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A NOTE ON THE TURÁN FUNCTION OF EVEN CYCLES

OLEG PIKHURKO

Abstract. The Turán function ex(n, F ) is the maximum number of edges in
an F -free graph on n vertices. The question of estimating this function for

F = C2k, the cycle of length 2k, is one of the central open questions in this

area that goes back to the 1930s. We prove that

ex(n,C2k) ≤ (k − 1)n1+1/k + 16(k − 1)n,

improving the previously best known general upper bound of Verstraëte [Com-

bin. Probab. Computing 9 (2000), 369–373] by a factor 8 + o(1) when n � k.

1. Introduction

The Turán function ex(n, F ) of a forbidden graph F is the maximum number of
edges in an F -free graph on n vertices. It is named so as to honor the fundamental
paper of Turán [20] from 1941 that determined this function for cliques. If we forbid
C2k, the cycle of length 2k, then the problem of determining its Turán function goes
back even further, to a 1938 paper of Erdős [6] one of whose results is essentially
that ex(n,C4) = Θ(n3/2).

Determining the Turán function for even cycles is considered to be one of the key
problems in extremal combinatorics. However, despite the efforts of many leading
researchers, it remains wide open. In the proceedings of the 1963 Smolenice Sym-
posium on Graph Theory and Its Applications, Erdős [7, Page 33] stated without
proof that ex(n,C2k) ≤ γkn

1+1/k for some constant γk depending only on k. The
first published proof of this appears in a paper of Bondy and Simonovits [3], whose
Lemma 2 implies that ex(n,C2k) ≤ 20kn1+1/k for all n � k. More recently, Ver-
straëte [21], as a by-product of his theorem on cycle lengths in graphs, showed that
ex(n,C2k) ≤ 8(k − 1)n1+1/k.

The case that is best understood so far is k = 2. Here we know that ex(n,C4) =
(1/2 + o(1))n3/2: the lower bound was proved by Erdős and Rényi [8] (and in-
dependently re-discovered by Brown [4]) and the upper bound by Erdős, Rényi,
and Sós [9]. Moreover, we know ex(n,C4) exactly when n = q2 + q + 1 for any
prime power q ≥ 16 (Füredi [11, 12]) and when n ≤ 31 (McCuaig [17], Clapham,
Flockhart, and Sheehan [5], Yuansheng and Rowlinson [23]).

For arbitrary fixed k, Erdős and Simonovits [10] conjectured that ex(n,C2k) =
(1/2 + o(1))n1+1/k. This was disproved by Lazebnik, Ustimenko, and Woldar [15]
for k = 5 who showed that

ex(n,C10) ≥ (4 · 5−6/5 + o(1))n6/5 = (0.5798...+ o(1))n6/5,
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although they were not aware of this conjecture at the time, see the discussion
in [16, Pages 504–505]. Füredi, Naor, and Verstraëte [13] showed that

0.5338n4/3 ≤ ex(n,C6) ≤ 0.6272n4/3,

thus disproving the case k = 3 of the above conjecture.
For k ≥ 3, a lower bound of the form ex(n,C2k) = Ω(n1+1/k) is known only for

k = 3 and k = 5 (first proved by Benson [1]). Some other constructions achieving
it were found by Wenger [22], Lazebnik and Ustimenko [14], Mellinger [18], and
Mellinger and Mubayi [19]. Unfortunately, for no other k is the rate of growth of
ex(n,C2k) known, although there are various lower bounds. We refer the reader to
the paper [16] that presents new constructions as well as gives numerous references.

In this note we prove the following result that improves the best known general
upper bound of Verstraëte [21] by a factor 8 + o(1) when n� k.

Theorem 1.1. For all k ≥ 2 and n ≥ 1, we have

ex(n,C2k) ≤ (k − 1)n1+1/k + 16(k − 1)n.

Essentially all the main ideas that we use to prove this result can be found in the
papers [3, 21]. However, given the importance of this problem and the absence of
any improvements in upper bounds on ex(n,C2k) for general k in the last decade,
this result may help to draw more interest to this area and to introduce some
beautiful ideas from [3, 21] to a larger audience, especially that our proof seems to
be simpler and more transparent than those in [3, 21].

Although the bound of Theorem 1.1 can be somewhat improved (especially for
small k), the author could not show that

lim inf
k→∞

lim inf
n→∞

ex(n,C2k)

kn1+1/k

is strictly below 1. It would be very interesting to decide if the limit inferior is 0
or not. Hopefully, the quest in this direction will lead to new ideas and insights.

2. Auxiliary Results

We use the standard graph theory notation that can be found in e.g. Bondy and
Murty’s book [2]. Still, some terms are defined when they are used for the first
time.

By a Θ-graph we mean a cycle of length at least 2k with a chord. We will need
the following lemma that appears implicitly in the proof of Lemma 2 in [3] and is
stated as a separate lemma in [21, Lemma 2].

Lemma 2.1. Let F be a Θ-graph and 1 ≤ ` ≤ v(F )− 1. Let V (F ) = A ∪B be an
arbitrary partition of its vertex set into two non-empty parts such that every path
in F of length ` that begins in A necessarily ends in A. Then F is bipartite with
parts A and B.

Sketch of Proof. Let n = v(F ) and let its vertex set be Zn, the set of the residues
modulo n, with i being adjacent to i− 1 and i+ 1. We encode the partition A∪B
by a 2-coloring χ of Zn. Let

P = {m ∈ Zn : ∀i ∈ Zn χ(i) = χ(i+m)}
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consist of all periods of χ. Our assumption implies that ` ∈ P . The smallest
positive period m ∈ P has to divide n and, in fact, P = {mi : i ∈ Zn} is the set of
multiples of m. Assume that m > 2 for otherwise we are easily done.

Let the chord connect 0 to r. Since m > 2, we cannot have that both r and
n− r are congruent to 1 modulo m, say r 6≡ 1 (mod m). Thus r − 1 6∈ P . By the
m-periodicity of χ, there is some j ∈ Zn such that χ(j) 6= χ(j + `+ r − 1) and we
can further assume that −m < j ≤ 0. The `-walk

j, j + 1, . . . ,−1, 0, r, r + 1, . . . , j + `+ r − 1

in F connects A to B, which is a contradiction unless `+ r− 1 ≥ n. The remaining
cases can be settled by similar arguments where the constructed l-path may change
direction at a chord’s endpoint. A complete proof can be found in [21, Lemma 2].

�

The following easy lemma will also be used.

Lemma 2.2. Let k ≥ 3. Any bipartite graph H of minimum degree at least k
contains a Θ-subgraph.

Proof. Take a longest path P in H. Let P visit vertices x1, . . . , xm in this order.
The end-point x1 has at least k neighbors in H. By the maximality of P , all of
them lie on P . So pick any k neighbors xi1 , . . . , xik of x1 where i1 < · · · < ik.
Every two neighbors of x1 are at least 2 apart on P (because H is bipartite). Thus
ik ≥ 2k and the subpath of P between x1 and xik together with the edges x1xi2
and x1xik forms the required Θ-subgraph. �

3. Proof of Theorem 1.1

Suppose for the sake of contradiction that some C2k-free graph G on n vertices
violates Theorem 1.1. As is well known (for a proof see e.g. [3, Page 99] or [2,
Theorem 2.5]), every graph G contains a subgraph of minimum degree at least half
of the average degree of G:

(1) ∀G ∃H ⊆ G δ(H) ≥ d(G)

2
=
e(G)

n
.

So take any H ⊆ G of minimum degree at least δ, where we define

δ =
e(G)

n
≥ (k − 1)n1/k + 16(k − 1).

Fix an arbitrary vertex x in H. Let Vi consist of those vertices of H that are at
distance i (with respect to the graph H) from x. Thus V0 = {x} and V1 = N(x) is
the neighborhood of x in H. For i ≥ 0, let vi = |Vi| and let

Hi = H[Vi, Vi+1]

be the bipartite subgraph of H induced by the disjoint sets Vi and Vi+1.

Claim 3.1. For 1 ≤ i ≤ k − 1, neither of the graphs H[Vi] and Hi contains a
Θ-subgraph that is bipartite.

Proof of Claim 3.1. Suppose on the contrary that a bipartite Θ-subgraph F ⊆
H[Vi] exists. Let Y ∪ Z be the bipartition of F . Let T ⊆ H be a breadth-first
search tree in H with the root x (for definitions see e.g. [2, Section 6.1]). Let y be
the vertex that is farthest from x such that every vertex of Y is a T -descendant
of y. The paths inside T that connect y to Y branch at y. Pick one such branch,
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defined by some child z of y, and let A be the set of the T -descendants of z that
lie in Y . Let B = (Y ∪ Z) \A. Since Y \A 6= ∅, B is not an independent set of F .

Let ` be the distance between x and y. We have ` < i and 2k − 2i+ 2` < 2k ≤
v(F ). By Lemma 2.1 we can find a path P ⊆ F of length 2k−2i+ 2` that starts in
some a ∈ A and ends in b ∈ B. Since the length of P is even, we have b ∈ Y . Let
Pa and Pb be the unique paths in T that connect y to respectively a and b. They
intersect only in the vertex y since Pa starts with the edge yz while Pb uses some
different child of y. Also, each of these paths has length i− `. But then the union
of the paths P , Pa, and Pb forms a 2k-cycle in H, a contradiction.

The same proof (where we let Y = V (F ) ∩ Vi) works for Hi = H[Vi, Vi+1]. �

By (1), Lemma 2.2, and Claim 1 (and the simple fact that every graph has
a bipartite subgraph with at least half the edges, see e.g. [2, Theorem 2.4]), we
conclude that for k ≥ 3 we have

(2) d(H[Vi]) ≤ 4k − 4 and d(Hi) ≤ 2k − 2, for 1 ≤ i ≤ k − 1.

Also, if k = 2, then H[V1] has no path of length 2 and no vertex of V2 can send
more than one edge to V1, so (2) still holds.

We are essentially done with the combinatorial part and what remains is some
algebra. Here is a sketch for n � k. For i ≤ k − 1, the inequalities in (2) imply
that, on average, a vertex of Vi sends at least δ−O(k) edges to Vi+1 while at most
2k− 2 edges per vertex of Vi+1 are sent back. Thus the first k ratios vi+1/vi are at
least (δ −O(k))/(2k − 2) each. We conclude that (δ/(2k − 2))k ≤ n+ o(n), giving
e(G) ≤ (2k − 2 + o(1))n1+1/k. An extra factor of 2 + o(1) is saved by observing
that, in view of vi � vi+1, a vertex of Vi+1 sends only k − 1 + o(1) edges back on
average.

Let us provide all detailed calculations. Define ε = 4(k − 1)2/δ. Let us show
inductively on i = 0, 1, . . . , k − 1 that

(3) e(Hi) ≤ (k − 1 + ε) vi+1,

which bounds the average degree of the vertices in Vi+1 into Vi. Clearly, this is true
for i = 0 since each vertex of V1 sends only one edge to V0. Suppose that we want
to prove (3) for some i > 0. By (2) and the inductive assumption,

(4) e(Hi) =
∑
y∈Vi

dVi+1
(y) ≥

(
δ − (4k − 4)− (k − 1 + ε)

)
vi = (δ − 5k + 5− ε) vi.

Thus the average degree of the vertices of Vi with respect to Hi is at least δ− 5k+
5− ε ≥ 2k − 2. Here we used the facts that

(5) δ ≥ 16(k − 1) and ε ≤ k − 1

4
.

In particular, Vi+1 6= ∅. In order to satisfy the second inequality in (2), it must be
the case that the average Vi-degree of a vertex in Vi+1 is at most 2k − 2, that is,
e(Hi) ≤ (2k − 2)vi+1. Thus, by (4), we have

vi ≤
e(Hi)

δ − 5k + 5− ε
≤ 2k − 2

δ − 5k + 5− ε
vi+1.

By (2) we conclude that

2e(Hi)

(1 + 2k−2
δ−5k+5−ε ) vi+1

≤ 2e(Hi)

vi+1 + vi
= d(Hi) ≤ 2k − 2.
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which implies the desired bound (3). (Indeed, (5) implies that 2(k−1)2

δ−5.25(k−1) ≤
4(k−1)2

δ

which, again by (5), gives 2(k−1)2

δ−5k+5−ε ≤ ε and the last inequality is exactly what we

need for deducing (3).)
By (3) and (4), we conclude that for each i = 0, . . . , k − 1 we have

vi+1

vi
=

vi+1

e(Hi)
× e(Hi)

vi
≥ δ − 5k + 5− ε

k − 1 + ε
≥ δ

k − 1 + 4ε
,

where the last inequality follows again from (5). Since δ ≥ (k − 1)n1/k, we have

n ≥ v(H) ≥ vk ≥
(

δ

k − 1 + 4ε

)k
≥
(

e(G)/n

k − 1 + 16(k − 1)n−1/k

)k
,

implying the desired upper bound on e(G) (that is, a contradiction). This finishes
the proof of Theorem 1.1.
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21. J. Verstraëte, On arithmetic progressions of cycle lengths in graphs, Combin. Probab. Com-

puting 9 (2000), 369–373.
22. R. Wenger, Extremal graphs with no C4’s, C6’s, or C10’s, J. Combin. Theory (B) 52 (1991),

113–116.

23. Y. Yuansheng and P. Rowlinson, On extremal graphs without four-cycles, Utilitas Math 41
(1992), 204–210.

Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA

15213, USA.


