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Abstract 
This paper studies the dynamics of agent medi­
ated combinatorial trading at the macroscopic 
level. The combinatorial marketplace consists of 
a retailer who wishes to sell bundles of items, 
and a large number of agents with different pur­
chasing goals. These agents dynamically form 
coalitions to exploit the benefits of grouping 
based on their complementary needs. A novel 
physics based dynamic equation is proposed to 
capture the essence of the movements of agents 
among different sized coalitions. Simulation ex­
periments are performed to study the global be­
havior of the agents and the effectiveness of the 
agent mediated combinatorial trading. 

1 Introduction 
The pervasive connectivity of the Internet and the powerful 
architecture of World Wide Web are changing many market 
conventions. Tremendous opportunities for conducting 
business on the Internet are emerging. Intelligent agents will 
play a crucial role in electronic commerce where dynamic 
and heterogeneous interactions between thousands of or­
ganizations and millions of individuals are involved. So far, 
we have already witnessed the involvements of e-commerce 
agents in traditional business settings. Furthermore, this 
involvement is re-shaping the way in which business is con­
ducted in areas such as comparison shopping, dynamic pric­
ing, negotiation, auction, and brokerages, to name a few. 
The automation brought by e-commercc agents will dra­
matically reduce certain types of frictional costs and time 
incurred in the exchange of commodities. 

In e-commerce, the virtual distance separating produc­
ers, wholesalers, distributors, retailers, and consumers 
has collapsed to near zero. All of the parties involved are 
faced with rich choices, and it is natural for them to util­
ize situations to their best advantage. As the population 
of e-commerce agents increases, automated negotiations 
among them on behalf of their parties will be prevalent. 
One of the areas in which agent negotiations will be 
heavily involved is combinatorial markets, where combi­
nations of goods and services are being traded and effi­
ciently allocated. For example, a trading agent can be 

constructed to perform real-time procurement of bundles 
of complementary goods and services on multiple simul­
taneous Internet auctions and exchanges. Alternatively, a 
travel service agent can be constructed to provide combi­
nations of hotel and flight arrangements to potential cus­
tomers. Recently, research on combinatorial auctions has 
attracted considerable attention (Fujishima et al 1999; 
Leyton-Brown et al 2000; Klcmperer 1999; Sandholm 1999; 
Lehmann 1999; Rassenti 1982; Rothkopf 1998; Yokoo et 
al 2001) due to the sheer interconnectedness of the Inter­
net. One way to analyze combinatorial auctions is to use 
search algorithms such as branch and bound. This ap­
proach can produce optimal solutions, however, it is ex­
ponential in the worst-case. An alternative approach, 
which uses approximation algorithms, is typically poly­
nomial but the quality of the solutions cannot be guaran­
teed. 

This paper addresses the issue in a combinatorial market 
where the retailer prefers to sell bundles of goods. A large 
number of buyer's agents dynamically form coalitions to 
exploit the benefits of grouping based on their complemen­
tary needs. The transaction is done at the coalition level 
such that the price for each buyer's agent is cheaper than if 
buying independently. Coalition formation has been ad­
dressed by researchers from both the game theory commu­
nity and the multi-agent community. Game theory empha­
sizes the issues of N-person games formation under differ­
ent settings and the distribution of the benefits among play­
ers (Kraus et al 1991). It concentrates on the stability and 
fairness issues for given coalitions. Multi-agent research 
emphasizes the special properties of a multi-agent environ­
ment and considers the effects of communication costs and 
limited computation time on the coalition formation process 
(Sandholm 1999a; Sandholm 1999b). 

We use a physics-based approach to study the dynamic 
behavior of agents in the combinatorial market where coali­
tions are involved. There are efforts to study large-scale 
multi-agent systems using a physics-based approach (She-
hory et. al; Lerman et. al. 1999). For example, Lerman and 
Shehory (Lerman et. al. 2000) propose a physics-motivated 
mechanism for coalition formation in non-combinatorial 
markets. The problem addressed in our work is different 
because we study the issue where the retailer prefers to sell 
complementary goods. In contrast, the formulation of Ler-
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man and Shehory deals with the case where the retailer only 
has one category of goods. Thus, the agents in our study are 
heterogeneous because they may be interested in different 
goods. Agents in their study are homogeneous in the sense 
that they are all interested in one category of goods. 

The remainder of this paper is organized as follows. The 
next section proposes a combinatorial market model and a 
physics-motivated dynamic equation for structured coalition 
formation. Section 3 presents simulation experiments to 
study the global behavior of the system. Section 4 briefly 
concludes the paper. 

2 Combinatorial Market Model 
Figure 1 shows the marketplace to be discussed in this 

paper. Suppose that the retailer has two types of items to 
sell: item of type a and item of type b . Suppose that there 
are two categories of agents for buyers in the Marketplace. 
An agent of category A is only interested in buying one item 
of type a . An agent of category B is only interested in buy­
ing one item of type b . Each agent represents one buyer 
and receives instructions from the buyer on what item to 
buy. Before an agent enters the marketplace, it needs to 
register and obtain authorizations from the retailer. Then it 
can interact with other agents in the marketplace and per­
form purchase related activities. In the rest of this paper, we 
assume that in the marketplace there arc in total mA of A 
type agents and mB of B type agents registered. 

Figure 1: The combinatorial market place discussed in this 
paper. The small circles represent agents. The character con­
tained in a circle represents the item in which the agent is 
interested. 

There are many ways the retailer may sell its items. It 
might simply sell an item to a buyer's agent when the agent 
requests the item. However, retailer can save resources if it 
can sell items in bundles composed of the two types of 
items. The retailer can give a cheaper price for each item in 
the complementary bundle and at the same time still obtain 
a higher utility value. In order for agents benefit from bun­
dles, they need to form coalitions. We assume that the 
agents and the marketplace are fully connected. However, 
agents do not have a global knowledge of the whole situa­
tion, and their decisions are based solely on local condi­
tions. 

Now we discuss the dynamics of the changes of coali­
tions in the marketplace. A single agent might join a coali­

tion in order to obtain a discounted price. Since the agent 
cannot have a global view of the whole marketplace at a 
given time instant, the coalition chosen might not be the 
best one for the agent at that time. An agent may also leave 
a coalition to look for better opportunities. We assume that 
the retailer is able to monitor the coalitions of the whole 
marketplace and to decide when to perform the combinato­
rial transactions. Our goal is to study the dynamics of the 
coalition formations in the marketplace and the effective­
ness of the marketplace. 

We first define the price for a given item associated with 
a given coalition. We consider a coalition formed by nA of 
type A agent and nB of type B agent. If all of the agents in 
this coalition voted to perform the coalition transaction (i.e., 
to buy their items in a bundle), then we use to 
denote the price the seller prefers to set for an item of type A 
and to denote the price the seller prefers to set 
for an item of type B. Suppose that the retailer set the prices 
as follows: 

Here and are the base prices for item A and 
item B respectively. The real price for an item is deter­
mined hy the size of the coalition. 

and are the price reduction rates due to 
grouping for item of type A and for item of type B respec­
tively. In a coalition, as the number of items of a given type 
increases, the price per item of that type decreases. 

The variable r0 gives the preferred ratio of the 
two types of items in a bundle for the retailer. The term 
gives the price penalty rate for item of type a if the ratio of 
the items in the coalition does not match the retailer's pre­
ferred ratio. Similarly, the term gives the price penalty 
rate for item of type b . This kind of combinatorial prefer­
ence is fairly common in traditional commerce as well as in 
e-commerce. For example, a furniture retailer may prefer to 
sell a sofa and the accompanying coffee table as a set, rather 
than sell each piece separately. In this case, the price for a 
complete bundle (one coffee table and a sofa) may be 
cheaper than the sum of the prices for the components. The 
ratio of the number of coffee tables to the number of sofas 
is important, since the retailer might prefer the ratio to be 1 
if there is equal number of table-sofa pairs in the storage. In 
any case, buyers who are interested in separate pieces can 
form coalitions to save money. This kind of coalition form­
ing process might be time consuming in traditional com­
merce, because location and time constraints make it diffi­
cult to find complementary buyers. However, it will be to­
tally different in an agent-mediated e-commerce combinato­
rial marketplace. The sheer interconnectedness of the World 
Wide Web will enable the e-commerce agents to work at 
any time from anywhere in cyberspace. Furthermore, agents 
can negotiate instantly provided that the requirements of the 
task can be clearly specified, and the interaction protocols 
can be clearly defined among agents and between agents 
and the corresponding enterprise system (as is assumed in 
this paper). 
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In order to study the dynamics, we use to 
represent the number of coalitions composed by n A of type 
A agents and nB of type B agents at time Different 
types of coalitions can be represented by a lattice as shown 
in Figure 2. Where represent the value of 

Figi4re 2. The coalition lattice in a marketplace that con­
tains 5 A type agents and 5 B type agents. 

The number of different types of coalitions will change 
while the system approaches equilibrium. Our goal is to 
study the value of and other associated indica­
tors of the effectiveness ot the combinatorial markets as 
time evolves. 

We assume that for a given coalition, at most one agent 
can join or leave at a time. Thus, the only translation in the 
coalition lattice is between neighbors as illustrated by the 
following: 

When a category A agent joins a coalition of type 
, this coalition becomes a coalition of type 

. When a category A agent leaves a coalition 
of type this coalition becomes a coalition of type 

Similar analysis can be applied to type B 
agent. 

Figure 3. Coalition transitions 

Figure 3 shows the transitions that could happen with re­
spect to coalition type when it is within the lat­
tice. Please note that when is at the boundary of 
the lattice, some of the transitions in Figure 3 will not hap­
pen. The dynamics of the transition can be characterized by 
the following equation (for all the pairs, except 
(1,0) and (0,1)): 

Here, Kt and Kt are rate constants, which depend on 
the price change for each transition. In the above equa­
tion, the total number of agents of the market is con­
served during the dynamic process. The single agent pool 
serves as the source sink of the system. Please note that 

The term gives the rate 
for a type A agent joins a coalition of category 

The term gives the rate when a 
category coalition becomes a category 

coalition. In other words, it gives the rate for a 
type A agent leaves a coalition. 

The term _ gives the rate for a 
type A agent joins a category coalition. In 
other words, it gives the rate for a category 
coalition becomes a category coalition. 

The term gives the rate for a type A 
agent leaves a category coalition. In other 
words, it gives the rate for a category coalition 
becomes a category coalition. 

Other terms in the above equation arc related to type B 
agent and can be similarly explained. 

When the value of is outside the boundary of 
the lattice, the corresponding term in the above equation 
will equal to 0 . In other words, in the above equation, we 
set , or 

Now, we need to study the rate constants involved in the 
dynamic equation. 

One simple model would be to let all of the escape rates 
be the same (i.e., the rate at which an agent leaves a coali­
tion, a.k.a., the opportunist's rates): 

We assume that the rate an agent joins a coalition is 
closely related to the changes in price for this coalition. Let 
the change in price serves as energy in Boltzman distribu­
tion. 

K] is a constant that is related to the transition of a coali­
tion from . Thus, this constant is 
only related to type A agent. 
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At point we have the price for a type A 
agent: 

At point , we have the price for an A type agent: 

The price change is: 

Thus, we can set the transition rate as: 

Here, K0 is the base rate in the above equations. 
Similarly, we can set other rates: 

To analysis the dynamics of the above system, we can 
study, under different values of parameters, the evolution of 

i and other indicators of the marketplace as a 
function of and at the equilibrium state. Based on the 
calculated derivatives, we can update a coalition using the 
following formula (for all the pairs, except (0,1) 
and (1,0) ): 

During the update process, the time step should be 
adaptively selected such that it is small enough and the up­
dated results for any coalitions should not be less than 0 . 

The updated value of and 
can be obtained from the following equa­

tion after all the other are updated: 

3 Simulation Results 
We have conducted various experiments to test the market­
place. At first, we set all the values of equals 
to 0, except that and = 
In our experiments, we set , and 
Please note that and have no influence on the 
derivatives. 

In the first set of experiments, we study the evolution of the 
coalitions in the market as a function of time. Table 1 shows 
the parameter values that are used. 

Table 1 
Figure 4 (a), (b), (c), and (d) show the evolutions of coali­
tions as a function of the iterations. Notice that at beginning, 
most of the agents are in coalitions that contain small num­
ber of type A and type B agents. Then, as a result of dy­
namic movements of agents, the number of coalitions with 
small size decreases and the number of coalitions with large 
size increases until equilibrium is reached. Further note that 
the distribution of A type agents and B type agents is not 
symmetric. The reason for this is that the ratio r0 = 0.5, 
rather than r0 = 1 . Thus coalitions with twice as many A 
agents as B agents receive the least price penalty. Although 
intuitively most of the agents should stay in large coalitions 
at equilibrium, Figure 5 shows that this is not the case. This 
result is different from that of (Lerman et al., 2000) in 
which most agents join the largest coalitions. One reason for 
this difference is that the price settings in combinatorial 
markets are quite different from those in non-combinatorial 
markets. Our situation is much more complex, and the coa­
lition size is only one of the factors that influence the 
movements of agents. The escape rate is a parameter that 
has a bigger effect on the size distribution of coalitions. The 
greater the escape rale, the more the agents escape from the 
larger coalitions. Compare Figures 6(a), 6(b), and 5(d), we 
can notice that the number of the small sized coalitions is 
bigger when the escape rate is larger. 

(a) Iteration = 10 (b) Iteration - 10000 
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(c) iteration^ 100,000 (d) equilibrium state. 
Figure 4. Coalitions change as a function of iterations. 

(a) Number of A agents (b) Number of B agents 
Figure 5. Number of agents in different coalitions at equilib­
riums state. Parameters are same as in Table 1, except that 
K , =0.005, AP, =0.001. 

Figure 6. The influence of the escape rale. Al l the parame­
ters are the same as in Table 1, except the escape rates. 

Figure 7 shows the value of entropy as a function of the 
iterations. We use the same values for parameters as those in 
Table 1 , except t h a t a n d  
set the initial prices as and 
Please note that these initial prices are set to make sure that 
all the prices are positive for any coalitions at any given 
moment. 

To calculate the entropy with respect to the number of 
coalitions of various sizes, we first calculate the probability 
that a given sized coalition within the population of all the 
coalitions: 

The entropy with respect to coalition sizes is given by: 

Similarly, the entropy for type B agent within different coali­
tion sizes can be calculated as: 

We can notice that the values of both entropies increase 
with the iteration until the system reaches its equilibrium. 

(a) Coalitions (b) Type B Agents 

Figure 7. The entropies for (a) coalitions and (b) the num­
ber of B type agents in coalitions. 

The average price per type A item and the average price 
per type B item are principal indicators of the effectiveness 
of the proposed combinatorial marketplace. These average 
prices can be calculated with the following formulae respec­
tively. 

Figure 8 and Figure 9 show the evolution of the average 
prices of a type A item and that of a type B item. We can 
notice that the average prices keep decreasing until the sys­
tem reaches the equilibrium. This demonstrates the advan­
tages of using agents in combinatorial markets. 

Figure 8. The average price for a type A agent 

Figure 9. The average price for a type B agent. 
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4. Conclusions References 

In this paper, we propose a theoretical framework for coali­
tion formation in combinatorial transactions. A novel phys­
ics-based dynamic equation is proposed to capture the es­
sence of the movements of agents among different sized 
coalitions as driven by the price differences of these coali­
tions and by the opportunities of joining better coalitions. 
We perform simulation experiments to evaluate the pro­
posed combinatorial marketplace and the results show that 
the marketplace can reduce the average prices for the 
buyer's agents if opportunities are fully explored. Our ap­
proach towards combinatorial trading is different from pre­
vious work because we address the issue from a macro­
scopic point of view. 

Our framework is generic, although we make many simpli­
fying assumptions in our current proof of concept model so 
as to make the simulations easier. We are exploring many 
more issues with our current model as a starting point. In 
our model, the rate at which an agent joins a coalition de­
pends only on the price reduction for that agent. Any re­
quest to join a coalition is accepted. Another way of model­
ing the market is to emphasize the coalition an agent is 
about to join. For example, the rate can be determined by 
considering how the changes in coalition size change the 
prices for the "old" members of the coalition, or the total 
price for the "old" members of the coalition etc. In our cur­
rent model, we simply assume that the escape rates are the 
same for all the agents. It is interesting to study the situation 
when the escape rates depend on different types of agents 
and different sizes and structures of the coalitions. In our 
current model, the ratio of the two types of agents within a 
coalition is an important factor in determining the price. It 
is worth studying the coalition market without perfect ratio 
of goods. In our current model, the price given by the re­
tailer is fixed. It would be interesting to study the situation 
where the retailer can perform dynamic pricing according to 
its knowledge of the coalitions. Our model addresses a very 
simple combinatorial market where there is only one retailer 
and two different products. It would be interesting to study 
the dynamic behaviors in a marketplace where there are a 
large number of retailer's agents that might form coalitions 
to offer complementary products and a large number of 
buyer's agents that might form coalitions to explore the 
benefits of grouping. It would also be interesting to study 
the coalition dynamics of open combinatorial markets when 
agents are allowed to flow in and out of the marketplace. It 
is important to study the qualitative behaviors of the pro­
posed model throughout in the parameter space. The simula­
tion based on our current simple model already shows some 
interesting phenomena. We are convinced that the behaviors 
of the system will be quite rich when more complex models 
are used. 
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