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Seidel Triangle Sequences and Bi-Entringer Numbers

Dominique Foata and Guo-Niu Han

En hommage à Pierre Rosenstiehl,
Lui, qui dirige avec grand style,
Ce journal de combinatoire,
Mais sait aussi à l’occasion
Nous raconter une belle histoire:
Fil d’Ariane et boustrophédon.

Abstract. This Seidel Triangle Sequence Calculus makes it possible to
derive several three-variate generating functions, in particular for the Bi-
Entringer numbers, which count the alternating permutations according
to their lengths, first and last letters. The paper has been motivated by
this suprising observation: the number of alternating permutations, whose
last letter has a prescribed value and is greater than its first letter, is equal
to the Poupard number.

1. Introduction

As they have been reinterpreted in our previous paper [FH13a], the
Poupard numbers gn(k) and hn(k) for n ≥ 1, 1 ≤ k ≤ 2n − 1 can be
defined as the coefficients in the following expansions

1 +
∑
n≥1

∑
1≤k≤2n+1

gn+1(k)
x2n+1−k

(2n+ 1− k)!

yk−1

(k − 1)!
=

cos(x− y)

cos(x+ y)
;(1.1)

1 +
∑
n≥1

∑
1≤k≤2n+1

hn+1(k)
x2n+1−k

(2n+ 1− k)!

yk−1

(k − 1)!
=

cos(x− y)

cos2(x+ y)
.(1.2)

They are refinements of the tangent and secant numbers∑
k

gn(k) = T2n−1 (n ≥ 1),(1.3) ∑
k

hn(k) = E2n (n ≥ 1),(1.4)

which are themselves the coefficients of the Taylor expansions of tanu and
secu:

tanu =
∑
n≥1

u2n−1

(2n− 1)!
T2n−1 =

u

1!
1+

u3

3!
2+

u5

5!
16+

u7

7!
272+

u9

9!
7936+· · ·

secu =
∑
n≥0

u2n

(2n)!
E2n = 1+

u2

2!
1+

u4

4!
5+

u6

6!
61+

u8

8!
1385+

u10

10!
50521+· · ·

(See, e.g., [Ni23, p. 177-178], [Co74, p. 258-259]).
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Several combinatorial models have been introduced to interpret the
Poupard numbers: see [Po89, FH13a, FH13b, FH13c]. The first numerical
values of those numbers are displayed in Fig. 1.1-2.

k = 1 2 3 4 5 6 7 Sum
n = 1 1 1

2 0 2 0 2
3 0 4 8 4 0 16
4 0 32 64 80 64 32 0 272

Fig. 1.1. The Poupard Numbers gn(k).

k = 1 2 3 4 5 6 7 Sum
n = 1 1 1

2 1 3 1 5
3 5 15 21 15 5 61
4 61 183 285 327 285 183 61 1385

Fig. 1.2. The Poupard Numbers hn(k).

According to Désiré André [An1879, An1881] each permutation w =
x1x2 · · ·xn of 12 · · ·n is said to be (increasing) alternating if x1 < x2,
x2 > x3, x3 < x4, etc. in an alternating way. Let Altn be the set of all
alternating permutations of 12 · · ·n. He then proved that # Altn = Tn
(resp. = En), if n is odd (resp. even). Let Fw := x1 and Lw := xn be
the first and last letters of a permutation w = x1x2 · · ·xn of 12 · · ·n.

The numbers En(m) := #{w ∈ Altn : Fw = m}, now called Entringer
numbers, were introduced by Entringer himself [En66], who derived their
main combinatorial and arithmetical properties. Those numbers are regis-
tered as the A008282 sequence in Sloane’s On-Line Encyclopedia of Integer
Sequences, together with an abundant bibliography [Sl]. They naturally
constitute another refinement of the tangent and secant numbers. Their
first values are shown in Fig. 1.3.

m = 1 2 3 4 5 6 Sum
n = 1 1 1

2 1 1
3 1 1 2
4 2 2 1 5
5 5 5 4 2 16
6 16 16 14 10 5 61
7 61 61 56 46 32 16 272

Fig. 1.3. The Entringer Numbers En(m).
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We have been led to introduce the Bi-Entringer numbers, defined by

(1.5) En(m, k) := #{w ∈ Altn : Fw = m, Lw = k},
first, to see whether we could obtain a closed form for their generating
function, second, to understand why, and prove that, over the set Alt2n−1
and given the event {F < L}, the conditional probability that F = k is
equal to gn(k)/T2n−1, where gn(k) is the Poupard number defined in (1.1).
In Section 5 we shall give two proofs of the latter statement (see Theo-
rem 1.2), a combinatorial one and also an analytic one using the Laplace
transform.

Now, to derive the generating function for the Bi-Entringer numbers
a study of the so-called Seidel Triangle Sequences is to be made and will
be developed in Section 2. Roughly speaking, Seidel’s memoir [Se1877],
as was superbly reactivated by Dumont [Du82], establishes a connection
between several sequences of classical numbers and polynomials, by means
of a finite difference calculus displayed in matrix form. The method is to
be enlarged when dealing with sequences of matrices instead of sequences
of numbers. It will be seen that with each Seidel Triangle Sequence can
be associated an explicit form for its generating function (Theorem 2.2).

The Bi-Entringer numbers, displayed as entries of matrices Mn :=
(En(m, k))1≤m,k≤n (see Fig. 1.4) give rise to four Seidel Triangle Se-
quences: the sequences of the upper (resp. lower) triangles of the ma-
trices Mn, for n odd and for n even. It will be shown that each matrix Mn

for n odd is symmetric with respect to its diagonal, so that it suffices,
when n is odd, to give the expression of the generating function for the
upper triangles, as stated in the next theorem.

Theorem 1.1. The generating functions for the coefficients En(m, k) are
given by

(1.6)
∑

1≤m+1≤k≤2n−1

E2n(m+ 1, k + 1)
x2n−k−1

(2n− k − 1)!

yk−m−1

(k −m− 1)!

zm

m!

=
cosx cos z

cos(x+ y + z)
;

(1.7)
∑

1≤m+1≤k≤2n−1

E2n(k + 1,m+ 1)
x2n−k−1

(2n− k − 1)!

yk−m−1

(k −m− 1)!

zm

m!

=
sinx sin z

cos(x+ y + z)
;

(1.8)
∑

1≤m+1≤k≤2n

E2n+1(m+ 1, k + 1)
x2n−k

(2n− k)!

yk−m−1

(k −m− 1)!

zm

m!

=
sinx cos z

cos(x+ y + z)
.
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Theorem 1.1 will be proved in Section 3, once the main arithmetical
properties of the Bi-Entringer numbers are given. The first values of the
Bi-Entringer numbers are displayed in Fig. 1.4, as entries of the matrices
Mn := (En(m, k))1≤m,k≤n.

M1 =
( 1

1 1

)
; M2 =

( 1 2

1 . 1

2 . .

)
; M3 =


1 2 3

1 . 1 .

2 1 . .

3 . . .

;

M4 =



1 2 3 4

1 . 0 1 1

2 . . 1 1

3 . 1 . 0

4 . . . .

; M5 =



1 2 3 4 5

1 . 2 2 1 .

2 2 . 2 1 .

3 2 2 . 0 .

4 1 1 0 . .

5 . . . . .

;

M6 =


. 0 2 4 5 5
. . 2 4 5 5
. 2 . 4 4 4
. 2 4 . 2 2
. 1 2 2 . 0
. . . . . .

 ; M7 =



. 16 16 14 10 5 .
16 . 16 14 10 5 .
16 16 . 12 8 4 .
14 14 12 . 4 2 .
10 10 8 4 . 0 .
5 5 4 2 0 . .
. . . . . . .


;

M8 =



. 0 16 32 46 56 61 61

. . 16 32 46 56 61 61

. 16 . 32 44 52 56 56

. 16 32 . 40 44 46 46

. 14 28 40 . 32 32 32

. 10 20 28 32 . 16 16

. 5 10 14 16 16 . 0

. . . . . . . .


;

Fig. 1.4. The Bi-Entringer Numbers En(m, k).

Further arithmetical properties of the Bi-Entringer numbers, in partic-
ular involving binomial coefficients, will be given in Section 4. There is
also a linear connection between Poupard and Bi-Entringer numbers, as
stated in the next theorem, which is proved in Section 5.

Theorem 1.2. For 2 ≤ k ≤ 2n we have:

(1.9) 2

k∑
m=1

E2n+1(m, k) = gn+1(k).
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The specialization of identities (1.6) and (1.8) for z = 0 provides
an expression for the generating function for the Entringer numbers
En(m) themselves, apparently nowhere obtained, to our knowledge. The
calculation is banal: just note that E2n(1, k + 1) = E2n−1(2n − k) and
E2n+1(1, k + 1) = E2n(k).

Corollary 1.3. We have∑
1≤k≤2n−1

E2n−1(k)
xk

(k − 1)!

y2n−k−1

(2n− k − 1)!
=

cosx

cos(x+ y)
;(1.10)

∑
1≤k≤2n

E2n(k)
x2n−k

(2n− k)!

yk−1

(k − 1)!
=

sinx

cos(x+ y)
.(1.11)

Although the Poupard numbers hn(k), defined in (1.2), will not be
further considered in this paper, it was important to mention that the
pairs (gn(k), hn(k)) and (E2n−1(k), E2n(k)) form two refinements of the
pairs (T2n−1, E2n) having analogous generating function displayed in (1.1),
(1.2), (1.10), (1.11).

2. Seidel Triangle Sequences

Throughout the paper the following exponential generating functions
will be attached to each infinite matrix A = (a(m, k))m,k≥0

A(x, y) :=
∑

m,k≥0

a(m, k)
xm

m!

yk

k!
;

Am,•(y) :=
∑
k≥0

a(m, k)
yk

k!
; A•,k(x) :=

∑
m≥0

a(m, k)
xm

m!
;

for A itself, its m-th row, its k-th column. As can be found in [Du82], a
Seidel matrix A = (a(m, k)) (m, k ≥ 0) is defined to be an infinite matrix,
whose entries belong to some ring, and obey the following rules:

(SM1) the sequence of the entries from the top row a(0, 0), a(0, 1),
a(0, 2), . . . is given; it is called the initial sequence;

(SM2) for m ≥ 1 and k ≥ 0 the following relation holds:

a(m, k) = a(m− 1, k) + a(m− 1, k + 1).

The entries of the Seidel matrix A can be obtained by applying rule
(SM2) inductively, starting with the initial sequence. The leftmost column
a(0, 0), a(1, 0), a(2, 0), . . . is called the final sequence. As stated in the next
proposition, the exponential generating functions for the final sequence
A•,0(x) and for the Seidel matrix itself A(x, y) can be derived from
the generating function A0,•(y) for the initial sequence. See, e.g., [Du82,
DV80].
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Proposition 2.1. Let A = (ai,j) (i, j ≥ 0) be a Seidel matrix. Then,

A•,0(x) = exA0,•(x) and A(x, y) = exA0,•(x+ y).

As noted by Dumont [Du82], the following example of a Seidel matrix,
denoted by H = (hi,j)i,j≥0, goes back to Seidel himself [Se1877]. The
initial sequence consists of the sequence of the coefficients of the Taylor
expansion of 1− tanhu = 2/(1 + e2u), that is, 1, −1, 0, 2, 0, −16, 0, 272,
0, . . . so that

H0,•(y) = 1− tanh y = 1 +
∑
n≥1

y2n−1

(2n− 1)!
(−1)nT2n−1

= 1− y

1!
1+

y3

3!
2− y

5

5!
16+

y7

7!
272− y

9

9!
7936+· · ·

It follows from Proposition 2.1 that

(2.1) H•,0(x) =
1

coshx
=

2 ex

1 + e2x
; H(x, y) =

2 ex

1 + e2x+2y
;

and the matrix H itself reads:
(2.2)

H =



1 −1 0 2 0 −16 0 272 0 · · ·
0 −1 2 2 −16 −16 272 272
−1 1 4 −14 −32 256 544
0 5 −10 −46 224 800
5 −5 −56 178 1024
0 −61 122 1202
−61 61 1324

0 1385
1385

...


.

The Entringer numbers En(m) mentioned in the introduction appear
as entries of the matrix H, displayed along the counter-diagonals with a
given sign. In fact, we have the relation

(2.3) hi,j =

{
(−1)nEi+j+1(j + 1), if i+ j = 2n;
(−1)nEi+j+1(i+ 1), if i+ j = 2n− 1;

as can be verified by induction, or still

(2.4) E2n+1(j + 1) = (−1)n h2n−j,j (0 ≤ j ≤ 2n);

(2.5) E2n(i+ 1) = (−1)n hi,2n−1−i (0 ≤ i ≤ 2n− 1).

The matrix H will be given a key role in Section 3.

6



SEIDEL TRIANGLE MATRICES AND BI-ENTRINGER NUMBERS

We now come to the main definition of this section. A sequence of square
matrices (An) (n ≥ 1) is called a Seidel triangle sequence if the following
three conditions are fulfilled:

(STS1) each matrix An is of dimension n;
(STS2) each matrix An has null entries along and below its diagonal;

let (an(m, k) (0 ≤ m < k ≤ n − 1) denote its entries strictly above its
diagonal, so that

A1 = ( · ) ; A2 =

(
· a2(0, 1)
· ·

)
; A3 =

 · a3(0, 1) a3(0, 2)
· · a3(1, 2)
· · ·

 ; . . . ;

An =



· an(0, 1) an(0, 2) · · · an(0, n− 2) an(0, n− 1)
· · an(1, 2) · · · an(1, n− 2) an(1, n− 1)
...

...
...

. . .
...

...
· · · · · · an(n− 3, n− 2) an(n− 3, n− 1)
· · · · · · · an(n− 2, n− 1)
· · · · · · · ·

;

the dots “·” along and below the diagonal referring to null entries.

(STS3) for each n ≥ 2, the following relation holds:

an(m, k)− an(m, k + 1) = an−1(m, k) (m < k).

Record the last columns of the triangles A2, A3, A4, A5, . . . , read from
top to bottom, namely, a2(0, 1); a3(0, 2), a3(1, 2); a4(0, 3), a4(1, 3),
a4(2, 3); a5(0, 4), a5(1, 4), a5(2, 4), a5(3, 4); . . . as counter-diagonals of
an infinite matrix H = (hi,j)i,j≥0, as shown next:

(2.6) H :=



0 1 2 3 4

0 a2(0, 1) a3(1, 2) a4(2, 3) a5(3, 4) a6(4, 5) · · ·
1 a3(0, 2) a4(1, 3) a5(2, 4) a6(3, 5)
2 a4(0, 3) a5(1, 4) a6(2, 5)
3 a5(0, 4) a6(1, 5)
4 a6(0, 5)

...


,

In an equivalent manner, the entries of H are defined by:

(2.7) hi,j = ai+j+2(j, i+ j + 1).

The next theorem shows that the three-variable generating function for
a Seidel triangle sequence, when suitably normalized, can be expressed in
a very closed form.
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Theorem 2.2. The three-variable generating function for the Seidel
triangle sequence (An = (an(m, k)))n≥1 is equal to

∑
1≤m+1≤k≤n−1

an(m, k)
xn−k−1

(n− k − 1)!

yk−m−1

(k −m− 1)!

zm

m!
= exH(x+ y, z),

where H is the infinite matrix defined in (2.7).

Proof. We set up a sequence of infinite matrices (Ω(p) = ((ω
(p)
i,j )i,j≥0))

(p ≥ 0) that record the rows of the matrices An in the following manner

Ω(p) =


ap+2(p, p+ 1) ap+3(p, p+ 2) ap+4(p, p+ 3) · · ·
ap+3(p, p+ 1) ap+4(p, p+ 2)
ap+4(p, p+ 1)

...

 ,

so that the rows labeled p of the triangles An, if they exist, are displayed

as counter-diagonals in Ω(p). Alternatively, the coefficients ω
(p)
i,j are defined

by

(2.8) ω
(p)
i,j = ap+i+j+2(p, p+ j + 1).

By (2.7) and (2.8) H(x, z) =
∑
p≥0

zp

p!
H•,p(x) =

∑
p≥0

zp

p!
Ω

(p)
0,•(x). From rule

(STS3) we get ap+k(p, p + m) − ap+k(p, p + m + 1) = ap+k−1(m, p + m),
so that each matrix Ω(p) is a Seidel matrix. It follows by Proposition 2.1
that

Ω(p)(x, y) = exΩ
(p)
0,•(x+ y).

Define: Ω(x, y, z) :=
∑
p≥0

zp

p!
Ω(p)(x, y). Then,

Ω(x, y, z) =
∑
p≥0

zp

p!
Ω(p)(x, y) =

∑
p≥0

zp

p!
exΩ

(p)
0,•(x+ y) = exH(x+ y, z).

On the other hand,

Ω(x, y, z) =
∑
p≥0

zp

p!
Ω(p)(x, y) =

∑
i,j,p≥0

zp

p!

xi

i!

yj

j!
ω
(p)
i,j

=
∑

i,j,p≥0

zp

p!

xi

i!

yj

j!
ap+i+j+2(p, p+ j + 1).
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With the change of variables p+ i+ j + 2 = n, p = m, p+ j + 1 = k, we
then get

Ω(x, y, z) =
∑

1≤m+1≤k≤n−1

an(m, k)
xn−k−1

(n− k − 1)!

yk−m−1

(k −m− 1)!

zm

m!
.

This completes the proof of Theorem 2.2.

3. The Bi-Entringer numbers

Before proving Theorem 1.1 we give a list of properties involving the
Bi-Entringer numbers. The celebrated identities à la boustrophedon (see
[MSY96], and [Ro13, p. 95-101] for a more literary approach) satisfied by
the Entringer numbers En(m) can be extended over to the Bi-Entringer
numbers En(m, k), as stated in relations (3.1)—(3.4) below.

Proposition 3.1. We have:
(i) En(m,m) = 0 for all m and En(n, k) = 0 for all k and n ≥ 2;
(ii) for n odd and 1 ≤ k,m ≤ n

En(m, k) =

n−1∑
j=k

En−1(m, j) if m < k;(3.1)

En(m, k) =
n−1∑
j=k

En−1(m− 1, j) if m > k.(3.2)

In particular, En(n− 2, n− 1) = 0 for n ≥ 5; En(m,n) = 0 for all n,m.

(iii) For n even and 1 ≤ m, k ≤ n we further have:

En(m, k) =

k−1∑
j=1

En−1(m, j) if m < k;(3.3)

En(m, k) =
k−1∑
j=1

En−1(m− 1, k) if m > k.(3.4)

In particular, En(n− 1, n) = 0 when n ≥ 4; En(i, 1) = 0 for all i.
(iv) Each matrix Mn is symmetric with respect to its diagonal (resp.

its counter-diagonal), whenever n is odd (resp. even), that is,

En(m, k) =

{
En(k,m), when n is odd,
En(n+ 1− k, n+ 1−m), when n is even.

(3.5)

9
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Moreover,∑
k

En(m, k) = En(m) (n ≥ 1);(3.6)

∑
m

En(m, k) =

{
En(k), when n is odd;
En(n+ 1− k), when n is even.

The proofs of all those properties are easy, by simple manipulations; in
particular, (3.5) by using the basic dihedral transformations on alternating
permutations. They are omitted.

Proposition 3.2 (The finite difference relations). We have:

(3.7) En(m, k)− En(m, k + 1) = (−1)n−1En−1(m, k),

if 1 ≤ m < k ≤ n− 1;

(3.8) En(m, k)− En(m, k + 1) = (−1)n−1En−1(m− 1, k),

if 2 ≤ k + 1 < m ≤ n.

Proof. The two identities can be proved by simple iterations of (3.1)-
(3.4). Alternatively, we can also proceed as follows. Let mAltn k (resp.
mAltn l k) designate the number of all σ from Altn starting with m and
ending with k (resp. ending with the right factor l k). We have:

mAltn k −mAltn (k + 1) =

{
−mAltn k (k + 1), if n is even;
mAltn (k + 1) k, if n is odd.

Next, if n is even,

−mAltn k (k + 1) =

{
−mAltn−1 k, if 1 ≤ m < k ≤ n− 1;
−(m− 1) Altn−1 k, if 2 ≤ k + 1 < m ≤ n;

and if n is odd,

mAltn (k + 1) k =

{
mAltn−1 k, if 1 ≤ m < k ≤ n− 1;
(m− 1) Altn−1 k, if 2 ≤ k + 1 < m ≤ n.

Now, let the sequence of matrices (Wn) = (en(m, k)) be obtained from
the matrices (Mn) = (En(m, k)) by making the following modifications:

(W1) W1 := (0);

(W2) Wn := Mn for n ≡ 2, 3 (mod 4) and n ≥ 2;

(W3) Wn := (−1)Mn for n ≡ 0, 1 (mod 4);

(W4) delete the lower triangle from each matrix Wn;

(W5) make the labels start from 0, 1, 2, . . .

10
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In other words, for m < k define the normalized Bi-Entringer Numbers
en(m, k) to be:

e2n(m, k) := (−1)n+1E2n(m+ 1, k + 1);(3.9)

e2n+1(m, k) := (−1)n+1E2n+1(m+ 1, k + 1).(3.10)

Their first values appear in Fig. 3.1.

W1 =
( 0

0 ·
)
; W2 =

( 0 1

0 . 1

1 . .

)
; W3 =


0 1 2

0 . 1 .

1 . . .

2 . . .

;

W4 =


0 1 2 3

0 . 0 −1 −1

1 . . −1 −1

2 . . . 0

3 . . . .

; W5 =


0 1 2 3 4

0 . −2 −2 −1 .

1 . . −2 −1 .

2 . . . 0 .

3 . . . . .

4 . . . . .

;

W6 =


. 0 2 4 5 5
. . 2 4 5 5
. . . 4 4 4
. . . . 2 2
. . . . . 0
. . . . . .

 ; W7 =


. 16 16 14 10 5 .
. . 16 14 10 5 .
. . . 12 8 4 .
. . . . 4 2 .
. . . . . 0 .
. . . . . . .
. . . . . . .

 .

Fig. 3.1. The normalized Bi-Entringer Numbers en(m, k).

By Proposition 3.2, the sequence (Wn) is a Seidel triangle sequence,
and the corresponding matrix H, defined by (2.6)–(2.7), is equal to

H =



0 1 2 3 4 5

0 e2(0, 1) · e4(2, 3) · e6(4, 5) · · · ·
1 · e4(1, 3) · e6(3, 5) ·
2 e4(0, 3) · e6(2, 5) ·
3 · e6(1, 5) ·
4 e6(0, 5) ·
5 ·

...

,

the “dots” being written in place of 0’s. Note that all the counter-diagonals
e2n+1(0, 2n), e2n+1(1, 2n), . . . , e2n+1(2n− 1, 2n), which are equal to the
last columns of the W2n+1’s, have null entries.

It then remains to evaluate e2n(m, 2n−1) for 0 ≤ m ≤ 2n−1. By (3.9)
we have: e2n(m, 2n − 1) = (−1)n+1E2n(m + 1, 2n). But E2n(m + 1, 2n)
is equal to the Entringer number E2n−1(m + 1), as each alternating
permutation σ from Alt2n such that Fσ = m + 1 and Lσ = 2n can
be mapped onto a permutation from Alt2n−1 starting with (m + 1) by
simply deleting the last letter (2n), and this in a bijective manner.

11
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Now, by (2.4), E2n−1(m+1) = E2(n−1)+1(m+1) = (−1)n−1 h2n−2−m,m

for 0 ≤ m ≤ 2n− 2. Altogether,

(3.11) e2n(m, 2n− 1) = h2n−2−m,m (0 ≤ m ≤ 2n− 2),

that is, by (2.2),

H=



1 · 0 · 0 · 0 · · · ·
· −1 · 2 · −16 ·

−1 · 4 · −32 ·
· 5 · −46 ·
5 · −56 ·
· −61 ·

−61 ·
·
...


.

Thus, H is obtained from the matrix H, displayed in (2.2), by replacing
all the entries hi,j such that i + j is odd by zero. By (2.1) we have

H(x, y) =
2ex

1 + e2x+2y
, so that

(3.12) H(x, y) =
H(x, y) +H(−x,−y)

2
= ex

1 + e2y

1 + e2x+2y
.

Let

(3.13) Ω(x, y, z) =
∑

1≤m+1≤k≤n−1

en(m, k)
xn−k−1

(n− k − 1)!

yk−m−1

(k −m− 1)!

zm

m!
.

be the three-variate generating function for the en(m, k)’s. By Theorem 2.2

(3.14) Ω(x, y, z) = exH(x+ y, z) = e2x+y 1 + e2z

1 + e2x+2y+2z
.

With I :=
√
−1 equation (3.13) reads:

Ω(xI, yI, zI) =
∑

1≤m+1≤k≤n−1

In−2en(m, k)
xn−k−1

(n− k − 1)!

yk−m−1

(k −m− 1)!

zm

m!
.

But, by (3.9) and (3.10)

I2n−2e2n(m, k) = E2n(m+ 1, k + 1);

I2n−1e2n+1(m, k) = IE2n+1(m+ 1, k + 1).

12
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Therefore,

Ω(xI, yI, zI) =
∑

1≤m+1≤k≤2n−1

E2n(m+ 1, k + 1)
x2n−k−1

(2n− k − 1)!

yk−m−1

(k −m− 1)!

zm

m!

+ I
∑

1≤m+1≤k≤2n

E2n+1(m+ 1, k + 1)
x2n−k

(2n− k)!

yk−m−1

(k −m− 1)!

zm

m!
.

Next, (3.14) becomes:

Ω(xI, yI, zI) = e2xI+yI 1 + e2zI

1 + e2xI+2yI+2zI

= exI
e−zI + ezI

e−xI−yI−zI + exI+yI+zI

= (cos(x) cos(z) + I sin(x) cos(z))/ cos(x+ y + z).

By comparing the above two identities for Ω(xI, yI, zI), we obtain (1.6)
and (1.8) in Theorem 1.1.

To prove (1.7) in Theorem 1.1 let (W ′n) = (e′n(m, k)) be the sequence of
matrices obtained from (Mn) = (En(m, k)) by the following modifications:

(W′1) W ′1 := (0);

(W′2) W ′n := Mr
n for n ≡ 1, 2 (mod 4) and n ≥ 2, where Mr

n is
obtained from Mn by performing a rotation by 180o about its center;

(W′3) W ′n := (−1)Mr
n for n ≡ 0, 3 (mod 4);

(W′4) delete the lower triangle of each matrix W ′n;

(W′5) start labelling from 0, 1, 2, . . .

In other words, for m < k define the normalized Bi-Entringer numbers
e′n(m, k) to be:

e′2n(m, k) = (−1)n+1E2n(2n−m, 2n− k);(3.15)

e′2n+1(m, k) = (−1)nE2n+1(2n+ 1−m, 2n+ 1− k).(3.16)

The first values of the W ′n are shown in Fig. 3.2.

W ′
1 =

( 0

0 ·
)
; W ′

2 =

( 0 1

0 . 0

1 . .

)
; W ′

3 =


0 1 2

0 . 0 .

1 . . −1

2 . . .

;

W ′
4 =


0 1 2 3

0 . 0 0 0

1 . . −1 0

2 . . . 0

3 . . . .

; W ′
5 =


0 1 2 3 4

0 . . . . .

1 . . 0 1 1

2 . . . 2 2

3 . . . . 2

4 . . . . .

;

13
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W ′
6 =


. 0 0 0 0 0
. . 2 2 1 0
. . . 4 2 0
. . . . 2 0
. . . . . 0
. . . . . .

 ; W ′
7 =


. . . . . . .
. . 0 −2 −4 −5 −5
. . . −4 −8 −10 −10
. . . . −12 −14 −14
. . . . . −16 −16
. . . . . . −16

 .

Fig. 3.2. The normalized Bi-Entringer Numbers e′n(m, k).

By Proposition 3.2, (W ′n) is a Seidel triangle sequence, and the corre-
sponding matrix H defined by (2.6)–(2.7), we shall denote by H ′ = (h′i,j),
is equal to:

H′ =



0 1 2 3 4 5

0 · e′3(1, 2) · e′5(3, 4) · e′7(5, 6) · · ·
1 e′3(0, 2) · e′5(2, 4) · e′7(4, 6)
2 · e′5(1, 4) · e′7(3, 6)
3 e′5(0, 4) · e′7(2, 6)
4 · e′7(1, 6)
5 e′7(0, 6)

...

.

Its counter-diagonals e′2n(0, 2n−1), e′2n(1, 2n−1), . . . , e′2n(2n−2, 2n−1)
have null entries, as it is so for the last columns of the W ′2n’s. Furthermore,
e′2n+1(m, 2n) = h2n−m−1,m (0 ≤ m ≤ 2n− 1) by (2.5) and (3.16), so that

H′ =



· −1 · 2 · −16 · · · ·
0 · 2 · −16 ·
· 1 · −14 ·
0 · −10 ·
· −5 ·
0 ·
·
...


,

which is derived from H by replacing the entries hi,j such that i + j is
even by 0. Therefore,

H ′(x, y) =
H(x, y)−H(−x,−y)

2
= ex

1− e2y

1 + e2x+2y
.

Let

Ω′(x, y, z) =
∑

1≤m+1≤k≤n−1

e′n(m, k)
xn−k−1

(n− k − 1)!

yk−m−1

(k −m− 1)!

zm

m!
.(3.17)

be the generating function for the e′n(m, k)’s. By Theorem 2.2

Ω′(x, y, z) = exH ′(x+ y, z) = e2x+y 1− e2z

1 + e2x+2y+2z
.(3.18)

14
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Then,

Ω′(xI, yI, zI) =
∑

1≤m+1≤k≤n−1

In−2en(m, k)
xn−k−1

(n− k − 1)!

yk−m−1

(k −m− 1)!

zm

m!
.

By (3.15) and (3.16)

I2n−2e′2n(m, k) = E2n(2n−m, 2n− k);

I2n−1e′2n+1(m, k) = −I E2n+1(2n+ 1−m, 2n+ 1− k).

Therefore,

Ω′(xI, yI, zI)

=
∑

1≤m+1≤k≤2n−1

E2n(2n−m, 2n− k)
x2n−k−1

(2n− k − 1)!

yk−m−1

(k −m− 1)!

zm

m!

− I
∑

1≤m+1≤k≤2n

E2n+1(2n+ 1−m, 2n+ 1− k)
x2n−k

(2n− k)!

yk−m−1

(k −m− 1)!

zm

m!
.

On the other hand, (3.18) becomes:

Ω′(xI, yI, zI) = e2xI+yI 1− e2zI

1 + e2xI+2yI+2zI

= exI
e−zI − ezI

e−xI−yI−zI + exI+yI+zI

= (sin(x) sin(z)− I cos(x) sin(z))/ cos(x+ y + z).

Compare the above two identities for Ω(xI, yI, zI) and use (3.6). This
proves (1.8) in Theorem 1.1, and yields another proof of the identity
E2n+1(m, k) = E2n+1(k,m).

4. Row sums with binomial coefficients

We next show that the closed forms for the generating functions for the
Bi-Entringer numbers derived in (1.6)–(1.8) provide several identities for
the numbers themselves, all involving binomial coefficients.

Proposition 4.1. We have:

2n∑
k=m

(−1)k
(

2n

k

)(
k

m

)
E2n+2(m+ 1, k + 2) = (−1)nχ(m = 0).

Proof. Identity (1.6) may be rewritten as:

(4.1)
∑

0≤m≤k≤2n

zm

m!

x2n−k

(2n− k)!

yk−m

(k −m)!
E2n+2(m+1, k+2) =

cos(x) cos(z)

cos(x+ y + z)
.

15
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With y = −x and z = −xz identity (4.1) becomes:

(4.2)
∑

0≤m≤k≤2n

zm

m!

x2n

(2n− k)!

(−1)k

(k −m)!
E2n+2(m+1, k+2) =

cos(x) cos(−xz)
cos(−xz)

.

Let αn(m) be the left-hand side of the identity to prove. Then, (4.2) can

be expressed as:
∑

n,m≥0

zm
x2n

(2n)!
αn(m) = cos(x).

Example. n = 2.

m = 1 :

−
(

4

1

)(
1

1

)
2+

(
4

2

)(
2

1

)
4−
(

4

3

)(
3

1

)
5+

(
4

4

)(
4

1

)
5 = −8+48−60+20 = 0;

m = 0 :

+

(
4

0

)
0−

(
4

1

)
2 +

(
4

2

)
4−

(
4

3

)
5 +

(
4

4

)
5 = 0− 8 + 24− 20 + 5 = 1.

Proposition 4.2. We have

2n∑
k=m

(−1)k
(

2n

k

)(
k

m

)
E2n+2(k + 2,m+ 1) = (−1)n−(m−1)/2

(
2n

m

)
Tm,

with the convention that Tm = 0, if m is even, and equal to the tangent
number Tm otherwise.

Proof. Rewrite identity (1.7) as

(4.3)
∑

0≤m≤k≤2n

zm

m!

x2n−k

(2n− k)!

yk−m

(k −m)!
E2n+2(k+2,m+1) =

sin(x) sin(z)

cos(x+ y + z)
,

and let y = −x and z = −xz in (4.3), to get:

(4.4)
∑

0≤m≤k≤2n

zm

m!

x2n

(2n− k)!

(−1)k

(k −m)!
E2n+2(k+2,m+1) =

sin(x) sin(−xz)
cos(−xz)

.

Let αn(m) be the left-hand side of the identity to be proved. Then,∑
n,m≥0

zm
x2n

(2n)!
αn(m) = − sin(x) tan(xz) = − sin(x)

∑
m

Tm
(xz)m

m!
.

Hence,∑
n≥0

x2n

(2n)!
αn(m) = − sin(x)Tm

xm

m!
=
∑
k≥0

(−1)k+1 x2k+1

(2k + 1)!
Tm

xm

m!
.
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Example. n = 3.

m = 1 :

−
(

6

1

)(
1

1

)
16+

(
6

2

)(
2

1

)
16−

(
6

3

)(
3

1

)
14+

(
6

4

)(
4

1

)
10+

(
6

5

)(
5

1

)
5 = −6;

m = 2 :

+

(
6

2

)(
2

2

)
32−

(
6

3

)(
3

2

)
28 +

(
6

4

)(
4

2

)
20−

(
6

5

)(
5

2

)
10 = 0.

Proposition 4.3. We have, for m ≥ 1

2n−1∑
k=m

(−1)k
(

2n− 1

k

)(
k

m

)
E2n+1(m+ 1, k + 2) = (−1)n+1χ(m = 0).

Proof. Rewrite identity (1.8) as

(4.5)
∑

0≤m≤k≤2n−1

zm

m!

x2n−1−k

(2n−1−k)!

yk−m

(k−m)!
E2n+1(m+1, k+2)=

sin(x) cos(z)

cos(x+y+z)
;

and let y = −x and z = −xz in (4.5), to get:∑
0≤m≤k≤2n−1

zm

m!

x2n−1

(2n− 1− k)!

(−1)k

(k −m)!
E2n+1(m+ 1, k + 2) = sin(x).

Then,

(4.6)
∑

0≤m≤k≤2n−1

zm

m!

1

(2n− 1− k)!

(−1)k

(k −m)!
E2n+1(m+ 1, k + 2)

= (−1)n+1 1

(2n− 1)!
.

Let αn(m) be the left-hand side of the identity to prove. By (4.6),
αn(0) = (−1)n+1 and αn(m) = 0 for m ≥ 1.

Example. n = 3.

m = 0 :(
5

0

)(
0

0

)
16−

(
5

1

)(
1

0

)
16 +

(
5

2

)(
2

0

)
14−

(
5

3

)(
3

0

)
10 +

(
5

4

)(
4

0

)
5 = 1;

m = 1 :

−
(

5

1

)(
1

1

)
16 +

(
5

2

)(
2

1

)
14−

(
5

3

)(
3

1

)
10 +

(
5

4

)(
4

1

)
5 = 0.
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5. Proofs of Theorem 1.2

In section 4 we have derived several identities for the Bi-Entringer num-
bers all involving binomial coefficients, in contrast to identity (1.9) that
linearly relates Poupard numbers to tangent numbers and Bi-Entringer
numbers. The next analytical proof makes use of the Laplace transform

L(f(x), x, s) : =

∫ ∞
0

f(x)e−xs dx,

which, in particular, maps xk/k! onto 1/sk+1:

L(
xk

k!
, x, s) =

1

sk+1
.

To illustrate this Laplace transform method we first give a proof of
(1.3). Apply the Laplace transform twice to the left-hand side of (1.1),
first, with respect to x, s, then to y, t. We get

1 +
∑
n≥1

∑
1≤k≤2n+1

gn+1(k)
1

t2n+2−k
1

sk
,

an expression which becomes

1 +
∑
n≥1

∑
1≤k≤2n+1

gn+1(k)
1

s2n+2

for s = t. We need prove that

1 +
∑
n≥1

∑
1≤k≤2n+1

gn+1(k)
1

s2n+2
= 1 +

∑
n≥1

T2n+1
1

s2n+2
,

which is equivalent to∫ ∞
0

∫ ∞
0

cos(x− y)

cos(x+ y)
e−t(x+y)dx dy =

∫ ∞
0

tan(x) e−txdx.

But this identity is true, since by letting r = x+ y:∫ ∞
0

∫ ∞
0

cos(x− y)

cos(x+ y)
e−t(x+y)dx dy =

∫ ∞
0

∫ r

0

cos(r − 2y)

cos(r)
e−trdy dr

=

∫ ∞
0

e−tr

cos(r)

∫ r

0

cos(r − 2y)dy dr

=

∫ ∞
0

e−tr

cos(r)
sin(r)dr

=

∫ ∞
0

tan(r)e−trdr,

18
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so that identity (1.3) is proved.

Analytical proof of Theorem 1.2. Start with identity (4.5), which is
another form of (1.8) and apply the Laplace transform to its left-hand
side three times with respect to (x, s), (y, t), (z, u), respectively. We get

∑
0≤m≤k≤2n−1

1

um+1

1

s2n−k
1

tk−m+1
E2n+1(m+ 1, k + 2),

which becomes

(5.1)
∑

0≤m≤k≤2n−1

1

s2n+2

1

tk+2
E2n+1(m+ 1, k + 2),

when t ← st and u ← st. Apply the Laplace transform to the right-hand
side of (4.5) three times with respect to (x, s), (y, t), (z, u), respectively,
and let t← st, u← st. With r = y + z we get:∫ ∞

0

∫ ∞
0

∫ ∞
0

sin(x) cos(z)

cos(x+ y + z)
e−xs−yst−zstdx dy dz

=

∫ ∞
0

∫ ∞
0

∫ r

0

sin(x) cos(z)

cos(x+ r)
e−xs−rstdz dr dx

=

∫ ∞
0

∫ ∞
0

sin(x) sin(r)

cos(x+ r)
e−xs−rstdr dx

=

∫ ∞
0

∫ ∞
0

1

2

(cos(x− r)
cos(x+ r)

− 1
)
e−xs−rstdr dx

=
1

2

∫ ∞
0

∫ ∞
0

(∑
n≥1

∑
1≤k≤2n+1

gn+1(k)
x2n+1−k

(2n+ 1− k)!

rk−1

(k − 1)!

)
e−xs−rstdr dx

=
1

2

∑
n≥1

∑
1≤k≤2n+1

gn+1(k)
1

s2n+2−k
1

(st)k
=

1

2

∑
n≥1

∑
1≤k≤2n+1

gn+1(k)
1

s2n+2

1

tk
.(5.2)

Then, (1.9) is a consequence of the identity (5.1)=(5.2).

Combinatorial proof of Theorem 1.2. We make use of the greater
neighbor statistic “grn,” which was defined in our previous paper [FH13a]
as follows: let σ = σ(1)σ(2) · · ·σ(n) be an alternating permutation from
Altn, so that σ(i) = n for a certain i (1 ≤ i ≤ n). By convention, let
σ(0) = σ(n+ 1) := 0. Then, its definition reads:

grn(σ) := max{σ(i− 1), σ(i+ 1)}.
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Let A2n+1 be the set of all decreasing alternating permutations of
{1, 2, · · · , 2n+1}, i.e., permutations w = x1x2 · · ·x2n+1 such that x1 > x2,
x2 < x3, x3 > x4, etc. and let A2n+1,k := {σ ∈ A2n+1 : grn(σ) = k}. It
was proved in [FH13a] (Theorem 1.4) that

(5.3) gn+1(k + 1) = #A2n+1,k .

For n ≥ 1 each set A2n+1,k can be split into two subsets of the same car-
dinality A<

2n+1,k +A>
2n+1,k, depending on whether the greater neighbor k

is on the left, or on the right of (2n+ 1).
On the other hand, let

G2n+1,k := {σ ∈ Alt2n+1 : Lσ = k > Fσ}

be the set of all increasing alternating permutations from Alt2n+1 having
their last letter equal to k and greater than their first letter. Then, each
permutation

σ = x1 · · ·xj−1(2n+ 1)xj+1 · · ·x2n+1

from A<
2n+1,k, which is such that xj−1 = k > xj+1 can be mapped onto

the permutation τ = (xj+1 + 1) · · · (x2n+1 + 1) 1 (x1 + 1) · · · (xj−1 + 1)
from G2n+1,k+1 in a bijective manner. Thus, #G2n+1,k+1 = #A<

2n+1,k

and 2 #G2n+1,k+1 = #A<
2n+1,k +#A>

2n+1,k = #A2n+1,k, so that

gn+1(k + 1) = 2 #G2n+1,k+1 = 2
∑
l≤k

E2n+1(k + 1, l),

as E2n+1(k+ 1, k+ 1) = 0. This implies identity (1.9) since E2n+1(m, l) =
E2n+1(l,m) for all m, l (see Proposition 3.1(iv)).

Dumont [Du14] drew our attention to the following relation between
Poupard and Bi-Entringer numbers, namely,

(5.4) gn(k) = 2E2n(k, k + 1) = 2E2n(k + 1, k).

Before giving a combinatorial proof of that identity we state and prove
a property on alternating permutations, both increasing and decreasing,
that involves the statistics F, L, and also two other statistics attached to
the left f and right l neighbors of the maximum. Each permutation σ of
12 · · ·n may be written

(5.5) σ = x1x2 · · ·xn = F(σ) · · · f(σ) max(σ) l(σ) · · ·L(σ),

where F(σ) = x1, L(σ) = xn and, if max(σ) := n = xk, then f(σ) = xk−1,
l(σ) = xk+1, where the convention x0 = xn+1 = 0 still holds. For each
finite word w = y1y2 · · · ym, whose letters are integers, it is convenient to
use the notation: (w + 1) := (y1 + 1)(y2 + 1) · · · (ym + 1), when w is not
the empty word e, and e when it is.
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Property 5.1. Let σ = w1 max(σ)w2 be a permutation of 12 · · · (2n−1),
so that max(σ) = 2n− 1. Then, the mapping

φ1 : w1 max(σ)w2 7→ w2 max(σ)w1(5.6)

is a bijection of Alt2n−1 onto itself having the property

(f, l)σ = (L,F)φ1(σ),(5.7)

while the mapping

φ2 : w1 max(σ)w2 7→ (w2 + 1) 1 (w1 + 1)(5.8)

is a bijection of A2n−1 onto Alt2n−1 having the property

(f, l)σ = (L−1,F−1)φ2(σ).(5.9)

The proof of Property 5.1 is straightforward. Just mention three ex-
amples: (i) φ1(3427561) = 5617342 and (f, l) (342 7 561) = (2, 5) =
(L,F) (561 7 342); (ii) φ2(5471326) = 2437165 and (f, l)(54 7 1326) =
(4, 1) = (L−1,F−1)(2 43716 5); (iii) φ2(7461325) = 5724361 and
(f, l)(7 461325) = (0, 4) = (L−1,F−1)(5 72436 1).

It follows from (5.6)–(5.9) that the product φ1 ◦ φ2 : A2n−1 → Alt2n−1
has the property that for every σ from A2n−1 we have: (f−1, l−1)(φ1 ◦
φ2)(σ) = (L−1,F−1)φ2(σ) = (f, l)σ. In view of (5.3) and since grn =
max(l, f), this implies the identity:

(5.10) gn(k) = #A2n−1,k−1 = # Alt2n−1,k .

For n ≥ 1 each set Alt2n−1,k can be split into two subsets of the
same cardinality Alt<2n−1,k + Alt>2n−1,k, depending on whether the greater
neighbor k is on the left, or on the right of (2n + 1). Now, with each
permutation

σ = x1x2 · · ·xj−2 k (2n− 1)xj+1xj+2 · · ·x2n−1
from Alt<2n−1,k associate the permutation

φ3(σ) := k x′j−2 · · ·x′2x′1 (2n)x′2n−1 · · ·x′j+2x
′
j+1(k + 1),

where

x′j =

{
xj , if xj ≤ k;
xj + 1, if xj > k.

It is obvious that φ3 is a bijection of Alt2n−1,k onto the set E2n,k of
all permutations τ from Alt2n such that F τ = k, L τ = k + 1. As
#E2n,k = E2n(k, k + 1), it follows that

(5.11) # Alt2n−1,k = 2# Alt<2n−1,k = 2E2n(k, k + 1).

This proves identity (5.2) in view of (5.10) and (5.11).
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Final Remarks. The Seidel Matrix method developed in this paper can
also be used to derive the three-variable generating functions obtained in
our previous two papers [FH13b] and [FH13c]. It is also the main tool in
our next paper [FH13d].
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[An1879] Désiré André. Développement de secx et tanx, C. R. Math. Acad.
Sci. Paris, vol. 88, , p. 965–979.
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