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MUSCLE HYPERTROPHY: A NARRATIVE REVIEW ON TRAINING 1	

PRINCIPLES FOR INCREASING MUSCLE MASS 2	

Louis P Howe, MSc., BSc, Dr Paul Read, Dr Mark Waldron 3	
 4	

ABSTRACT 5	

Developing muscle cross sectional area has the potential to enhance performance for 6	

many athletes. As emerging evidence challenges traditional beliefs regarding the 7	

prescription of hypertrophy focused training programs, this review provides an 8	

overview of the current literature relating, specifically, to programming variables. 9	

Evidence-based recommendations are provided for the design of effective resistance 10	

training programs, with the goal of increasing an athlete’s skeletal muscle mass. 11	
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INTRODUCTION 1	

Within a strength and conditioning coach’s practice, the development of physical 2	

qualities that result in improvements in athletic performance are arguably at the heart 3	

of the role. One such physical quality is maximal force development as it relates to 4	

the constraints of each specific sport skill (86). Although neurological factors 5	

primarily contribute to the development of force, structural adaptations following 6	

long-term strength training may also influence force generation capacity (19), though 7	

the role of muscle hypertrophy is likely to be exaggerated for increasing maximal 8	

strength (50). Nonetheless, increases in muscle mass are typically desirable in 9	

instances where athletes are required to produce large forces against their external 10	

environment. Indeed, cross-sectional area of the limbs has been associated with both 11	

horizontal and vertical power production in elite athletes (94). This concept provides 12	

the rationale for developing the skeletal muscular system, prior to neural factors, as 13	

part of a ‘phase potentiation periodisation model’ (86). Therefore, increases in muscle 14	

mass can, in many circumstances, support athletic development to a point. 15	

 16	

Alongside performance considerations, increasing muscle mass may also be required 17	

following injury occurrence. During the rehabilitation process, muscle atrophy is a 18	

key concern, secondary to unloading (40). In cases where muscle atrophy is 19	

heightened due to immobilisation, the rehabilitation time has been suggested to be 20	

extended (8). Therefore, recovery of lean muscle tissue may be a significant objective 21	

that should be achieved in order to restore the athlete to full function following injury. 22	

 23	

Three proposed primary mechanisms are responsible for training adaptations, 24	

including: mechanical tension, metabolic stress and muscle damage (66). Mechanical 25	
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tension refers to the loading of muscle and is proposed to disrupt skeletal muscle 1	

structures, compromising the integrity of individual muscle fibres and leading to 2	

cellular responses via stimulation of the mTOR pathway (38). Local metabolic stress 3	

involves the accumulation of metabolic by-products, such as blood lactate (B[La]) 4	

and hydrogen ions ([H+]), caused by a cumulative demand on fast glycolysis (32, 90). 5	

It is thought that this metabolic perturbation has the potential to stimulate anabolism 6	

through mechanisms associated with increased local release of myokines, greater 7	

reactive oxygen species production, cell swelling and acute hormonal responses (67). 8	

Lastly, muscle damage is theorised to lead to hypertrophic responses (37), whereby 9	

the inflammatory response and upregulation of muscle protein synthesis to exercise 10	

induced muscle damage results in greater muscle size. For the interested reader 11	

seeking further understanding of each mechanism and the underlying physiological 12	

adaptations, please refer to Schoenfeld (66). 13	

 14	

Traditional beliefs of the most effective strategies for the development of lean muscle 15	

tissue have recently been challenged (17). This article reviews the current body of 16	

literature related to training considerations for increasing muscle hypertrophy in 17	

young healthy adults. Where appropriate, this review will indicate the training status 18	

of the subjects used for each investigation. As such, this will allow coaches to 19	

adequately interpret the discussion in order to suitably apply the findings in their own 20	

strength and conditioning practice.  21	

In particular, this article discusses the following foundational factors that should 22	

influence a coach’s decision-making when designing resistance training programs for 23	

increasing muscle size: 24	

• Training volume 25	
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• Load 1	

• Training frequency 2	

• Training to momentary muscular failure 3	

• Exercise variation 4	

• Contraction type 5	

• Exercise order 6	

• Repetition tempo 7	

• Inter-set recovery 8	

 Evidence-based recommendations will be provided for the design of effective 9	

resistance training programs, with the goal of increasing an athlete’s skeletal muscle 10	

mass. 11	

 12	

This article does not describe, with any detail, the physiological mechanisms for 13	

increasing in muscle mass, nor does it examine the evidence relating to specific 14	

training techniques aimed at increasing muscle hypertrophy. Likewise, while a variety 15	

of nutritional and lifestyle factors can be manipulated to augment the effects of 16	

hypertrophy training (63), these will not be discussed herein.  17	

 18	

TRAINING VOLUME 19	

Resistance training volume, described as the amount of work completed for any given 20	

unit of time, is a key variable for consideration in the pursuit of muscle hypertrophy. 21	

Much like increases in maximal strength (44), muscle hypertrophy is enhanced 22	

following high-volume longitudinal programs, particularly when multiple sets of 23	

exercise are utilised, rather than single set routines (45). This evidence has been used 24	

to support the current American College of Sports Medicine (ACSM) 25	
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recommendations, which suggest prescribing multiple sets for advanced lifters in 1	

order to increase muscle hypertrophy (4). Acutely, significant increases in muscle 2	

protein synthesis have been observed following high volume training in comparison 3	

to low volume sessions (14), thus reinforcing this recommendation.  4	

 5	

Although acute responses are not linearly accompanied by long-term increases in lean 6	

muscle mass (53), numerous longitudinal studies have demonstrated that high volume 7	

training facilitates muscle hypertrophy (20, 58, 59, 62). Using ultrasound to measure 8	

elbow flexor and extensor muscle thickness, Radaelli et al. (59) showed that five sets 9	

of exercises per training session resulted in significantly greater upper arm 10	

development when compared to one and three set routines, across a six-month 11	

training period. This increase in muscle mass was accompanied by significantly 12	

superior gains in five repetition maximum (RM) loads for the bench press and lat pull 13	

down following the high volume intervention (59). 14	

 15	

While findings of higher volumes leading to superior gains in muscle growth are not 16	

consistent throughout the literature (11, 51), a recent meta-analysis identified a dose-17	

response relationship between training volume and muscle hypertrophy (73). For 18	

example, high weekly volumes (>10 total sets per body part, per week) were 19	

associated with greater increases in muscle mass than lower volumes (< 5 sets, per 20	

body part, per week), with an effect size of 0.241 (73). Schoenfeld et al. (73) 21	

concluded that higher volume training produces greater gains in muscle mass than 22	

lower volume training.  23	

 24	
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The mechanisms underlying the relationship between high training volume and 1	

increased muscle mass are potentially linked to the prolonged metabolic stress (34). A 2	

greater number of total sets per body part increases the total duration placed on the 3	

relevant energy systems and variety of muscle fibres during training. However, if 4	

prolonged metabolic stress is responsible for increases in muscle hypertrophy 5	

following high volume routines, then coaches should carefully manage the types of 6	

exercises that comprise their program, particularly if high-load exercises are included. 7	

For example, utilisation of drop sets has the potential to heighten the accumulation of 8	

metabolic by-products by placing greater demand on the fast glycolytic energy 9	

systems (33). If a high number of sets of this type of training were to be prescribed 10	

across sessions in order to increase volume, then an athlete may be taken beyond their 11	

recovery threshold, resulting in a blunting of the hypertrophy response (28). 12	

 13	

It is important to emphasise that the relationship between volume and muscle growth 14	

is unlikely to be linear. That is; continual increases in training volume would 15	

inevitably lead to a plateau in the development of muscle mass. This concept is 16	

supported by the recent findings of Amirthalingham et al (3). In their investigation, no 17	

significant difference in muscle hypertrophy was found between subjects who 18	

performed either 5 sets of 10 repetitions or 10 sets of 10 repetitions over a six-week 19	

period (3). Coaches should appreciate each individual athlete’s recovery capacity 20	

when prescribing training programs, with excessive volumes leading to extended 21	

overreaching or, perhaps overtraining syndrome (83). The net effect of this would be 22	

a reduction in the capacity for anabolic processes due to a heightened catabolic status 23	

and increased protein metabolism (46). In this sense, the relationship between volume 24	

and hypertrophy training is suggested to follow an inverted-U curve (71). As each 25	
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individual possesses their own capacity to recover from a given amount of work, 1	

strength and conditioning coaches should use appropriate testing and monitoring tools 2	

to identify thresholds which maximize increases in muscle mass, while maintaining 3	

the athlete’s health.  4	

 5	

LOAD 6	

The manipulation of load during resistance training, which is typically presented as 7	

the percentage of maximal load that can be used for any given movement, has been 8	

proposed as a vital factor in maximising muscle hypertrophy (66). This is likely to 9	

relate directly to the mechanism of ‘mechanical tension’, as increased load results in 10	

an intensification of tension on the musculotendinous unit. However, loads exceeding 11	

85 % 1RM, while maximising mechanical tension, fail to provide adequate stress to 12	

the fast glycolytic system due to reduced time under tension (60). Therefore, as a 13	

compromise in emphasising both mechanical tension and metabolic stress 14	

simultaneously, moderate loads (70-85 % 1RM) are traditionally recommended (4).  15	

 16	

It has been suggested that high-load training (>65 % 1RM) leads to superior gains in 17	

muscle mass due to the recruitment and fatigue of higher threshold motor units (43, 18	

57). This outcome might be desirable among athletes, as hypertrophy of fast-twitch 19	

fibres is known to be much greater than slow-twitch muscle fibres (1, 89) and fast-20	

twitch fibres demonstrate higher velocity contractions (97). Fry (29) showed that 21	

programs incorporating loads above 50 % 1RM led to greater fast-twitch fibre 22	

hypertrophy compared to slow-twitch fibres. Furthermore, during short duration 23	

isometric contractions with low-load (30-45 % 1RM), glycogen depletion is non-24	

existent in type IIX fibres but rises significantly with increased resistance (91). 25	
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 1	

Although these findings suggest that type II fibres are stimulated to a greater degree 2	

when exposed to heavy loading, it has been suggested that low-load training also 3	

recruits fast-twitch muscle fibres, providing that the working set is continued close to 4	

volitional fatigue (15). When high-load training has been directly compared to low-5	

load, Mitchell et al. (52) found no significant difference in fibre-type specific 6	

hypertrophy. However, this study has been suggested to be underpowered (57), 7	

consequently lacking the sensitivity required to establish a difference in fibre type 8	

hypertrophy between loading strategies. As this investigation did establish a non-9	

significant difference in type I hypertrophy between high- and low-load training (17 10	

vs. 30%, respectively) (52), it may be that the lack of statistical power prevented the 11	

identification of differences. Mitchell et al. (52) used a sample size of 12 participants 12	

per group, which would achieve a poor statistical power of 0.17, based on our own 13	

post-hoc analysis, assuming an alpha level of 0.05 and an effect size 0.3 (d). It is 14	

important for coaches to note that this investigation demonstrated very little 15	

difference between high- and low-load training for type II fibre hypertrophy (16 vs. 16	

18%, respectively) (52). Further evidence is required to establish whether load 17	

determines fibre-type hypertrophy. Of course, coaches shouldn’t underestimate the 18	

importance of recruiting a wide range of motor units through the prescription of high 19	

and low loads. Indeed, in the development of muscle cross sectional area, which is 20	

determined by the increase in myofibrillar proteins and thus muscle fibre diameter, a 21	

reliance upon the hypertrophy of type I fibres also exists. Exercises that activate a 22	

greater proportion of type I fibres would, therefore, be of equal use in maximising 23	

hypertrophic adaptation.     24	

 25	



	 9	

When considering whole muscle hypertrophy, a meta-analysis by Schoenfeld et al. 1	

(76) showed high-load training (> 65 % 1RM) to be no more effective than low-load 2	

training (<60 % 1RM) for increasing skeletal muscle mass. However, there was a 3	

non-significant trend in favour of high-load training (p = 0.076), which might be due 4	

to the low number of studies investigating the effects of training load on muscle 5	

hypertrophy. The use of low-load training strategies is supported by reports that 6	

training at 30 % 1RM resulted in greater acute muscle protein synthesis relative to 7	

high-load training (90 % 1RM), providing low load training is continued to failure 8	

(15). Additionally, Mitchell et al. (52) showed that a low-load training (30 % 1RM) 9	

regime resulted in similar increases in whole muscle cross-sectional area when 10	

compared to high-load training (80 % 1RM) over a 10-week period. Furthermore, 11	

using a moderate loading scheme (8-12RM) or a variety of training loads (2-4RM, 8-12	

12 RM and 20-30RM) across a training week has been shown to result in similar 13	

increases in muscle mass following an eight-week intervention (72). 14	

 15	

Therefore, when coaches are prescribing a training stimulus for muscle hypertrophy, 16	

high- or low-loads may be selected. Traditionally, loads > 65 % 1RM have been 17	

prescribed for hypertrophy programs, which might not be necessary. This information 18	

might also be useful for injury rehabilitation, where low-load training can be an 19	

effective method to increase muscle mass without the augmented forces associated 20	

with high-load training, leading to reduced joint loads. 21	

 22	

While low-load training might be equally as effective for muscle hypertrophy, 23	

coaches should not overlook the superior strength adaptations that high-load training 24	

provides in comparison to low-load training (10, 65, 55, 68). These differences are 25	
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explained by the principle of training specificity, whereby the all-out efforts required 1	

during high-load training produces maximal force, whereas low-load training requires 2	

only low-to-moderate forces in a fatigued state (18). As such, high-load training that 3	

results in the accumulation of considerable training volume may allow for increased 4	

muscle strength alongside substantial increases in muscle mass. Such adaptations 5	

have been defined as functional hypertrophy, where increases in muscle mass and 6	

maximal strength occur simultaneously (64).  7	

 8	

TRAINING FREQUENCY 9	

Training frequency is defined as the number of training sessions per unit of time. 10	

From the perspective of increasing an athlete’s muscle mass, training frequency 11	

relates directly to training volume. During a single training session, the capacity to 12	

recover from the work performed is limited. Therefore, for high levels of training 13	

volume to be achieved, multiple sessions are likely to be required. As training volume 14	

is a key factor in muscle growth (73), optimising training frequency will allow for 15	

volume to be maximized without excessive fatigue being incurred. 16	

 17	

In establishing the optimal training frequency for muscle hypertrophy, Wernborn et 18	

al. (95) showed that two-to-three training sessions per week was optimal. This is 19	

supported by a recent meta-analysis, identifying that two weekly training sessions for 20	

the same muscle group led to significantly greater increases in muscle mass compared 21	

to one or three sessions per week (74). These findings are in contrast to the traditional 22	

practices of some bodybuilders, who are reported to train a single muscle group once 23	

per week (36). However, it should be noted that both Schoenfeld et al. (74) and 24	
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Wernborn et al. (95) included both untrained and trained subjects in their analysis, 1	

potentially impacting the application for athletic populations. 2	

 3	

For the majority of resistance-trained athletes, it is inevitable that the training volume 4	

per session and training frequency are inversely related, such that an increase in 5	

training frequency leads to a reduction in volume per session. In the case of a high 6	

frequency training program, where a muscle group is trained on multiple occasions, 7	

the training volume for each session should be lower in order to prevent excessive 8	

weekly training volumes. High training frequency should be periodized strategically 9	

so that adequate recovery is provided between sessions. Indeed, training the same 10	

muscle group before protein synthesis has returned to homeostasis may impair the 11	

muscle hypertrophy process (49); thus, 48 to 72 hours’ rest between training sessions 12	

for the same muscle group may be required in order to optimise the training response 13	

(74).  14	

 15	

Although this general recommendation is likely to be appropriate for many athletes, it 16	

has been recently suggested that higher training frequencies may be more beneficial 17	

for trained individuals in stimulating greater muscle hypertrophy (23). As trained 18	

individuals adapt to resistance training in the long-term by reducing the muscle 19	

protein synthesis response (22), distributing training volume across a higher 20	

frequency has the potential to increase the total time spent in a positive protein 21	

balance by an athlete (23). Such approach would require a large reduction in training 22	

volume per session in order to avoid the accumulation of excessive fatigue. Dankel et 23	

al. (23) suggests strategies of high training frequency may be less than optimal for 24	

untrained individuals, as the subsequent bouts of resistance training would likely 25	
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interfere with the increase protein synthesis response for the preceding training 1	

session. While this hypothesis is supported mechanistically, at present little evidence 2	

exists to confirm this theoretical model and future investigations are required. 3	

 4	

TRAINING TO MOMENTARY MUSCULAR FAILURE 5	

Training to momentary muscular failure results in the inability to produce the 6	

necessary force to lift a load through the concentric phase (66). When training to 7	

failure, it is hypothesised that maximal motor unit recruitment is achieved resulting in 8	

the fatigue of a greater number of muscle fibres (16, 98), in turn leading to a greater 9	

hypertrophic response. Performing repeated muscle contractions of a fixed load (i.e. a 10	

set) to failure is associated with progressive increases in both the perception of effort 11	

(5) and muscle activation levels (obtained from surface EMG) (87). These findings 12	

infer an increase in the recruitment of high-threshold motor units (87). In support of 13	

this, Burd et al. (14) reported no differences in muscle adaptation in low- or high-load 14	

training strategies, providing that each set was completed to failure. However, it is 15	

difficult to come to such conclusions where training volume is not equated.  16	

 17	

Goto et al. (34) investigated the effects of training to failure on muscle hypertrophy in 18	

a twelve-week study, where participants were volume-matched and assigned to either 19	

a group that trained to failure or a group that incorporated an intra-set rest preventing 20	

failure from occurring. With volume equated, the “no-rest” group using repetition 21	

maximums achieved significantly greater muscle hypertrophy in the quadriceps, along 22	

with higher levels of maximal strength (34). This is similar to the findings of Schott 23	

(78), who also identified training to failure induced superior hypertrophy adaptations 24	

compared to finishing a set prior to failure. 25	
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 1	

Although these findings indicate the positive effects of training to failure, caution 2	

should be taken with routinely prescribing this approach. Sundstrup et al. (87) 3	

reported that complete concentric failure was not required in order to achieve full 4	

muscle activation using EMG analysis, with a plateau occurring during the final 3-5 5	

repetitions with a 15 RM load. This is an important consideration, as routinely 6	

performing resistance training to failure may produce symptoms of overtraining, and 7	

subsequent threats to the anabolic status of athletes (39). As many of the studies 8	

evaluating the benefits of training to failure are of relatively short duration, the long-9	

term implications are yet to be elucidated. Such findings have been identified in 10	

training programs for maximal strength (25). Therefore, it is recommended that 11	

practitioners strategically expose their athletes to training that induces failure to 12	

prevent the occurrence of overtraining.  13	

 14	

EXERCISE VARIATION 15	

Traditionally, bodybuilders tend to subscribe to the notion that broad exercise 16	

variation is required in order to maximize muscle hypertrophy (36). A proposed 17	

rationale is that muscles such as the pectoralis major (47) and trapezius (7) perform 18	

different movements of the same joint segment via the functional subdivisions of each 19	

muscle (6).  As such, manipulating exercises has the potential to target large sections 20	

of the muscle. For example, in the case of the pectoralis major, utilising a 15° decline 21	

during the bench press results in greater EMG activity of the sternal fibres relative to 22	

the clavicular fibres (47). Therefore, in order to overload specific portions of different 23	

muscles, a wider variety of exercises is essential to recruit and fatigue all muscle 24	

subdivisions. 25	
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 1	

The above concept may be extended to muscles that possess numerous fibres 2	

orientated at a variety of angles between the origin and insertion. For example, both 3	

the long head and short head of the biceps brachii musculature are architecturally 4	

classified as fusiform (31); the biceps brachii is not functionally compartmentalised 5	

like the pectoralis major muscle. By manipulating shoulder and elbow positioning, the 6	

biceps brachii demonstrates a region-specific muscle activation strategy during 7	

supination (12). Furthermore, during elbow flexion, the biceps brachii does not 8	

uniformly shorten, suggesting that separate muscle fascicles contract concentrically at 9	

varying rates thus manipulating the range in the work produced for each muscle fibre 10	

(31). 11	

 12	

Non-uniform muscle fibre recruitment has also been shown to occur in the hamstrings 13	

musculature, with EMG activity varying between the lower and upper fibres, 14	

depending on whether the hamstrings were required to flex the knee or extend the hip 15	

against resistance (69). This finding was supported by the work of Mendez-16	

Villanueva et al. (54), who used functional magnetic resonance imaging to 17	

demonstrate regional differences in muscle activation of each head of the hamstrings 18	

during a variety of posterior chain exercises. Likewise, during resisted elbow 19	

extensions, multi-joint and single joint exercises have been shown to elicit regional 20	

differences in muscle activation. For example, single-joint elbow extension exercise 21	

has been shown to increase activation of the distal portion of the triceps brachii (92). 22	

Chronic adaptations to these exercises led to greater increases in cross-sectional area 23	

in the distal region of the muscle after a 12-week overloaded intervention program 24	

(92).  Similarly, Wakahara et al. (93) showed that a multi-joint elbow extension 25	
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exercise (dumbbell bench press) increased muscle activation levels of the middle and 1	

proximal region of the triceps brachii, leading to greater growth in these areas. This 2	

suggests that in order to maximize hypertrophic adaptation, it is necessary to stress 3	

the muscle across its different portions (proximal-distal) using a variety of exercises. 4	

 5	

Fonseca et al. (26) showed that changing exercises within a 12-week period was more 6	

effective for increasing muscle strength and hypertrophy compared to solely 7	

manipulations in training load. Within this investigation, hypertrophy of the vastus 8	

medialis and rectus femoris was more for subjects who varied exercises over three-9	

week cycles, compared to subjects who used the same exercise throughout (26). This 10	

evidence supports the concept of utilising numerous exercises in order to fully exploit 11	

adaptations of muscle hypertrophy. 12	

 13	

One potential mechanism for the regional differences in hypertrophy may be the 14	

compartmentalisation of skeletal muscle (6). Within the neuromuscular system, 15	

sections of the muscle are innervated by specific motor units that are responsible for 16	

orchestrating the contraction of their respective fibres (6). Indeed, even fusiform 17	

muscle fibres terminate intrafascicularly (31, 96), meaning that there is potential for 18	

various neuromuscular compartments to exist within a given muscle. As fibre-type 19	

distribution inside muscles is also region specific (47, 84), intramuscular differences 20	

are likely to exist relative to function. Therefore, resistance training targeting 21	

preferential hypertrophy of fast-twitch fibres with strategies such as eccentric-only 22	

training, may also lead to non-uniform hypertrophy (discussed in the following 23	

section). It is likely that each muscle contains multiple neuromuscular compartments 24	

that can be selectively overloaded through varying exercise selection. 25	
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 1	

CONTRACTION TYPE 2	

Eccentric muscle contractions increase the amount of mechanical stress on the 3	

musculotendinous units (7). While EMG amplitude is lower during eccentric 4	

contractions, fast-twitch fibres are preferentially recruited over their slow-twitch 5	

counterparts, leading to greater tension per muscle fibre and a bias toward type II 6	

fibre damage (79).  The greater muscle damage incurred promotes an adaptive 7	

response in the fast-twitch fibres, which possess greater potential for growth (1).  8	

 9	

Traditional methods to determine loads during a program typically use the concentric 10	

strength of the athlete (i.e. percentage of 1 RM). However, because eccentric strength 11	

can be as much as 45 % greater than concentric strength (41), it is likely that eccentric 12	

training is rarely exploited to its full potential. Since, submaximal eccentric training 13	

does not acutely raise muscle protein synthesis when compared to concentric training, 14	

the downstream effects on muscle hypertrophy are likely to be limited if traditional 15	

approaches to quantify load are used (21). However, when eccentric training is 16	

performed with maximal resistance, muscle protein synthesis is significantly greater 17	

than load-matched concentric training (56). When eccentric training is applied over a 18	

number of weeks, muscle hypertrophy adaptations are shown to be superior to that of 19	

concentric training (61). Therefore, supra-maximal eccentric training is likely to 20	

induce greater hypertrophic adaptations, assuming that the necessary recovery is 21	

provided. However, this is not consistent within the literature, with some studies 22	

identifying no difference between modes of contraction (28). This is potentially due to 23	

difficulties in matching volume-load between conditions, with eccentric training 24	

requiring higher loads. 25	
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 1	

In a recent meta-analysis, Schoenfeld et al. (77) identified a non-significant trend that 2	

eccentric-only training induced greater hypertrophic adaptations than concentric-only 3	

concentric training for inducing hypertrophic gains (p=0.076). Mean effect sizes for 4	

muscle growth following eccentric-only and concentric-only training were 1.02 and 5	

0.77 respectively, with an effect size difference of 0.27. The authors propose that due 6	

to many of the studies included for analysis matching the total repetitions performed 7	

and not total work, the higher amount of work completed was likely to be a major 8	

influence on these findings (77). 9	

 10	

A further consideration with eccentric training is the identification of region-specific 11	

hypertrophy. Franchi et al. (27) showed that although muscle hypertrophy of the 12	

vastus lateralis was equal between concentric and eccentric training, mid portion 13	

hypertrophy was higher in the concentric group, whereas the eccentric group 14	

experienced greater growth in the distal division. This may be due to the change in 15	

muscle architecture, secondary to the activation of altered molecular responses, 16	

following a concentric or eccentric-only training intervention (27). Eccentric-only 17	

resistance training leads to increases in fascicle length, while concentric-only training 18	

promotes greater pennation angles, indicating a higher number of sarcomere’s in 19	

parallel (27).  This has the potential to alter the force-velocity relationship of any 20	

given muscle, with an increased fascicle length (sarcomere’s in series) resulting in 21	

superior shortening velocities (19). Conversely, a muscle with a larger pennation 22	

angles has the capacity to create higher levels of force due to an increased number of 23	

sarcomeres in parallel (19). 24	

 25	
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EXERCISE ORDER 1	

It is generally recommended that multi-joint exercises, relying on work being 2	

produced by large muscle groups, should be performed in the initial stages of a 3	

training session (2). As more repetitions can be completed with any given load earlier 4	

in the training session (82), greater long-term accumulation of training volumes will 5	

occur in response to exercises that are performed during these periods (81). While this 6	

is dependent upon the design of the training session, it is, therefore, possible that 7	

using multi-joint exercises at the start of a training session will result greater 8	

hypertrophic adaptations in larger muscle groups. 9	

 10	

Although this provides one reason to include multi-joint exercises earlier in the 11	

training session, little evidence exists to support this hypothesis. This is mostly due to 12	

limited amount of studies investigating the relationship between chronic structural 13	

adaptations and exercise order (81). Of the research that does exist, Simão et al. (80) 14	

and Spineti et al. (85) both showed that ordering training sessions such that single-15	

joint elbow extension and flexion exercises were performed before the bench press 16	

and lat pull-down, resulted in increased triceps muscle volume when compared to the 17	

reverse order (effect size = 2.07 and 1.08 vs. 0.75 and 0.40). It should be noted that no 18	

difference was seen for the biceps musculature between conditions in either 19	

investigation (80, 85). However, neither study attempted to establish whether 20	

structural changes occurred in the pectoralis major and latissimus dorsi muscles, 21	

limiting the scope of their conclusions. It is likely that muscles trained and fatigued in 22	

the early stages of a training session will accumulate higher training volumes and 23	

therefore, adapt to a greater extent. As such, practitioners should prioritize exercises 24	
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for completion in the initial stages of the training session, based on the individual 1	

needs of the athlete (81).  2	

 3	

One issue with performing single-joint exercises prior to multi-joint exercises is that 4	

the pre-fatigued muscle may alter the muscle activation patterns during the multi-joint 5	

exercise. In both the lower extremity (9) and upper extremity (30), pre-fatiguing a 6	

muscle with a single-joint exercise has been shown to decrease the recruitment of the 7	

muscle during a multi-joint exercise. This occurs alongside an increased recruitment 8	

of the synergistic muscles during the compound movement (30). However, activating 9	

a muscle with a single-joint exercise but not to the point of fatigue may increase its 10	

activation in the subsequent multi-joint exercise (42). Therefore, coaches may order 11	

exercises to strategically manipulate the recruitment patterns of prime movers during 12	

exercises in order to alter muscle activation patterns. 13	

 14	

REPETITION TEMPO 15	

Explosive strength training demonstrates a clear advantage over slow concentric 16	

training for strength development (13). This is likely to be due to the higher forces 17	

that are required to increase acceleration during the concentric phase of an 18	

appropriately loaded lift. However, when attempting to develop muscle mass, this 19	

relationship is not evident (70). This potentially occurs due to the reduced lifting 20	

speed requiring less force, prolonging the duration of the set leading to increased 21	

metabolic stress. When loads are lifted with the intention of achieving a high velocity, 22	

the forces will be higher, increasing the tension of the muscle. In such instances 23	

where the repetition duration increases, loading must be reduced due to the time 24	

component placing increased demands on the involved energy systems (88). 25	
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Therefore, manipulating repetition tempo is just another example of the inverse-1	

relationship between volume and load. 2	

 3	

The available evidence shows equivocal differences between short and long repetition 4	

tempos for muscle hypertrophy development. Tanimoto and Ishii (88) determined that 5	

as long as subjects trained to failure, there was no significant difference in quadriceps 6	

hypertrophy following high-load normal tempo training (1-second concentric: 1-7	

second eccentric: 1-second relaxation) when compared to a low-load, slow training 8	

group (3-seconds concentric: 3-seconds eccentric: 1-second relaxation). Furthermore, 9	

a recent meta-analysis showed no significant difference in muscle growth when 10	

comparing regimes consisting of 0.5-seconds to 8-seconds for completion of the 11	

concentric phase of a lift (70). Thus, manipulating repetition tempo between blocks of 12	

training provides coaches with another strategy that may provide a novel form of 13	

overload through increasing training volume (via long repetition duration) or load (via 14	

short repetition durations).  15	

 16	

INTER-SET RECOVERY 17	

Much like repetition duration, coaches may also change inter-set recovery periods to 18	

alter the balance of the training volume-load relationship. With short duration 19	

recovery periods (< 30-seconds), training volume may be increased as training density 20	

rises. However, if insufficient recovery is provided to fully replenish the anaerobic 21	

energy stores (34), the load must be reduced. Likewise, with higher inter-set recovery 22	

periods, greater loads may be used for each set at the expense of maintaining high 23	

training density, coupled with additional rest time (24).  24	

 25	
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Research investigating inter-set recovery periods suggests that short rest intervals (≤ 1	

60-seconds) potentially compromises volume load due to drastic reductions in the 2	

load used, when compared to longer recoveries (3-minutes) (75). This is supported by 3	

Buresh et al. (17), who showed greater increases in quadriceps cross-sectional area 4	

when utilising longer (2.5 minutes), compared to shorter (60 seconds) inter-set 5	

recoveries. However, caution should be applied when interpreting these results, as in 6	

each of these studies volume was equated. Such control may remove the benefits of 7	

utilising short recoveries, as training density cannot be increased. Whether shorter rest 8	

periods permit tolerable increases in training volume has not yet been studied. 9	

Therefore, further evidence is required in order to make clearer recommendations 10	

regarding the manipulation of inter-set rest periods for increasing muscle hypertrophy 11	

(35). 12	

 13	

CONCLUSION 14	

Certain aspects of traditional hypertrophy training have been recently challenged. A 15	

more detailed understanding of key programming variables is therefore required to 16	

maximize training effectiveness. Using the training principles outlined in this review, 17	

coaches can design and deliver evidence-based hypertrophy training that has the 18	

potential to increase athletic performance or expedite recovery from injury.  19	

 20	

The current body of evidence suggests that there is no ideal load prescription to 21	

maximize muscle hypertrophy. In fact, from a loading perspective, there appears to be 22	

very few constraints, providing that the intensity of effort is high. However, an 23	

important variable that must be considered is training volume. High training volumes 24	

are necessary for maximising muscle growth. This may be accomplished through a 25	
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variety of approaches; one being increased training frequency. The current literature 1	

indicates between 2-3 training sessions per muscle group per week are most effective, 2	

although there may be potential for superior gains in muscle hypertrophy with the 3	

prescription of higher frequencies (>3) in trained individuals.   4	

 5	

Exercise variation is also important to access all ‘functional compartments’ of 6	

individual muscles. This may be accomplished by including variations of basic 7	

exercises that place stress on specific muscle divisions. By incorporating a variety of 8	

exercises for a single muscle in the training program of an athlete, the hypertrophic 9	

response has the potential to be enhanced. Such adaptations may also be obtained 10	

with varying the type of contraction, as concentric-only and eccentric-only loading 11	

strategies have been shown to provide hypertrophic adaptations in different sections 12	

of a muscle. Furthermore, it seems that eccentric-only training has the potential to 13	

increase muscle mass beyond that of concentric-only training through the increase in 14	

total work performed. 15	

 16	
Finally, exercise order, repetition tempo and inter-set recovery periods may all be 17	

manipulated at the program level in order to present the athlete with a novel stimulus. 18	

These variables should be considered in relation to the individual athlete goals and the 19	

desired outcome. 20	

 21	

 22	

 23	

 24	

 25	

 26	
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