 1

)−1
]
σ2

e + const ,

and

E(w̃1|σ2) ≤ qm∗

M
σ2

θ +

[∑
i

1

mi

−
∑

i

1

M(1 +mi)
+

q

M

]
σ2

e + const .
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Now,

E(w̃2|σ2) =
∑

i

miE
[
(yi − θ̃i)

2
∣∣σ2

θ , σ
2
e

]
=

∑
i

mi

[
Var(θ̃i

∣∣σ2
θ , σ

2
e) +

(
E
[
(θ̃i − yi)

∣∣σ2
θ , σ

2
e

])2]
=

∑
i

miσ
2
θσ

2
e

miσ2
θ + σ2

e

+
∑

i

mi

(
σ2

e

)2

(miσ2
θ + σ2

e)
2t

+ const

≤
∑

i

σ2
e +

∑
i

miσ
2
e

(miσ2
θ + σ2

e)t
σ2

e = (q + 1)σ2
e + const .

B.2 Proof of Proposition 2

Proof. Recall equations (14) and (15) from the main body of the paper, which are

E(w̃s
1 | ξ) ≤ δ3(s)w

s
1 + δ2(s)w

s
2 + const ,

and

E(w̃s
2 | ξ) ≤ δ1(s)w

s
2 + const .

If follows that

E(εw̃s
1 + w̃s

2 | ξ) ≤ εδ3(s)w
s
1 + (δ1(s) + εδ2(s))w

s
2 + const

= ρ(ε, s)(εws
1 + ws

2) + ε(δ3(s)− ρ(ε, s))ws
1 + const

where ρ(ε, s) = δ1(s) + εδ2(s). Therefore, we will have a viable drift condition if

ρ(ε, s) < 1 and δ3(s)− ρ(ε, s) ≤ 0 . (2)

Clearly, (2) requires that δ1(s) < 1 and δ3(s) < 1. We now show that these conditions are also

sufficient for the existence of ε > 0 such that (2) is satisfied.

There are two cases. In the first case, δ1(s) ≤ δ3(s) < 1. If we take ε = (δ3(s) −
δ1(s))/δ2(s), then ρ(ε, s) = δ3(s) < 1 and δ3(s) − ρ(ε, s) = 0. In the second case, δ3(s) <

δ1(s) < 1. Now take ε =
(
1− δ1(s)

)/(
2δ2(s)

)
. Then

ρ(ε, s) = δ1(s) +
1− δ1(s)

2
=

1 + δ1(s)

2
< 1 ,

and

δ3(s)− ρ(ε, s) = δ3(s)−
1 + δ1(s)

2
< 0 .

Hence, if δ1(s) < 1 and δ3(s) < 1, then there is a viable drift condition.
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B.3 Finding an s ∈ S such that δ1(s) < 1 and δ3(s) < 1

This section contains a proof of the following result.

Proposition 4. If M + 2b ≥ q + 3 and ∆1 < 2 exp
(
Ψ

(
q
2

+ a
))

, then there exists s ∈ S such

that δ1(s) < 1 and δ3(s) < 1.

We will prove Proposition 4 by establishing that

• δ1(s) < 1 for any s ∈ (0, 1) if M + 2b ≥ q + 3, and

• δ3(s0) < 1 for some small positive s0 if ∆1 < 2 exp
(
Ψ

(
q
2

+ a
))

.

It is well known that Ψ′(x) > 0 for all x > 0 and that Ψ(x + 1) = Ψ(x) + 1
x
. A couple

of common values of the digamma function that we will encounter later are Ψ(1) = −γ and

Ψ(1
2
) = −γ − 2 log(2), where γ := limp→∞

(
1 + 1

2
+ · · · + 1

p
− log(p)

) .
= 0.577 is Euler’s

constant. Also, the recurrence formula yields: Ψ(3
2
) = −γ − 2 log(2) + 2.

B.3.1 Bounding δ1(s)

Recall that δ1(s) is actually a function of s, q and M
2

+ b. Indeed,

δ1

(
s, q,

M

2
+ b

)
=

Γ
(

M
2

+ b− s
)

Γ
(

M
2

+ b
) (q + 1

2

)s

.

Now, for any fixed s > 0, Γ(x− s)
/
Γ(x) is decreasing in x for x > s, because

d

dx

[
log(Γ(x− s))− log(Γ(x))

]
= Ψ(x− s)−Ψ(x) < 0 for all x > s > 0 .

Therefore, with (s, q) fixed, δ1
(
s, q, M

2
+ b

)
is decreasing in

(
M
2

+ b
)

as long as M
2

+ b > s.

Consequently, to show that δ1
(
s, q, M

2
+ b

)
< 1 for all s ∈ (0, 1) if M + 2b ≥ q + 3, we need

only prove the following.

Lemma 3. δ1
(
s, q, q+3

2

)
< 1 for all s ∈ (0, 1) and q ≥ 2.

Proof. Fix s ∈ (0, 1) and define

T (x) =
Γ(x+ s)

Γ(x)
(x+ s− 1)−s for x > 1− s .

We claim that
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1. T (x) is strictly decreasing in x, and

2. limx→∞ T (x) = 1.

To prove claim 1, we will show that Q(x) = log(T (x)) is decreasing in x. First, for x > 0

Ψ(x) = −γ +
∞∑

p=1

(
1

p
− 1

x+ p− 1

)
(Abramowitz and Stegun, 1964, p.259). Note that

(
1
p
− 1

x+p−1

)
is nonnegative for all p when

x ≥ 1 and negative for all p when x < 1. Hence, the above series is absolutely convergent for

all x > 0. Clearly, Q(x) = −s log(x + s− 1) + log(Γ(x + s))− log(Γ(x)) and its derivative

can be expressed as follows

Q′(x) = −s 1

x+ s− 1
+

∞∑
p=1

(
1

p
− 1

x+ s+ p− 1

)
−

∞∑
p=1

(
1

p
− 1

x+ p− 1

)
. (3)

The fraction in the first term of (3) can be written as the following absolutely convergent tele-

scoping series
1

x+ s− 1
=

∞∑
p=1

(
1

x+ s+ p− 2
− 1

x+ s+ p− 1

)
.

Therefore,

Q′(x) = s
∞∑

p=1

(
1

x+ s+ p− 1
− 1

x+ s+ p− 2

)
+

∞∑
p=1

(
1

x+ p− 1
− 1

x+ s+ p− 1

)

=
∞∑

p=1

[
− (1− s)

1

x+ s+ p− 1
− s

1

x+ s+ p− 2
+

1

x+ p− 1

]
.

The convexity of the function h(z) = 1
z

on R+ combined with the fact that (1− s)(x+ s+ p−
1) + s(x + s + p− 2) = x + p− 1 can be used to show that every term in the series above is

negative. It follows that Q(x) and T (x) are both decreasing in x for x > 1− s.

We now prove claim 2. Fix s ∈ (0, 1) and define S(x) = x−sΓ(x + s)
/
Γ(x). As x → ∞,

S(x) → 1 (Abramowitz and Stegun, 1964, p.257). As a consequence,

lim
x→∞

T (x) = lim
x→∞

S(x)

(
x

x+ s− 1

)s

= 1 .

Finally, for fixed s ∈ (0, 1), note that q+3
2
− s > 1− s and

δ1
(
s, q,

q + 3

2

)
=

(q + 1

2

)s Γ
(

q+3
2
− s

)
Γ
(

q+3
2

) =
(
T

(q + 3

2
− s

))−1

.

It follows from claims 1 and 2 that T
(

q+3
2
− s

)
> 1 and hence δ1

(
s, q, q+3

2

)
< 1.
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B.3.2 Bounding δ3(s)

Recall that δ3(s) is actually a function of s, m and a. If we define

A(s, q, a) =
Γ( q

2
+ a− s)

2sΓ( q
2

+ a)
,

then we have δ3(s,m, a) = A(s, q, a)∆s
1(m). Note that there exists an s0 ∈ S such that

δ3(s0,m, a) < 1 if and only if ∆1(m) < A∗(q, a), where

A∗(q, a) := sup
s∈S

A−
1
s (s, q, a) = 2 sup

s∈S

(
Γ( q

2
+ a)

Γ( q
2

+ a− s)

) 1
s

.

We now establish a lower bound for A∗(q, a). Define

g(s, q, a) = log

(
1

2
A−

1
s (s, q, a)

)
=

1

s

[
log

(
Γ
(q

2
+ a

))
− log

(
Γ
(q

2
+ a− s

))]
.

Then

lim
s→0

g(s, q, a) =
d log(Γ(x))

dx

∣∣∣∣
x= q

2
+a

= Ψ
(q

2
+ a

)
.

Hence,

A∗(q, a) ≥ lim
s→0

2 exp
[
g(s, q, a)

]
= 2 exp

(
Ψ

(q
2

+ a
))

. (4)

We conclude that there exists s ∈ S such that δ3(s,m, a) < 1 if ∆1(m) < 2 exp
(
Ψ

(
q
2

+ a
))

.

Remark 1. It is easy to show that ∂g(s,q,a)
∂s

∣∣
s=0

< 0. In other words, for fixed q and a, g(s, q, a)

is decreasing in s in a neighborhood of s = 0. Furthermore, numerical calculations suggest

that g(s, q, a) is decreasing on the entire set S for any fixed q and a. Hence, we believe the

lower bound on A∗(q, a) in (4) is sharp.

B.4 Specializing Proposition 3 to the case where a = −1
2

Here we study the condition ∆1(m) < 2 exp
(
Ψ

(
q
2

+ a
))

in the special case where a = −1
2
.

According to (4) from the main body of the paper, when a = −1
2
, the posterior is improper if

q ≤ 2. Hence, we can restrict attention to the case q ≥ 3. When q ≥ 4, we have

2 exp
(
Ψ

(q
2

+ a
))

≥ 2 exp
(
Ψ

(3

2

))
= 2 exp(−γ − 2(log 2− 1))

.
= 2.074 .

Now recall that

∆1(m) = min

{
q

( q∑
i=1

mi

mi + 1

)−1

,
qm∗

M

}
.
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Since mi

1+mi
≥ 1

2
, we have

∆1(m) ≤ q∑
i

mi

mi+1

≤ q∑
i

1
2

= 2 < 2 exp
(
Ψ

(q
2

+ a
))

,

so, when a = −1
2

and q ≥ 4, the condition ∆1(m) < 2 exp
(
Ψ

(
q
2

+ a
))

is always satisfied.

Now, when q = 3, we have

2 exp
(
Ψ

(q
2

+ a
))

= 2 exp
(
Ψ(1)

)
= 2 exp(−γ) .

= 1.123 .

For balanced data,

∆1(m) ≤ qm∗

M
= 1 < 2 exp

(
Ψ(1)

)
.

Hence, when a = −1
2

and q = 3 and the data are balanced, the condition ∆1(m) < 2 exp
(
Ψ

(
q
2
+

a
))

is satisfied. Finally, if q = 3 and the data are unbalanced, then ∆1(m) < 2 exp(−γ) if and

only if ∑
i

mi

mi + 1
>

3

2 exp(−γ)
.
= 2.67 or m∗ <

2 exp(−γ)
3

M
.
= 0.374M . (5)

Table 5 displays all unbalanced data configurations with q = 3 and m∗ ≤ 12 that satisfy (5).
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m1 m2 m3 m1 m2 m3 m1 m2 m3 m1 m2 m3 m1 m2 m3

3 4 4 7 8 10 7 10 11 6 9 12 8 11 12

4 5 5 7 9 10 7 11 11 6 10 12 8 12 12

5 6 6 7 10 10 8 8 11 6 11 12 9 9 12

5 7 7 8 8 10 8 9 11 6 12 12 9 10 12

6 6 7 8 9 10 8 10 11 7 7 12 9 11 12

6 7 7 8 10 10 8 11 11 7 8 12 9 12 12

6 8 8 9 9 10 9 9 11 7 9 12 10 10 12

7 7 8 9 10 10 9 10 11 7 10 12 10 11 12

7 8 8 6 9 11 9 11 11 7 11 12 10 12 12

7 9 9 6 10 11 10 10 11 7 12 12 11 11 12

8 8 9 6 11 11 10 11 11 8 8 12 11 12 12

8 9 9 7 8 11 5 11 12 8 9 12

6 10 10 7 9 11 5 12 12 8 10 12

Table 5: A complete list of all unbalanced configurations (m1,m2,m3) with m∗ ≤ 12 that

satisfy ∆1(m) < 2 exp(−γ).
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