
IEEE SYSTEMS JOURNAL 1

A Decentralized Deadline-Driven Electric Vehicle
Charging Recommendation

Yue Cao , Member, IEEE, Omprakash Kaiwartya , Member, IEEE, Yuan Zhuang , Member, IEEE,
Naveed Ahmad, Yan Sun , and Jaime Lloret , Senior Member, IEEE

Abstract—The electric vehicle (EV) industry has been rapidly
developing internationally due to a confluence of factors, such as
government support, industry shifts, and private consumer de-
mand. Envisioning for the future connected vehicles, the popular-
ity of EVs will have to handle a massive information exchange for
charging demand. This inevitably brings much concern on net-
work traffic overhead, information processing, security, etc. Data
analytics could enable the move from Internet of EVs to optimized
EV charging in smart transportation. In this paper, a mobile edge
computing (MEC) supporting architecture along with an intelli-
gent EV charging recommendation strategy is designed. The global
controller behaves as a centralized cloud server to facilitate ana-
lytics from charging stations (CSs) (service providers) and charg-
ing reservation of on-the-move EVs (mobile clients) to predict the
charging availability of CSs. Besides, road side units behave as
MEC servers to help with the dissemination of the CSs’ charging
availability to EVs, and collecting their charging reservations, as
well as operating decentralized computing on reservations min-
ing and aggregation. Evaluation results show the features of the
MEC-based charging recommendation system in terms of com-
munication efficiency (low cost for information dissemination and
collection) and improvement of charging performance (reduced
charging waiting time and increased fully charged EVs).

Index Terms—Charging recommendation, electric vehicle (EV),
mobile edge computing (MEC), Vehicle-to-Infrastructure.

I. INTRODUCTION

THE introduction of electric vehicles (EVs) [1] will have
a significant impact on the sustainable economic develop-

ment of urban cities. However, even if there have been charging
service providers available, the utilization of charging infras-
tructures is still in need of significant enhancement. Such a
situation certainly requires the popularity of EVs toward the
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sustainable, green, and economic market. Enabling the sustain-
ability requires a joint contribution from each domain, e.g., how
to schedule charging services for EVs being parked within the
grid capacity, how to optimally recommend EV drivers toward
the charging station (CS) with the least waiting time, and how
to guarantee accurate information involved in decision making.

Unlike many previous works [2] that investigate “charging
scheduling” (referred to when/whether to charge) for EVs al-
ready been parked at CSs, a few recent works focus on “charging
recommendation” (refer to where/which CS to charge) [3] for
on-the-move EVs. The latter case has been the most important
feature of improving the charging Quality of Experience (QoE),
as applied by operators. Thus, it is important to optimally rec-
ommend EV drivers regarding where to charge, concerning the
service waiting time.

Literature works [4]–[8] have addressed the charging recom-
mendation to improve the charging QoE (e.g., to reduce the
service waiting time for charging). Usually, the local condition
of CSs (e.g., number of EVs being parked and their remaining
charging time) [7] is considered to make a charging recommen-
dation decision. Further advanced solutions utilize the EV’s
charging reservation [1], [9]–[11] to align with the local con-
dition of CSs. By doing so, it can be predicted at what time
and which CS will be congested, so as not be recommended
for charging. Here, the charging reservation includes the arrival
time (when an EV will arrive at the recommended CS) and the
expected charging time at the selected CS (how long its charging
time will be).

Practically, EV drivers would also have their parking dead-
line [11] at CSs (e.g., drivers might be impatient to wait for a
long time, or have another daily agent after a certain period of
charging). Particularly, in the case of charging during peak time,
already deployed charging slots at CSs may not be sufficient to
handle such an urgent charging demand (due to limited parking
duration). Inevitably, an inappropriate charging recommenda-
tion would degrade the charging QoE, as some EVs will have to
leave after the deadline even though they have not been charged.
Consequently, charging will involve additional effort and energy
consumption; such an inconvenience would, however, discour-
age the willingness to switch from traditional vehicles to EVs.

The centralized cloud (CC) based system [12] is widely ap-
plied in the literature for charging recommendation. Such a sys-
tem generally relies on ubiquitous cellular network and real-time
information for optimization. For example, previous work [11]
adopted a cloud-based global controller (GC) connecting to all
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CSs. Whenever an EV requires charging, it will send a request
to the GC through the cellular network seeking the best CS
recommendation, and further reports its charging reservation.
By facilitating the anticipated EV charging recommendation,
the charging availability of the CS can be predicted, so that the
cloud will not recommend a CS with low availability.

However, by seamlessly collecting information from EVs and
CSs, it is very time consuming for the GC to achieve optimiza-
tion. The complexity and computation load of the cloud server
increases exponentially (depends on those who currently request
charging and those who have made charging reservations) with
the number of EVs. Moreover, the cellular network is costly
and sometime overcongested due to massive accesses, which
degrades the quality of communication. The rapid growth of
mobile applications has placed severe demands on the cloud
infrastructure, which has led to moving computing and data ser-
vices toward the edge of the cloud, resulting in a novel mobile
edge computing (MEC) [13] (also known as fog computing)
architecture being developed by the European Telecommuni-
cations Standards Institute (ETSI) and creating a new Industry
Specification Group in 2014 for this purpose. MEC could reduce
data transfer times, remove potential performance bottlenecks,
and increase data security and enhance privacy while enabling
advanced applications.

As such, in the case of EV charging, a decentralized charging
recommendation with the assistance of MEC servers positioned
close to EVs is desirable. Apart from the cellular network,
a cheaper solution nowadays is the deployment of fixed road
side units (RSUs) [14] based on license-free spectrum such as
Wi-Fi, but only with limited network coverage. Future in-
telligent transportation systems (ITS) [15] will necessitate
infrastructure-assisted communication for EV charging perspec-
tive in addition to road safety perspective. In [10], a decentral-
ized MEC-based information communication technology (ICT)
framework has been proposed where it facilitates the RSUs
(with MEC servers) to perform information caching, aggrega-
tion, and lightweight processing (e.g., access control and infor-
mation mining); system level communication cost within the
charging recommendation system can be reduced. Besides, by
cooperating with the cloud server GC, deployed RSUs also help
to disseminate and collect information between CSs and EVs
ubiquitously.

Understandably, the integration of ICT, transport, and energy
is important for the attainability of EV charging [16], [17]. This
paper mainly tackles a joint study of former transport planning
and ICT, whereas the integration of energy substainability (e.g.,
smart charging, scheduling of renewable energy) is out of the
scope. Beyond the ICT effort investigated in [10], we further
take the impact of parking deadline and the decentralized ICT
framework into account for the EV charging recommendation
decision. More specifically, the EV’s parking deadline will in-
fluence the estimation of CSs’ charging queueing and prediction
of their charging availability (in line with EVs’ charging reser-
vations collected through the positioned MEC architecture).
In particular, the proposed solution on predicting the charging
availability is decoupled and associated with a number of time
intervals (within a dynamically updated time window). Such a

feature benefits the accuracy of the charging recommendation,
bounded by a prediction time window and EV mobility.

II. RELATED WORK

A. Cloud/Mobile Edge Computing in Smart Transportation

Smart transportation can fundamentally change urban lives
at many levels. Data from service providers and users bridged
via a ubiquitous, dynamic, scalable, and sustainable ecosystem
would offer a wide range of benefits and opportunities. Most
of the existing techniques require a high processing time using
conventional methods of data processing [18]. Therefore, the
techniques are desirable to efficiently process the data generated
from stakeholders, ideally from a distributed manner through
ubiquitously disseminated and collected information.

The major difference between cloud computing [12] and
MEC [13] is in the location awareness to support application
services. This is because the cloud server locates in a central-
ized place and behaves as a centralized manager to perform
computation tasks. Note that MEC servers at different locations
can be owned and managed by separate operators and owners.
With the collaboration among different operators, they can form
a collaborative and decentralized computing system in a wide
region.

B. EV Charging Recommendation

As reviewed by the most recent survey [3], fruitful lit-
erature works have addressed “charging scheduling” [2],
via regulating the EV charging, such as minimizing peak
load/cost, flattening aggregated demands, or reducing frequency
fluctuations.

In recent years, the “charging recommendation” problem has
started to gain interest from industries thanks to the popularity
of EVs. The generic solutions [4], [7] make decisions based on
the queueing information at CSs, and the one with the minimum
queueing time is recommended. This feature has been evalu-
ated in [5] against the charging recommendation just taking the
closest distance to the CS; the former is deemed as an effective
guidance in an urban city with limited charging infrastructures.
The charging recommendation solution in [8] adopts a pricing
strategy to minimize congestion and maximize profit, by adapt-
ing the price depending on the number of EVs charging.

Beyond that, the integration of the ICT and energy network is
of importance for the sustainability of EV charging, where a set
of works have addressed the constraint of energy network and
study its impact. From the ICT aspect, additional communica-
tion signaling is built to support the advanced charging recom-
mendation and brings the anticipated EVs mobility information
(charging reservations). The work in [9] concerns a highway
scenario where the EV will pass through all CSs. The expected
charging waiting time is calculated for the EV passing through
the entire highway, by jointly considering the charging waiting
time at a CS where the EV needs charging for the first time and
the time spent at subsequent CSs, before exiting the highway.
Other works [1], [10], [11] focus on urban city scenarios, where
the EV travels toward a single geographically distributed CS for
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charging. The expected waiting time for charging is associated
with that CS, rather than a subsequent charging in the case of
the highway.

III. PROVISIONING OF MEC-BASED CHARGING

RECOMMENDATION SYSTEM

In this section, we mainly introduce entities and system sig-
naling of the proposed MEC-based system, together with an
analysis on its advantage.

A. Charging System Cycle

Driving: This happens when the EV is traveling on the road
(following a route in the city).

Charging Recommendation: If an EV’s remaining electricity
is below the state of charge (SOC) threshold value, the charging
recommendation is required to guide it on where to charge.

Charging Scheduling: This happens when EVs have reached
a CS. The CS implements a certain policy to schedule which
EV is to be charged. Here, the first come first serve (FCFS)
is widely applied in the problem of charging recommendation,
where the EV with the earliest arrival time is scheduled as the
highest priority.

Battery Charging: This phase reflects a continuous procedure
to charge EVs, until they are fully charged. After that, those fully
charged EVs will resume to the Driving Phase.

Typically, the system is a status transfer within four phases,
while the Charging Scheduling has been extensively covered by
the literature. The focus of this paper is on Charging Recom-
mendation with interdisciplinary efforts from ICT.

B. Network Entities

1) Stakeholders: The EV below the SOC threshold (a value
under which the EV should seek charging) needs to find a
CS for charging. As long as the EV has been recommended
to charge at a CS, the EV further reports its charging
reservation associated with that CS.
The CS is equipped with a number of plug-in charging
slots to charge multiple EVs in parallel. Particularly, its
local queuing information is monitored by the cloud server
GC to compute the charging availability. This refers to the
earliest time when a charging slot of the CS is unoccupied.

2) Cloud server: It is a logical server that is built and deliv-
ered through a cloud computing platform over CSs and
EVs. Here, the GC manages the CSs’ charging availabil-
ity, based on the monitored CSs’ local queueing informa-
tion, and EVs’ charging reservations (collected by MEC
servers).

3) MEC server: The MEC servers collected at RSUs provide
a set of middle-ware services associated with applications,
wherein it implements two key operations as follows.

a) Disseminate CSs’ charging availability (computed
by the GC) to EVs.

b) Enable information mining and aggregation (com-
plementarily with authentication) for opportunisti-
cally collected EVs’ charging reservations.

Fig. 1. Signaling process for the MEC-based system.

TABLE I
COMMUNICATION TECHNOLOGIES IN MEC- AND CLOUD-BASED SYSTEMS

C. Communication Technologies

As shown in Fig. 1, the communication technology applied
between GC and CSs can be simply based on reliable Internet
or cellular network, mainly because they are fixed network en-
tities. However, there is a necessity to scalably and ubiquitously
disseminate CSs’ charging availability (computed by the GC) to
EVs, and collect EVs’ charging reservations. Although 3G/LTE
can be applied thanks to ubiquitous coverage, EVs’ charging
requests are just on-demand, whereas CSs charging availability
is fluctuated within certain periods (e.g., minutes level). Be-
sides, EVs’ charging reservations are generated only when they
have been given the charging recommendation. This motivates
the application of short-range and on-demand communication
with EVs. Motivated by the above-mentioned discussion, the
opportunistic communication paradigm, e.g., delay/disruption
tolerant networking [19], between EVs and MEC servers is de-
sirable, which alleviates the burden of solely relying on the cel-
lular network. Table I summarizes communication technologies
in MEC- and cloud-based systems.

Furthermore, rather than using the point-to-point-based
communication, the topic-based communication (e.g., pub-
lish/subscribe pattern [20]) mainly offers communications
decoupled in space that subscribers do not need to know the
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TABLE II
TOPICS DEFINED IN THE MEC-BASED SYSTEM

location and address of publishers and vice versa. It is poten-
tially in time as the system is able to store events for clients who
are temporally disconnected.

The solutions to achieve trusted message exchange for the
case of EV charging is to encrypt the sensitive information and
hide the real identity. One development aspect of the encryption
involves the light-weight and highly secured encryption algo-
rithm, while another one is to design an efficient and scalable
key management scheme. As for the privacy, a pseudonym is
proposed to hide the identities. This includes the pseudonym
changing algorithms and pseudonym reuse schemes, both are
required to be implemented in efficient and scalable manners.
The future challenges based on the MEC system are considered
based on the nature of a large number of connected EVs, high
mobility, wide coverage area, and heterogeneous communica-
tion systems.

D. Proposed MEC-Based System

It is assumed that the locations of all CSs are already known
by EVs, e.g., through the vehicle on-board unit. Here, EVs ac-
cess CSs’ charging availability from MEC servers, make a local
charging recommendation, and further report charging reser-
vations (through MEC servers to the GC). The GC analyzes
the EVs’ charging reservations together with CSs’ local queu-
ing information to predict the CSs’ charging availability. Fig. 1
illustrates a typical procedure.

Step 1: The GC periodically (with time interval Δ) dissem-
inates its computed CSs’ charging availability to all legitimate
MEC servers (positioned at RSUs), via “CA_Update” topic de-
fined in Table II. RSUs further aggregate the information from
all CSs and get cached. Note that the information disseminated
at the previous Δ, which to be further cached at MEC servers,
will be replaced with the one that associates with the current Δ.
This guarantees the information accuracy involved for charging
recommendation. The RSU receiving the dissemination from all
CSs will aggregate and cache their information.

Steps 2 and 3: Upon encountering an RSU, the EV would sub-
scribe to the cached information from the RSU through the P/S
system. In particular, the EV only subscribes to the information
that is recently published using the “Aggregated_CA_Update”
topic. This reduces the redundant access signaling, particularly
when an EV frequently encounters several RSUs in a short time
(still within the current dissemination interval Δ). For example,
if an EV has already obtained information from RSU1 within

Fig. 2. Signaling process for the CC-based system.

interval Δ, its subscription will be denied by RSU2 within the
same interval.

Step 4: The EV makes a charging recommendation in the
case of low energy status and publishes its charging reserva-
tion to any encountered MEC server along the road. Here, the
“Charging_Reservations_Update” topic is applied, with the EV
as publisher and RSUs (MEC servers) as subscribers. Each RSU
mines the valid EV’s charging reservation and aggregates them.
The valid charging reservation refers to that of which EV’s
arrival is supposed to be later than (Δ + P), where P is the
time slot of the previous dissemination. This is because an EV’s
reservation will be deleted by its selected CS when it is parked
therein. Then, any arrival occurring before the next dissemina-
tion will be removed from RSUs; this potentially reduces the
size of data to be uploaded to the GC.

Steps 5 and 6: At the GC side, it sets two separate topics to
collect information from CSs and RSUs.

1) The local condition of CSs includes the number of EVs
being parked and their required battery charging time.
This is accessible by sending a subscription via the “Lo-
cal_Queuing_Update” topic.

2) The GC also accesses the aggregated EVs’ charg-
ing reservations from all RSUs, using the “Aggre-
gated_Charging_Reservations_Update” topic.

Step 7: The GC then predicts the charging availability of CSs
and pushes them for dissemination at the following time slot,
using the “CA_Prediction” topic.

E. Other Alternative Systems

1) CC-Based System: It is implemented in a centralized
manner in the cloud system, as shown in Fig. 2.
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Fig. 3. Signaling process for the DC-based system.

Step 1: The EV, which needs charging, sends its charging
recommendation request to the GC through the cellular network.

Step 2: Upon receiving the request from an EV, the GC makes
a charging recommendation based on the intelligence proposed
in Section IV, and further replies back to the pending EV.

Step 3: The EV that accepts the decision, then starts a journey
toward the recommended CS. Meanwhile, it reports its charging
reservation to the GC, so that the GC can estimate the occultation
of the reserved CS in the near future.

2) Decentralized Cloud (DC) Based System: This is the dis-
tributed version of the CC-based system (based on cellular net-
work), as shown in Fig. 3.

Step 1: Each CS periodically (with interval Δ) broadcasts
its charging availability to all EVs, also through the cellular
network communication. This mechanism also equals the case
that each EV subscribes to CS’s charging availability from the
GC, through topic-based P/S communication, where there is no
RSU involved to help decentralize the global computation.

Step 2: The EV individually makes charging recommenda-
tion and reports its charging reservation to the GC through the
same communication channel. Upon directly receiving the EV’s
charging reservations and continuously monitoring the CSs’
local queuing information, the GC predicts the charging avail-
ability of CSs and notifies them for dissemination the next time
around.

F. Discussion

Denoting Nev, Nmec, and Ncs as the number of EVs, MEC
servers, and CSs, respectively, the communication costs of the
MEC- and cloud-based systems are analyzed as follows.

MEC-Based System: As shown in Fig. 1, the delay is mainly
from the time for the EV to encounter an RSU, as the com-
munication between RSUs and GC is through cellular net-
work or Internet. Therefore, the dissemination cost is scaled
by O(Θ × Nev); recall that Θ is the possibility that an EV en-
counters at least one of Nmec RSUs [10]

Θ ≤ 1 −
Nmec∏

i=1

{
1 −

[
(i − 1)X + F + R

S · Δ
]}

(1)

where X is the distance between adjacent RSUs, and S is the EV
speed, R is the V2I communication range, while F is a constant
that shows the distance from the EV to the first RSU. Note
that R depends on the transmission power and other practical

configurations at the EV side, as it is the initiator to establish
communication with the RSU for information subscription.

Next, concerning aggregated EVs’ reservations uploading
to the GC before (Δ + P), the reservation cost is scaled by
O(Nmec

Δ ), as the communication is established from Nmec RSUs
within interval Δ. As such, excluding the deployment of RSUs,
in nature, a larger Nev drives the sustainable communication
efficiency for the long-term popularity of EVs.

CC-Based System: The GC experiences a cost of O(Nev) for
handling the charging requests/reservations from Nev EVs.

DC-Based System: The GC experiences a cost of O(N ev
Δ ) for

periodically disseminating the CS’s charging availability, and
O(Nev) for handling EVs’ charging reservations.

The CC-based system suffers from privacy concerns, in which
the driving behavior (e.g., location) has to be included when
communicating with the GC (see Step 1 in Fig. 2). Besides,
the DC-based system does not involve MEC servers; it, how-
ever, relies on the broadcast communication feature under the
environment of a ubiquitous cellular network. This is much ex-
pensive than the MEC-based system, as the latter just requires
a short-range wireless communication network between MECs
servers and a large number of EVs. In reality, the number of
RSUs is less than that of EVs, given by (Nmec � Nev). How-
ever, the number of charging services is higher than the actual
number of EVs Nev. This is because each EV needs to charge
more than once. This claims the communication efficiency of
MEC-based system over CC-based system.

IV. DESIGN OF CHARGING RECOMMENDATION

Previous works [9], [11] have proposed the formulation on
how to minimize the charging waiting time for all EVs in the
network. Generally, an even distribution of EVs among CSs
contributes to the minimized charging waiting for EVs. In the
following part, the proposed charging recommendation solution
is presented through the decentralized manner that is appli-
cable to the MEC-based ICT framework. Note that the pro-
posed solution focuses on how to distribute EVs among all
CSs in a decentralized manner (through the ICT framework),
while any user-driven solution by taking into consideration
the trip destination and pricing will be of interest in further
studies.

In Fig. 4, the CS’s charging availability is predicted with-
out/with EVs’ charging reservations (shown in Table IV), as
detailed in Algorithm 3 (requires the estimation of CS’s lo-
cal queuing from Algorithm 2) and Algorithm 4, respectively.
Then, Algorithm 1 will produce the CS’s charging availability
associated with each time slot, where these time slots are decou-
pled from an estimation time window W . With this knowledge
disseminated from CSs, the EV locally makes a charging rec-
ommendation, via the output of Algorithm 5.

As the estimation of charging availability per CS depends on
whether there have been EVs remotely reserved for charging,
such complexity is O(N 2

ev) since both the EVs locally parked
and those remotely reserved are considered in Algorithm 4.
In Algorithm 3, the complexity is O(Nev) as there is no EV
reserved for charging. All notations are defined in Table III.
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Fig. 4. Process flow of charging recommendation.

TABLE III
LIST OF NOTATIONS

TABLE IV
CHARGING RESERVATION FORMAT

A. EV’s Charging Reservation

The EV’s charging reservation is generated from the EV that
had made the charging recommendation and relayed through
the MEC servers to the GC. As an example in Table IV, such
information normally includes the ID of the recommended CS,
the EV’s parking deadline, arrival time at that CS, and the EV’s
expected charging time there, specifically as shown.

Algorithm 1: CA-Dissemination.

1: for (i = 1; i ≤ H; i + +) do
2: Ki =

(
Tcur + (i − 1) × W

H
)

3: if (NR �= 0) then
4: sort the queue of NR according to FCFS
5: for (j = 1; j ≤ NR ; j + +) do

6: if
(
T arr

ev( j )
< Ki

)
then

7: add EVj into RLIST
8: end if
9: end for

10: if (|RLIST| �= 0) then
11: CAKi

= CA-Prediction (RLIST,Ki) via
Algorithm 4

12: else
13: CAKi

= CA-Prediction (Ki) via Algorithm 3
14: end if
15: else
16: CAKi

= CA-Prediction (Ki) via Algorithm 3
17: end if
18: add < Ki , CAKi

> in entry i
19: end for

Arrival Time: The arrival time T arr
ev reflects the time when an

EV reaches the recommended CS, where the value counts for
the traveling time T tra

ev from the current location of EV to the
recommended CS

T arr
ev = Tcur + T tra

ev . (2)

Expected Charging Time: The expected charging time T cha
ev

at the selected CS is given by

T cha
ev =

Emax
ev − Ecur

ev + Sev × T tra
ev × α

β
. (3)

Here, (Sev × T tra
ev × α) is the energy consumed for the move-

ment traveling to the selected CS, based on a constant α (depend-
ing on a certain type EV) measuring the energy consumption
per meter.

Parking Deadline: Dev is defined as a limitation on how long
an EV will stay to wait for charging at the recommended CS.

B. Charging Availability Dissemination

Upon receiving EVs’ charging reservations, each GC com-
putes the charging availability for all connected CSs, associated
with a number of time slots K that is beyond the interval Δ.
Here, given that there are predefined H time slots associated
within W , the gap between adjacent K time slots is calculated
by W

H .
Algorithm 1 is implemented by the GC and disseminates

information formatted in Table V. The time slot at the ith entry
is calculated by Ki =

(
Tcur + (i − 1) × W

H
)
, where Tcur is the

current time in the network. Understandably, Ki indicates a time
slot beyond the current network time Tcur. An entire process of
CS’s information dissemination is presented as follows.
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TABLE V
FORMAT OF CS’S CHARGING AVAILABILITY DISSEMINATION

1) The EVj (in the queue of NR ), which has reported charg-
ing reservation to the recommended CS (while its arrival
time T arr

ev( j )
is earlier than Ki), will be recorded into a

list, namely RLIST. Here, we consider that there will be
other EVs (in the queue of NR ) that reserve and reach
at the same CS before the time slot Ki as the condition(
T arr

ev( j )
< Ki

)
at line 6. In this context, the charging avail-

ability estimated at Ki , as denoted by CAKi
, is calculated

via Algorithm 4.
Note that, at line 11, the prediction of the CS’s charging
availability via Algorithm 4 requires an input of charging
reservations of those EVj with an earlier arrival time than
Ki . This is given by the condition at line 10 in Algorithm 1.
Otherwise, Algorithm 3 is applied by only examining the
local conditions of CSs (e.g., number of EVs being parked
and remaining charging time).

2) Alternatively, Algorithm 3 is also applied if there are no
EVs’ charging reservations, as presented between lines 15
and 16.

Then, a pair of 〈Ki , CAKi
〉 stating the “〈time slot,

charging availability at time slot〉” will be prepared for dissemi-
nation. The information is then disseminated as shown in Step 1
in Fig. 1.

C. Dynamic Update of W
Note that W is updated based on a dynamic adaption mech-

anism. This is triggered by the event that an EV is making
charging reservations at the recommended CS within a time
slot K, then the traveling time T tra

ev of the EV is compared with
the value of estimation window W that is currently applied in
the charging system. The larger value is updated as the new
estimation window of W .

The advantage is to gradually learn the charging demand
distribution of EVs. This is to say, if most of EVs are with
shorter T tra

ev toward CSs recommended to them, a much urgent
charging will be prepared. As such, the way to predict the CSs’
charging availability will be with a tight W (or say smaller W),
such that the accuracy is adjusted with W

H .

D. Prediction of Charging Availability Without EVs’
Charging Reservations

Here, as no EVs’ charging reservations are available, the
charging availability is computed solely based on the CSs’ local
queueing information. A set QLIST is defined to represent the
available time of all charging slots locally at a CS.

Algorithm 2: Generation of QLIST.
1: for (i = 1; i ≤ NC ; i + +) do

2: if
((

Tcur − T arr
ev( i )

+
E max

ev( i )
−E cur

ev( i )

β

)
≤ Dev( i )

)
then

3: add

(
E max

ev( i )
−E cur

ev( i )

β + Tcur

)
into QLIST

4: else
5: add

(
T arr

ev( i )
+ Dev( i )

)
into QLIST

6: end if
7: end for
8: if (NC < δ) then
9: for (j = 1; j ≤ (δ − NC ); j + +) do

10: add (Tcur) into QLIST
11: end for
12: end if
13: sort the queue of NW according to FCFS
14: for (k = 1; k ≤ NW ; k + +) do
15: sort QLIST in an ascending order

16: if
((

QLIST1 − T arr
ev(k )

)
< Dev(k )

)
then

17: if
((

QLIST1 − T arr
ev(k )

+
E max

ev(k )
−E cur

ev(k )

β

)
≤ Dev(k )

)

then

18: T fin
ev(k )

=
(

QLIST1 +
E max

ev(k )
−E cur

ev(k )

β

)

19: else
20: T fin

ev(k )
=

(
T arr

ev(k )
+ Dev(k )

)

21: end if
22: replace QLIST1 with T fin

ev(k )
in LIST

23: sort QLIST in an ascending order
24: end if
25: end for
26: return QLIST

1) Generation of QLIST: As each CS has δ charging slots to
charge parked EVs in parallel, we consider two types of queues
localized at the CS. Here, EVs being charged are included in
the queue of NC , while those waiting for charging (due to all
δ charging slots of a CS have been occupied by other EVs for
charging) are characterized in the queue of NW .

From line 1 at Algorithm 2, for each EVi being charged,

the time length (
E max

ev( i )
−E cur

ev( i )

β ) to fully recharge its battery
(in the queue of NC ), will be compared with its parking du-
ration Dev( i ) . The comparison outcome is applied to estimate
the time that EVi will take to finish its charging.

1) In one case, the condition ((Tcur − T arr
ev( i )

+
E max

ev( i )
−E cur

ev( i )

β ) ≤ Dev( i ) ) implies that EVi can be fully
recharged before departure. Here, (Tcur − T arr

ev( i )
) is the

time duration to wait for charging since the arrival of
EVi . As such, at line 3, the charging finish time (about
when the charging of EVi will finish) T fin

ev( i )
of EVi is

given by a summation of (
E max

ev( i )
−E cur

ev( i )

β + Tcur) only.

2) In another case, T fin
ev( i )

is given by (T arr
ev( i )

+ Dev( i ) ) at line 5,
as the time slot that EVi leaves from CS.
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Algorithm 3: CA-Prediction (K).
1: sort QLIST from Algorithm 2 in an ascending order
2: if QLIST1 > K then
3: return QLIST1
4: else
5: return K
6: end if

Furthermore, the presentation between lines 8 and 12 reflects
a case that not all δ charging slots have been occupied by other
EVs for charging. Therefore, it is easy to determine that there
are still (δ − NC ) slots that can be reserved by incoming EVs
for charging. As such, the available charging time for these
unoccupied charging slots is all unified as Tcur.

Then, Algorithm 2 first sorts the queue of NW based on the
FCFS order, by following the charging scheduling in Section III.
Besides, QLIST that includes those EVs under charging will be
sorted in an ascending order. Here, the earliest available time
for charging at a CS is deemed as the first element in QLIST,
and we denote that time as QLIST1 (the first element of sorted
QLIST).

In detail, to calculate the charging finish time T fin
ev(k )

of each
EVk (in the queue of NW ), the earliest available time of charg-
ing slots is required to be known. In principle, it is crucial to
consider EVk that at least will be charged during its parking
duration Dev(k ) to involve calculation. This constraint is defined
by ((QLIST1 − T arr

ev(k )
) < Dev(k ) ) at line 16.

1) Then from lines 17 and 21, either (QLIST1 +
E max

ev(k )
−E cur

ev(k )

β ) or (T arr
ev(k )

+ Dev(k ) ) calculates T fin
ev(k )

, in par-
ticular, (QLIST1 − T arr

ev(k )
) is referred for EVk to wait for

charging.
2) Upon T fin

ev(k )
been given, QLIST1 will be replaced with

T fin
ev(k )

. Then, QLIST will be re-sorted in an ascending
order upon processing each EVk in the loop.

The aforementioned loop operation is finished when all EVk

(in the queue of NW ) have been processed and updated QLIST
is generated.

2) Charging Availability Computing: Based on Algorithm 2
with QLIST being generated, the CS’s local queueing informa-
tion is computed to predict the charging availability associated
with K in Algorithm 3. Here, as QLIST1 is later than K, the
charging availability is represented as QLIST1 , and otherwise
as K. This depends on whether the CS will be available for
charging at the time slot K.

E. Prediction of Charging Availability With EVs’
Charging Reservations

Recall that Algorithm 1 has already included a number of
EVs into RLIST, which is an input for Algorithm 4. This guar-
antees that the charging availability of the CS is predicted by
tracking the EVs that will reach the reserved CS within W

H and
the charging time of EVs that are parked there. Here, the latter
information is provided by QLIST generated via Algorithm 2
and sorted in an ascending order.

Algorithm 4: CA-Prediction (RLIST,K).
1: sort the queue of NR according to FCFS
2: sort QLIST returned by Algorithm 2, in an ascending

order
3: for (i = 1; i ≤ NR ; i + +) do
4: if RLIST contains EVi then
5: if

(
QLIST1 > T arr

ev( i )

)
then

6: if
((

QLIST1 − T arr
ev( i )

)
< Dev( i )

)
then

7: if
((

QLIST1 − T arr
ev( i )

+ T cha
ev( i )

)
≤ Dev( i )

)

then
8: T fin

ev( i )
=

(
QLIST1 + T cha

ev( i )

)

9: else
10: T fin

ev( i )
=

(
T arr

ev( i )
+ Dev( i )

)

11: end if
12: end if
13: else
14: if

(
T cha

ev( i )
≤ Dev( i )

)
then

15: T fin
ev( i )

=
(
T arr

ev( i )
+ T cha

ev( i )

)

16: else
17: T fin

ev( i )
=

(
T arr

ev( i )
+ Dev( i )

)

18: end if
19: end if
20: replace QLIST1 with T fin

ev( i )

21: sort QLIST in an ascending order
22: end if
23: end for
24: if (QLIST1 > K) then
25: return QLIST1
26: else
27: return K
28: end if

At line 5 in Algorithm 4, for each EVi (in the queue of NR )
with its T arr

ev( i )
prior to the earliest available time for charging

QLIST1 , EVi will be taken into account for the update of QLIST.
This means that only those EVs (in the queue of NR ) arriving
later than QLIST1 will not have an influence on QLIST. Note
that QLIST has been previously sorted in an ascending order.
This guarantees that the earliest time that one of the charging
slots will be free, it is ready for taking the subsequent EV’s
charging.

1) In one case, the condition (QLIST1 > T arr
ev( i )

) at line 5 im-
plies that T arr

ev( i )
is prior to the earliest available time LIST1 .

This causes the charging finish time T fin
ev( i )

to be calculated
by summating QLIST1 and the expected charging time
T cha

ev( i )
.

In particular, at line 7, the condition ((QLIST1 − T arr
ev( i )

+
T cha

ev( i )
) ≤ Dev( i ) ) implies that within the parking dura-

tion Dev( i ) , EVi could be fully recharged. Recall that
(QLIST1 − T arr

ev( i )
) is the time to wait until the charging

is started. In this context, given by the cases at lines 7 and
9, T fin

ev( i )
is given by (QLIST1 + T cha

ev( i )
) or (T arr

ev( i )
+ Dev( i ) ).
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Algorithm 5: Charging Recommendation Strategy.

1: for (i = 1; i ≤ (H− 1); i + +) do

2: if
(
Ki ≤ T arr

ev( r )

)
&&

(
Ki+1 > T arr

ev( r )

)
then

3: A =

(
CAK( i ) +

T arr
ev( r )

×
(

CAK( i + 1 )
−CAK( i )

)

K( i + 1 )

)

4: end if
5: end for
6: if

(
K1 > T arr

ev( r )

)
then

7: A = CAK( 1 )

8: else if
(
KH ≤ T arr

ev( r )

)
then

9: A = CAK(H)

10: end if
11: if

(
A > T arr

ev( r )

)
then

12: if
(
A− T arr

ev( r )
+ T cha

ev( r )
≤ Dev( r )

)
then

13: return A− T arr
ev( r )

+ T cha
ev( r )

14: else
15: return Dev( r )

16: end if
17: else
18: if

(
T cha

ev( r )
≤ Dev( r )

)
then

19: return T cha
ev( r )

20: else
21: return Dev( r )

22: end if
23: end if

Note that as the condition given by ((QLIST1 − T arr
ev( i )

) <

Dev( i ) ) at line 6, we only consider that EVi could be
charged before Dev( i ) to involve the calculation.

2) In another case, T fin
ev( i )

is calculated by considering T arr
ev( i )

,

T cha
ev( i )

, and Dev( i ) following the calculations at lines 15 and
17. This only happens when (QLIST1 ≤ T arr

ev( i )
), meaning

that the CS has already been available for charging when
EVi arrives.

By replacing QLIST1 with each T fin
ev( i )

in each loop round,
QLIST will be dynamically updated. Furthermore, QLIST will
be sorted in an ascending order after processing each EVi , such
that the first element QLIST1 is updated. The loop operation
ends when all EVi (in the queue of NR ) have been processed.

F. Charging Recommendation

Here, EVr is denoted as the EV that needs to make a charg-
ing recommendation, other than those EVs that are either being
parked or on the move. Two bounding time slots can be ob-
tained via the condition at line 2 of Algorithm 5, such that the
arrival time of EVr , denoted as T arr

ev( r )
, is between these two

time slots Ki and Ki+1 . In this case, the outcome of the charg-
ing availability is then passed to a temporary variable A, with

A = (CAKi
+

T arr
ev( r )

×(CAKi + 1 −CAKi
)

Ki + 1
) at line 3, considering a

ratio between T arr
ev( r )

and Ki+1 . From this calculation, it is aimed
to capture the charging availability upon its arrival time EV(r)
that is between Ki and Ki+1 .

Fig. 5. Helsinki city scenario.

There are also two cases if T arr
ev( r )

is out of the bound of the
estimation window W .

1) Due to that T arr
ev( r )

is earlier than the earliest estimation time
slot in entries H, denoted as K1 , the charging availability
upon the arrival of EVr is given by CAK( 1 ) at line 7.

2) Besides, due to that T arr
ev( r )

is later than the latest time slot
in entries H, the charging availability in this case is given
by CAK(H) at line 9.

Next, EVr will predict an expected time for which it would
stay at the recommended CS before the parking deadline by
considering its parking duration Dev( r ) .

1) Basically, if EVr arrives later than A, this means it still
needs to wait for additional time until a charging slot
is available. In this case, the condition (A− T arr

ev( r )
+

T cha
ev( r )

≤ Dev( r ) ) indicates EVr can be fully recharged
within the parking deadline Dev( r ) ; thus, its expected stay-
ing time is calculated by (A− T arr

ev ( r )
+ T cha

ev ( r )
) at line 13.

Otherwise, only Dev( r ) is referred as the staying time at
line 14.

2) Such a policy between lines 18 and 22 can be also applied
to the case if EVr arrives no later than A. In this case,
as EVr does not need to wait for additional time to start
charging, the comparison is just between T arr

ev( r )
and Dev( r ) .

V. PERFORMANCE EVALUATION

A. Scenario Configuration

The entire system for EV charging is built in Opportunis-
tic Network Environment [21]. In Fig. 5, the default scenario
with 4500 × 3400 m2 area is shown as the downtown area of
Helsinki city in Finland. Nev = 300 EVs with Sev = [30 ∼ 50]
km/h variable moving speed are initialized considering road
safety in a city. The configuration of EVs follows the charging
specification of Hyundai BlueOn, with a maximum electricity
capacity of 16.4 kWh, max traveling distance 140 km, and SOC
[15 ∼ 45]%. Besides, Ncs = 5 CSs are provided with sufficient
electric energy and δ = 5 charging slots through entire simula-
tion, using the fast charging rate of β = 62 kW. R = 300 m ra-
dio coverage is applied for Nmec = 7 RSUs and Nev = 300 EVs.
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Fig. 6. Influence of CS dissemination interval Δ. (a) ACWT. (b) Fully charged EVs. (c) TRC. (d) TDC.

The default dissemination interval of CS’s charging availability
is Δ = 120 s, and the simulation time is 43 200 s = 12 h.

The following schemes are evaluated for comparison.
1) MEC: The proposed charging recommendation scheme in

Section IV, based on the MEC framework in Section III.
2) CC and DC: They are with the same charging recom-

mendation scheme with MEC, but with centralized and
distributed cloud computing framework.

3) Reservation [10]: Previous works take the EVs’ charging
reservation to predict the CSs’ charging availability, how-
ever, not addressing the EVs’ parking deadline. Here, the
cloud computing framework is positioned.

4) Deadline [11]: Previous works taking the parking dead-
line into the account of charging recommendation, based
on the cloud computing framework. This scheme differs
from the CC for the computation intelligence to predict
CSs’ charging availability.

The simulation evaluates metrics at the EV and CS sides as
well as communication costs at the system level.

1) Average Charging Waiting Time (ACWT): The average
period between the time an EV arrives at the recommended
CS and the time it finishes (full) recharging its battery. This
is the performance metric at the EV side.

2) Fully Charged EVs: The total number of fully charged
EVs; this is the performance metric at the CS side.

3) Total Reservation Cost (TRC): The total number signaling
reported for EV’s charging reservations to the GC. In
MEC, this counts for the signaling from RSUs to the GC,
whereas other schemes count from EVs to the GC.

4) Total Dissemination Cost (TDC): In MEC, this counts for
the signaling from RSUs to the EVs, whereas in DC, this
counts from GC to EVs.

B. Performance Results

1) Influence of CS Dissemination Interval Δ: Results in
Fig. 6(a) and (b) show that a frequent dissemination interval
helps to maintain the optimality of the charging recommenda-
tion. This means that as the information is replaced at RSUs
frequently, EVs that have passed by would fetch the cached
information that is more fresh. In comparison to DC, the CC
achieves the better performance by making decision using a
seamless cellular network communication, compared to the
opportunistic communication between RSUs and EVs as ap-
plied in the MEC system. Furthermore, concerning the feature

of charging recommendation, the CC outperforms reservation
and deadline, thanks to decoupling the decision making within
a small-time interval W . It is also observed that the deadline
outperforms reservation, as the former takes the EVs’ parking
deadline into account.

In Fig. 6(c), the MEC-based system is with decreased TRC,
which follows the analysis in Section III. However, other com-
pared charging recommendations with the cloud-based system
are with a much higher TRC. The benefit of reduced TRC is
from the aggregation and mining functions at RSUs, which fil-
ter invalid EVs’ charging reservations (which to be not uploaded
to the GC) for computation. Besides, the dissemination cost is
shown in Fig. 6(d), where the cost in MEC is lower than in
DC-based systems (with Δ = 120 s). This shows the efficiency
of using on-demand and short-range wireless communication in
the MEC-based system together with access control, compared
to the long-range cellular link and broadcasting communica-
tion in the DC-based system. In the following sections, DC is
excluded, while only the nature of charging recommendation
solutions is discussed.

2) Influence of Parking Deadline Dev : In Fig. 7(b), a longer
parking deadline Dev increases the fully charged EVs. This is
generally referred to the situation that EVs being parked at CSs
will have much chance to be fully charged, compared to the
case with 1200 s parking deadline, while such increase brings
increased ACWT in Fig. 7(a) as well. In Fig. 7(c), it is observed
that a shorter parking deadline leads to a much higher TRC. This
is because of those EVs that are not fully charged and would
subsequently need charging after a shorter period. As such, the
charging reservation is increased corresponding to such frequent
charging demands.

Apart from the above-mentioned general observation, further
details are comparable in the cases of 5 and 7 charging slots. The
latter case alleviates the charging congestion at CSs; as such, it
delivers a lower AWCT and higher fully charged EVs as well
as reduced TRC (more significant in the case of 1200 s parking
deadline).

3) Influence of EV Density Nev: In Fig. 8(a), the AWCT is
increased from the case of 100 EVs, as more EVs will be fully
charged (with 300 and 500 EVs). However, Fig. 8(b) shows that
the fully charged EVs are first increased from 100 to 300 EVs
cases, and then decreases from 300 to 500 EVs cases. This
reflects the 500 EVs case results in severe charging congestion,
so some EVs are not fully charged. Such an outcome is also
associated with the TRC, wherein Fig. 8(c) shows the TRC in
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Fig. 7. Influence of EVs’ parking deadline Dev. (a) ACWT. (b) Fully charged EVs. (c) TRC.

Fig. 8. Influence of EVs’ density Nev, with δ = 5 charging slots. (a) ACWT. (b) Fully charged EVs. (c) TRC.

Fig. 9. Influence of EVs’ density Nev, with δ = 7 charging slots. (a) ACWT. (b) Fully charged EVs. (c) TRC.

the case of 500 EVs, is much higher than the fully charged EVs
in the same case of Fig. 8(b). The mismatch is because of the
EVs that were not fully charged but later need charging (with
additional charging reservations sent).

If setting 7 charging slots at each CS, where the fully charged
EVs is increased in Fig. 9(b), along with increased ACWT in
Fig. 9(a). Compared with that in Fig. 8(b) where there is a
decrease of fully charged EVs from 300 to 500 EVs cases, the
situation here implies the effect of parking deadline with limited
charging infrastructures. Of course, the MEC-based system still
achieves the lowest TRC in Fig. 9(c), similar to the previous
observation.

VI. CONCLUSION

This paper investigated EV charging recommendation via
MEC architecture, with RSUs positioned physically and MEC
functions virtually to help with information dissemination and
collection. The information access control, aggregation, and
mining are enabled at MEC servers, while the charging recom-
mendation takes the EV’s charging reservation and its parking
deadline into account. Results show that the proposed solu-
tion achieves a comparable performance in terms of charging
waiting time as a benefit to the user, and a number of fully

charged EVs as a benefit to the service provider. Future works
would be on integration of the power network.

With the ever increasing penetrations in EVs, the resultant
charging energy imposed on the electricity network could lead
to grid issues, such as voltage limits violation, transformer
overloading, and feeder overloading at various voltage levels.
Coordination of the charging energy with a renewable energy
source provides a more straightforward approach to cope with
the potential network issues as mentioned previously. Future
works would be on the integration of power network to achieve
an interdisciplinary work on ICT, route planning, and energy
integration.
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