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B.P. 47 870, 21078 DIJON-Cedex France
e-mail: {barjl}@u-bourgogne.fr

received 18thDecember 2014,

We explore the classical pattern avoidance question in the case of irreducible permutations,i.e., those in which there
is no indexi such thatσ(i + 1) − σ(i) = 1. The problem is addressed completely in the case of avoidingone
or two patterns of length three, and several well known sequences are encountered in the process, such as Catalan,
Motzkin, Fibonacci, Tribonacci, Padovan and Binary numbers. Also, we present constructive bijections between the
set of Motzkin paths of lengthn− 1 and the sets of irreducible permutations of lengthn (respectively fixed point free
irreducible involutions of length2n) avoiding a patternα for α ∈ {132, 213, 321}. This induces two new bijections
between the set of Dyck paths and some restricted sets of permutations.
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1 Introduction and notation
Let Sn be the set of permutations on[n] = {1, 2, . . . , n}, i.e., all one-to-one correspondences from[n]
into itself. LetS be the set of all permutations. We represent a permutationσ ∈ Sn in one-line notation
σ = σ1σ2 · · ·σn whereσi = σ(i) for all i ∈ [n]. We denote byσr, σc andσ−1 the classical symmetries
of σ, i.e., thereverseσr = σn · · ·σ1, thecomplementσc = (n−σ1 +1) · · · (n−σn+1) and theinverse.

Let q = q1 · · · qk, k ≥ 1, be a sequence of pairwise different positive integers. Thereductionred(q) of q
is the permutation inSk obtained fromq by replacing thei-th smallest number ofq with i for 1 ≤ i ≤ k.
For instance, ifq = 53841 then we have red(q) = 42531. A permutationσ ∈ Sn avoidsthe pattern
π ∈ Sk, k ≥ 1, if and only if there does not exist a sequence of indices1 ≤ i1 < i2 < · · · < ik ≤ n such
thatσi1σi2 · · ·σik is order-isomorphic toπ (see [SS85, Wes90]),i.e. such thatπ =red(σi1σi2 · · ·σik).
We denote bySn(π) the set of permutations inSn avoiding the patternπ. For example, ifπ = 123 then
52143 ∈ S5(π) while 21534 /∈ S5(π). In the case whereσ does not avoidπ (or equivalentlycontains
π), π is said to beinvolvedin σ which is denotedπ � σ. A setF of permutations is called apermutation
classif it is closed downwards under this involvement relation. Many classical sequences in combinatorics
appear as the cardinality of pattern-avoiding permutationclasses. A large number of these results were
firstly obtained by West and Knuth [Knu73, SS85, Wes90, Wes94, Wes95] (see the surveys of Kitaev and
Mansour [KM, Man02]). Also Bóna [Bón04] has written a bookthat is dedicated to the notion of pattern
avoiding permutations. Some generalizations of pattern avoidance can be viewed in [Bar11, Pud10].
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A successionin a permutationσ ∈ Sn is a pair(σi, σi+1), 1 ≤ i ≤ n − 1, with σi+1 − σi = 1. For
instance, the pair(3, 4) is the only one succession inσ = 53421. Using the terminology of Atkinson and
Stitt (see [AS02]), a permutation with no successions will be also calledirreducible. They show how the
notion of irreducibility plays, in some sense, a dual role compared to indecomposability (a permutation
σ = σ1 · · ·σn is indecomposableif there does not existp ≤ n− 1 such thatσ1 · · ·σp is a permutation of
[p]). Indeed, irreducible permutations are crucial for the construction of a basis of some wreath products
C ≀ I whereC is a class of permutations andI is the class of identity permutations (see [AS02]). On
the other hand, an irreducible permutation can be also viewed as a permutation avoiding the bi-vincular
pattern(12, {1}, {1}) (see [Par09]).

LetSirr
n be the set of irreducible permutations of lengthn. For example, we haveSirr

3 = {132, 213, 321}.
The cardinality of the setsSirr

n is known (see [Ros68, Tan76, Tie43]) and given by

(n− 1)!

n−1
∑

k=0

(−1)k
n− k

k!
.

More generally, permutations with a given number of successions also appeared in combinatorial theory
literature (see [Kap44, Rio65]).

In this paper, we explore the classical pattern avoidance question in the case of irreducible permutations.
The problem is addressed completely in the case of avoiding one or two patterns of length three, and sev-
eral well-known sequences are encountered, such as the Catalan, Motzkin, Fibonacci, Binary, Tribonacci
and Padovan numbers. In Section 2, we present general enumerative results for sets of permutations that
areexpanded(i.e., closed under inflation) andclosed under deflation. In particular, we give bivariate gen-
erating functions according to the length of permutations and the number of successions. Generalizing
the two concepts of inflation and deflation for sets of fixed point free involutions, we obtain similar results
for involutions. In Section 3, we give exhaustive enumerative results for sets of irreducible permutations
avoiding one pattern of length three. For the sets counted bythe Motzkin numbers, we exhibit bijections
between them and the set of Motzkin paths. In Section 4, we focus on sets of irreducible permutations
avoiding two patterns of length three. In Sections 5 and 6, westudy irreducible (fixed point free) involu-
tions avoiding one pattern of length three. Exhaustive enumerative results are obtained, and we construct
bijections between fixed point free irreducible involutions of length2n avoidingα ∈ {132, 213, 321} and
Motzkin paths of lengthn− 1.

2 Preliminaries
A setF of permutations is said to beclosed under inflation(also calledexpanded, [AS02]) if whenever a
permutationσ = β i γ ∈ F so is the permutation obtained by replacingi with i (i + 1), after increasing
by one each other’s values greater thani in σ. A setF of permutations is said to beclosed under deflation
if whenever a permutationσ = β i (i + 1) γ so is the permutation obtained by replacingi (i + 1) with
i, after decreasing by one each other’s values greater than(i + 1) in σ. In the following, these two last
elementary transformations will be respectively calledinflation anddeflationof σ. Obviously, a setF
of irreducible permutations is closed under deflation sinceits elements do not contain any successions.
A set closed under pattern involvement is closed under deflation. Moreover, a set closed under pattern
involvement is expanded if and only if every basis element isirreducible (see Lemma 5, [AS02]).

In this section we provide general lemmas about generating functions for sets of permutations and fixed
point free involutions which are expanded and closed under deflation.
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Lemma 1 LetF be a set of permutations which is expanded and closed under deflation; letG be the set
of its irreducible permutations. We denote byg(x) the generating function ofG, andf(x, y) the bivariate
generating function ofF where the coefficient ofxnyk is the number of permutations of lengthn with
exactlyk successions. Then we have

f(x, y) = g

(

x

1− yx

)

.

In particular, the generating function ofF is g (x/(1 − x)).

Proof. Let Fk
n , n ≥ 1, 0 ≤ k ≤ n − 1, be the set of permutations of lengthn in F containing exactly

k successions. Obviously, we haveF irr
n = Gn = F0

n for n ≥ 1. Let σ be a permutation inFk
n , i.e, σ

contains exactlyk successions. We define the succession setIσ of indicesi ∈ [n− 1] such that(σi, σi+1)
is a succession ofσ, andJσ = {i ∈ [n], i − 1 ∈ Iσ}. SinceF is expanded and closed under deflation, a
permutationπ ∈ F irr

n−|Iσ| can be uniquely obtained from a permutationσ ∈ Fk
n by deleting all entriesσi,

i ∈ Jσ and reducing the result to a permutation ofF irr
n−|Iσ|. This construction produces a simple bijection

fromF irr
n−|Iσ| to the setFIσ

n of permutations inFn having the succession set equal toIσ .
Since inflations of terms in an irreducible permutation correspond exactly to the terms in the geometric

series expansion x
1−yx

= x+ yx2 + y2x3 + . . ., the above bijection implies

f(x, y) = g(x+ yx2 + y2x3 + . . .) = g(
x

1− yx
).

2

Now we give a similar Lemma for fixed point free involutions. In this case, we slightly modify the
two concepts of inflation and deflation. LetF be a set of involutions with no fixed points. We say that
F is expanded(closed under inflation) if whenever an involutionσ ∈ F and (i, j), 1 ≤ i < j ≤ n,
such thatσi = j, so is the permutationσ′ obtained fromσ by replacingσi with (σi + 1)(σi + 2), σj

with σj(σj + 1), and increasing by inc(k) =card{ℓ ∈ {i + 1, j + 1}, ℓ ≤ k} each other’s valuesk. For
instance, ifσ = 3 4 1 2 7 8 5 6, i = 2, j = 4, thenσ′ = 4 5 6 1 2 3 9 (10) 7 8. On the other hand, we
say thatF is closed under deflationif whenever an involutionσ ∈ F and(i, j), 1 ≤ i < j ≤ n− 1, such
thatσi = j, σi+1 = j + 1, so is the permutationσ′ obtained fromσ by deleting(i + 1) and(j + 1) and
reducing the result to a permutation. Obviously the set of all fixed point free involutions is expanded and
closed under deflation.

Lemma 2 LetF be a set of fixed point free involutions which is expanded and closed under deflation; let
G be the set of its irreducible involutions. We denote byg(x) the generating function ofG, andf(x, y) the
bivariate generating function ofF where the coefficient ofxnyk is the number of involutions of lengthn
with exactlyk successions. Then we have

f(x, y) = g

(

√

x2

1− y2x2

)

.

In particular, the generating function ofF is g
(

√

x2/(1− x2)
)

.
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Proof. This proof is a simple counterpart of the previous one. It suffices to remark that an involution with
no fixed points is necessarily of even length. 2

Lemma 1 ensures that if we know the generating function of a set G of irreducible permutations, then we
can easily obtain the bivariate generating function (according to the length and the number of successions)
of the wreath productG ≀ I whereI is the class of identity permutations (the wreath productG ≀ I is the
closure under inflation ofG). An immediate consequence is:if G is a set of irreducible permutations
such that the wreath productG ≀ I is enumerated by the Catalan numbers ([Slo], A00018) thenG is
enumerated by the Motzkin numbers ([Slo], A001006). Therefore, irreducible permutations ofSn(α),
n ≥ 1, α ∈ {321, 213, 132}, are enumerated by the Motzkin numbers (see Theorem 2).

3 Avoiding a pattern of length 3
In this section, we study the avoidance of one pattern of length 3 for irreducible permutations. The first
part uses arguments with generating functions while the second part presents bijective proofs for the sets
of permutations counted by Motzkin numbers. All enumerative results of this section are listed in Table
1.

3.1 Using generating functions
For α = 231, Atkinson and Stitt give a proof of Remark 1 (see [AS02], Section 6.1). The bijection
χ : σ → (σc)r, allows to conclude forα = 312.

Remark 1 For α ∈ {231, 312}, the generating function for the setsSirr
n (α), n ≥ 0, of irreducible

permutations avoidingα is given by

−1 +
2(1 + x)

1 + x+ x2 +
√

(1− x+ x2)2 − 8x2

(see [Slo], A078481).

Theorem 1 The generating function for the setsSirr
n (123), n ≥ 0, of irreducible permutations of length

n avoiding the pattern123 is given by (see [Slo], A114487):

2

1 + 2x2 +
√
1− 4x

.

Proof. Let σ be a permutation inSn(123)\Sirr
n (123). It necessarily contains a succession(k, k + 1),

1 ≤ k ≤ n − 1; let us take the leftmost succession. Thenσ can be writtenσ = uk(k + 1)v where
1 ≤ k ≤ n − 1, such thatu andv are two subsequences of[n]. Sinceσ avoids123, the set of values in
u necessarily equals to the interval[k + 2, n]. Sov belongs toSk−1(123), u avoids the pattern123 and
does not contain any successions. Letf(x) be the generating function for the setsSirr

n (123), n ≥ 0, the
above decomposition ofσ implies

c(x)− f(x) = x2 · f(x) · c(x),

wherec(x) = 1−
√
1−4x
2x is the generating function for the setsSn(123), i.e., the generating function for

the well-known Catalan numbers (see [Slo], A00018). We deduce:

f(x) =
c(x)

1 + x2 · c(x) =
2

1 + 2x2 +
√
1− 4x

.
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2

Theorem 2 For α ∈ {321, 213, 132}, the setsSirr
n (α), n ≥ 1, are enumerated by the Motzkin numbers

(see [Slo], A001006).

Proof. Forα ∈ {321, 213, 132}, the setS(α) =
∞
⋃

n=1
Sn(α) is expanded and closed under deflation. Let

g(x) be the generating function ofSirr(α); Lemma 1 of Section 2 proves thatc(x) = g(x/(1 − x)) and
thus:

g(x) = c(x/(1 + x)).

More precisely, the setSirr
n (α), n ≥ 1, is enumerated by the(n − 1)-th term of the Motzkin sequence

([Slo], A001006). 2

In fact, Lemma 1 yields the more general result:

Theorem 3 For α ∈ {321, 213, 132}, let S(α) be the set of permutations avoidingα, andf(x, y) its
bivariate generating function, where the coefficient ofxnyk is the number of permutations of lengthn
with k successions inS(α). Then we have

f(x, y) = c

(

x

1 + (1− y)x

)

,

wherec(x) is the generating function for the Catalan numbers.

Pattern Sequence Sloane an, n ≥ 1

{231}, {312} [AS02] −1 + 2(1+x)

1+x+x2+
√

(1−x+x2)2−8x2
A078481 1, 1, 3, 7, 19, 53, 153

{123} 2
1+2x2+

√
1−4x

A114487 1, 1, 3, 10, 31, 98, 321

{321}, {213}, {132} 1−x−
√
1−2x−3x2

2x2 A001006 1, 1, 2, 4, 9, 21, 51

Tab. 1: Wilf-equivalence classes for patterns of length 3 in irreducible permutations.

3.2 Bijective proofs
A Motzkin path of lengthn is a lattice path starting at(0, 0), ending at(n, 0), and never going below the
x-axis, consisting of up stepsU = (1, 1), horizontal stepsH = (1, 0), and down stepsD = (1,−1).
A Dyck path of length2n is a Motzkin path of the same length that does not contain any horizontal
steps. Dyck paths of length2n are enumerated by the well-known Catalan numbers ([Slo], A00018) and
Motzkin paths by the Motzkin numbers ([Slo], A001006). We refer to Donaghey, Shapiro [DS77] and
Stanley [Sta] for several combinatorial classes enumerated by the Motzkin and Catalan numbers.

• Bijective proof forSirr
n (132).

Here we construct a bijection betweenSirr
n (132) and the set of Motzkin paths of lengthn − 1. We

define the mapf that transforms a permutationσ = σ1σ2 · · ·σn ∈ Sirr
n (132) into the Motzkin pathM of

lengthn− 1 obtained by the following process:
For eachi from 1 ton− 1,
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(a) if σi < σi+1, then thei-th step ofM is a down stepD;

(b) if σi > σi+1 and there existsj > i+ 1 such thatσj = σi + 1, then thei-th step ofM is an up step
U ;

(c) otherwise, thei-th step ofM is an horizontal stepH .

For instance, the permutations21, 321, 213, 4213, 3214, 3241 and4321 are respectively transformed
by f into the Motzkin pathsH , HH , UD, HUD, UHD, UDH , HHH (see Figure 1 for an example
with n = 14).

Let us prove thatf is a one-to-one correspondence betweenSirr
n (132) and the set of Motzkin paths

of length(n − 1). Let σ be a permutation ofSirr
n (132). Let us takei, 1 ≤ i ≤ n − 1, such that(b) is

verified. Then, there existsj > i+1 such thatσj = σi+1. Sinceσ avoids132, σj−1 < σj and the index
j − 1 > i verifies the case(a). Conversely, ifi, 1 ≤ i ≤ n − 1, satisfies(a) thenσi < σi+1. Sinceσ is
irreducible, we haveσi+1 6= σi + 1. Thus, there existsj 6= i andj 6= i+ 1 such thatσj = σi+1 − 1. As
σ avoids132, we necessarily havej < i andj verifies(b). Hence, there is a one-to-one correspondence
between up steps and down steps such that each up step is associated with a down step on its right. This
is precisely the characterization of the Motzkin paths.

Conversely, letM be a Motzkin path of length(n− 1) and let us prove that there exists a permutation
σ ∈ Sirr

n (132) such thatf(σ) = M . We proceed by induction onn in order to construct the permutation
σ ∈ Sirr

n (132).

We distinguish two cases: (1)M = mHm′ wherem andm′ are two Motzkin paths and such thatm
does not contain any horizontal steps on thex-axis, and (2)M = mUm′D wherem andm′ are two
Motzkin paths such thatm does not belong to the case (1).

- (1) If M = mHm′, then we haveM = f(σ) whereσ = βnγ such thatγ (resp. red(βn)) is
recursively obtained from the Motzkin pathm′ (resp.m). Notice that the position ofn in σ creates the
horizontal stepH betweenm andm′.

- (2) If M = mUm′D, then we haveM = f(σ) whereσ = β(n− 1)γn such thatγ (resp. red(β(n−
1))) is recursively obtained from the Motzkin pathm′ (resp. m). Sincem does not belong to (1), its
associated permutation necessarily have its greatest element on the last position. We conclude with a
simple induction.

Notice that paths of type (1) are mapped to permutations whose last element is notn, and paths of type
(2) are mapped to permutations that end withn.

For example, ifM = mUm′D with m = UHD andm′ = UDH (n = 9), thenβ8 = 7658,
red(β8) = 3214, γ = 3241 andσ = 765832419. If M = mHm′ with m = UHD andm′ = UDH
(n = 8), thenβ8 = 7658, red(β8) = 3214, γ = 3241 andσ = 76583241.

Finally, the mapf is a one-to-one correspondence betweenSirr
n (132) and the set of Motzkin paths of

length(n− 1). 2

• Bijective proof forSirr
n (321).

Here we construct a bijection betweenSirr
n (321) and the set of Motzkin paths of lengthn − 1. Let

σ = σ1σ2 · · ·σn be a permutation inSirr
n (321), and fori ∈ [n] we denote bysi the maximum of the

set{σ1, σ2, . . . , σi}. We define the mapg that transforms a permutationσ ∈ Sirr
n (321) into the Motzkin

pathM of lengthn− 1 obtained by the following process:
For eachi from 1 ton− 1,
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Fig. 1: The Motzkin path UHUDDUUUDDUDD and its corresponding permutationsσ =
(12) (11) 9 8 (10) (13) 5 3 2 4 6 1 7 (14) and σ′ = 2 4 1 6 3 5 8 (10) (12) 7 9 (14) (11) (13) lying
respectively inSirr

14 (132) andSirr

14 (321).

(a) if si + 1 < σi+1, then thei-th step ofM is an up stepU ;

(b) if there existsj < i such thatσi+1 = sj + 1 andsj + 1 < σj+1, then thei-th step ofM is a down
stepD;

(c) otherwise, thei-th step ofM is an horizontal stepH .

For instance, the permutations21, 132, 213, 1324, 3142, 2143 and2413 are respectively transformed
by g into the Motzkin pathsH , UD, HH , UDH , HUD, HHH , UHD (see Figure 1 for an example of
length14).

Let us prove thatg is a one-to-one correspondence betweenSirr
n (321) and the set of Motzkin paths of

length(n − 1). Let σ be a permutation ofSirr
n (321). Let us takei, 1 ≤ i ≤ n − 1, such that(a) is

verified. Sincesi + 1 < σi+1, there existsj > i + 1, such thatσj = si + 1. A consequence is that the
index j − 1, i < j − 1 < n, verifies (b). Conversely, let us takei, 1 ≤ i ≤ n − 1, satisfying(b). So
there isj < i such thatσi+1 = sj + 1 andsj + 1 < σj+1 and the indexj verifies(a). Thus, there is a
one-to-one correspondence between up steps and down steps such that each up step is associated with a
down step on its right. This is precisely the characterization of the Motzkin paths.

Conversely, letM be a Motzkin path of length(n− 1) and let us prove that there exists a permutation
σ ∈ Sirr

n (321) such thatg(σ) = M . We proceed by induction onn in order to construct the permutation
σ ∈ Sirr

n (321).

We distinguish four cases: (1)M = UkDm; (2) M = UkHℓm; (3) M = HkUm; and (4)M =
HH . . .H , with k ≥ 1, ℓ ≥ 0, and wherem is a suffix of the Motzkin pathM .

- If M = UkDm, then we haveM = g(σ) whereσ is recursively obtained from the permutationπ
such thatg(π) = Uk−1Hm by adding 1 on the left ofπ and after increasing by one all values ofπ. Notice
thatπ cannot begin with 1 since there would be a down step just afterUk−1. Thusσ does not contain any
successions and avoids321.

- If M = UkHℓm wherem does not begin withH .
If ℓ = 1, then we haveM = g(σ) whereσ is recursively obtained from the permutationπ such that

g(π) = Ukm by inserting1 between the(k + 1) and(k + 2)-th positions ofπ and after increasing by
one all values ofπ greater or equal than1. Sinceg(π) = Ukm andm does not start withH , we have
πk+2 6= 1 and the previous insertion of1 does not create any succession and any pattern321.

If M = UkHℓm wherem does not begin withH and withℓ 6= 1, then we haveM = g(σ) where
σ is recursively obtained from the permutationπ such thatg(π) = UkHℓ−1m by insertingπk+ℓ−1 + 1
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between the(k + ℓ) and(k + ℓ + 1)-th positions ofπ and after increasing by one all values ofπ greater
or equal thanπk+ℓ−1 + 1.

Since the first step ofm is notH , we necessarily have eitherπk+ℓ+1 > sk+ℓ + 1 or πk+ℓ+1 < sk+ℓ

which implies that the insertion ofπk+ℓ−1 + 1 does not create a succession at position(k + ℓ + 1) in
σ. Also, the insertion ofπk+ℓ−1 + 1 between the(k + ℓ) and(k + ℓ + 1)-th positions cannot create a
succession at position(k + ℓ). So, the permutationσ does not contain any succession.

Let us assumesk+ℓ = πk+ℓ. Since the(k + ℓ − 1)-th step isH , there isj < k + l − 1 such that
πj + 1 = πk+ℓ. Therefore, the insertion ofπk+ℓ−1 + 1 between the(k + ℓ) and(k + ℓ+ 1)-th positions
does not create a pattern321 (sinceπ does not contain any pattern321).

Now, let us assume thatsk+ℓ ≥ πk+ℓ + 1. If we haveπk+ℓ−1 = sk+ℓ then the insertion ofsk+ℓ + 1
between the(k + ℓ) and(k + ℓ+ 1)-th positions cannot create a pattern 321. If we haveπk+ℓ−1 6= sk+ℓ,
we necessarily haveπk+ℓ−1 < πk+ℓ and all values lying in[1, πk+ℓ−1] appear at positionsj < k+ ℓ. So,
the insertion ofsk+ℓ + 1 between the(k + ℓ) and(k + ℓ + 1)-th positions cannot create a pattern 321.
Finally, the permutationσ belongs toSirr

n (321).
- If M = HkUm, then we haveM = g(σ) whereσ = πuπ′ such thatg(πu) = Hk andg(red(uπ′)) =

Um.
- If M = Hk, then we haveM = g(σ) whereσ is recursively obtained from the permutationπ such

thatg(π) = Hk−1 by insertingπk−1 + 1 in the last position and after increasing by one all values ofπ
greater or equal thanπk−1 + 1.

Below, we give an example for each previous case.
- If M = UkDm with k = 2, m = UHDD, thenπ = 3517246, g(π) = UHUHDD andσ =

14628357;
- if M = UkHℓm with k = 2, ℓ = 3 andm = DD, thenπ = 2461735, g(π) = UUHHDD and

σ = 35718246;
- if M = HkUm with k = 3, m = D, thenu = 2, πu = 3142, g(πu) = HHH , uπ′ = 265,

g(132) = UD andσ = 314265;
- if M = Hk with k = 5, thenπ = 31425, g(π) = HHHH andσ = 415263. 2

The bijectionf (resp.g) fromSirr
n (132) (resp.Sirr

n (321)) to the set of Motzkin paths of length(n−1)
induces a new constructive bijection between Dyck paths andsome restricted irreducible permutations:

Corollary 1 LetP2n+1 be the set of permutationsσ ∈ Sirr
2n+1(132) such that for alli, 1 ≤ i ≤ 2n− 1,

with σi > σi+1 there existsj > i+ 1 with σj = σi + 1. Then the mapf induces a constructive bijection
betweenP2n+1 and the set of Dyck Paths of length2n.

Corollary 2 Let P ′
2n+1 be the set of permutationsσ ∈ Sirr

2n+1(321) such thatσ1 = 1 and σi+1 −
max{σ1, . . . , σi} ≤ 2 andσi+1 −max{σ1, . . . , σi} 6= 1 for all 1 ≤ i ≤ 2n − 1. The mapg induces a
constructive bijection betweenP ′

2n+1 and the set of Dyck Paths of length2n.

For example, we haveP3 = {213}, P5 = {42135, 32415}, P7 = {6421357, 5462137, 6324157,
5324617, 4352617},P ′

3 = {132},P ′
5 = {13254, 13524}andP ′

7 = {1325476, 1325746, 1352476, 1352746,
1357246}.
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4 Avoiding two patterns of length 3
In this section, we explore the avoidance of two patterns of length 3 for irreducible permutations. All
enumerative results of this section are listed in Table 2.

Theorem 4 For α ∈ {231, 312}, the setsSirr
n (321, α), n ≥ 1, are enumerated by the Padovan’s spiral

numbers defined by the generating function1+x
1−x2−x3 (see [Slo], A134816).

Proof. Let σ = βnγ be a permutation inSirr
n (321, α) whereβ andγ are two subsequences of[n − 1].

Sinceσ avoids321, γ = γ1γ2 · · · γk is an increasing subsequence (possibly empty) of[n − 1]. We
distinguish two cases: (1)γ is empty; and (2)γ is not empty.

Case (1). This means thatβ ∈ Sirr
n−1(321, α) and the last entry ofβ is different fromn−1. Conversely,

if we addn to the right of a permutationπ in Sirr
n−1(321, α) such thatπn−1 6= n − 1, we obtain a

permutation ofSirr
n (321, α).

Case (2). Nowγ = γ1γ2 · · · γk is not empty. For a contradiction, let us assumek ≥ 2. Then,σ contains
the pattern312. Sinceσ is irreducible, there is an elementb of β such thatγk−1 < b < γk < n which
implies thatσ contains the pattern231. Thus, we necessarily havek = 1. In this case,σ can be written
βn(n− 1) whereβ ∈ Sirr

n−2(321, α).
Let f(x) (resp. g(x)) be the generating function for permutationsσ ∈ Sirr

n (321, α) (resp. σ ∈
Sirr
n (321, α) such thatσn 6= n). The previous study induces thatf(x) = 1 + x · g(x) + x2 · f(x)

with g(x) = f(x) − x · g(x). We obtaing(x) = 1
1−x2−x3 andf(x) = 1+x

1−x2−x3 = 1
1−x

· h(x) where
h(x) is the generating function for the Padovan numbers (see [Slo], A000931). This corresponds to the
Padovan’s spiral numbers [Slo], A134816). 2

Notice that this last proof shows that the three setsSirr
n (321, 231),Sirr

n (321, 312)andSirr
n (321, 231, 312)

are identical, not just equinumerous. To my knowledge, there is no analogous result in the enumeration
of general (as opposed to irreducible) permutations.

Theorem 5 For α ∈ {132, 213}, the setSirr
n (321, α) is empty forn ≥ 4. The setSirr

n (321, 123) is empty
for n ≥ 5.

Proof. The result is well known forα = 123. Now, let us takeα = 213 (the caseα = 132 will be
obtained with a smple Wilf equivalence). Letσ be a permutation ofSirr

n (321, 213). Writing σ = βnγ
with β andγ are two subsequences of[n − 1], the avoidance of213 implies thatβ = β1 · · ·βk, where
β1 < β2 < · · · < βk; the avoidance of321 implies thatγ = γ1γ2 . . . γℓ, whereγ1 < γ2 < · · · < γℓ.
Sinceσ is irreducible and avoids213, γ andβ contain at most one element which implies that there does
not exist any permutationsσ in Sirr

n (321, 213) whenevern ≥ 4. 2

Theorem 6 For n ≥ 1, the setSirr
n (213, 132) is reduced to the unique permutationn(n− 1) · · · 321.

Proof. Let σ be a permutation inSirr
n (213, 132). We can writeσ = βnγ whereβ and γ are two

subsequences of[n − 1]. Sinceσ avoids213, we haveβ = β1β2 · · ·βk, whereβ1 < β2 < · · · < βk.
Sinceσ is irreducible, we haveβk 6= n − 1, and thusn − 1 lies in γ. Sinceγ avoids132, β is empty
(otherwise,β1n(n − 1) would be a pattern132). Thus we haveσ = nγ. A straightforward induction
providesσ = n(n− 1) · · · 321. 2

Theorem 7 The setsSirr
n (231, 312), n ≥ 0, are enumerated by the Tribonacci numbers (see [Slo],

A000213).
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Proof. Let σ be a permutation inSirr
n (231, 312). Sinceσ avoids312, it can be writtenσ = βnγ where

β andγ are two subsequences of[n− 1] such that eitherγ = γ1 · · · γk with γ1 > γ2 > · · · > γk or γ is
empty. Sinceγ avoids231, β does not contain any values greater thanγk. Thus we have eitherγ is empty
or γ = βn(n− 1)(n− 2) · · · (n− k) whereβ ∈ Sirr

n−k−1(231, 312).
Let f(x) (resp.g(x)) be the generating function forSirr

n (231, 312), n ≥ 0, (resp. forSirr
n (231, 312),

n ≥ 1, with the restriction that permutations do not end withn). Then we havef(x) = 1 + x+ xg(x) +

g(x). The above structure of a permutation inSirr
n (231, 312) ensures thatg(x) =

(

1
1−x

− 1− x
)

· f(x).
Thus we havef(x) = 1−x2

1−x−x2−x3 that corresponds to the Tribonacci numbers [Slo],A000213. 2

Theorem 8 For α ∈ {231, 312} andβ ∈ {132, 213}, the setsSirr
n (α, β), n ≥ 1, are enumerated by the

Fibonacci numbers (see [Slo], A000045).

Proof. Let σ = σ1σ2 · · ·σn be a permutation inSirr
n (231, 213). Sinceσ avoids231 and213, thenσi,

1 ≤ i ≤ n, is either the smallest or the greatest element of the set{σi, σi+1, . . . , σn}. We deduce thatσ
can be written eitherσ = 1nγ or σ = nγ, whereγ avoids231 and213. If an = card(Sirr

n (231, 213))
thena1 = 1, a2 = 1, andan = an−1 + an−2 which defines the Fibonacci numbers.

The classical symmetries deal with the remaining cases. 2

Theorem 9 Forα ∈ {312, 231}, the setsSirr
n (123, α),n ≥ 1, are enumerated by the Triangular numbers

n(n−1)
2 (see [Slo], A000217).

Proof. Let σ = σ1σ2 · · ·σn be a permutation inSirr
n (123, 312). Sinceσ avoids123 and312, σ can be

written σ = k(k − 1) · · · ℓnγ where1 ≤ ℓ ≤ k ≤ n andγ is a decreasing sequence of integers. For
k fixed, 1 ≤ k ≤ n − 2, there arek possible permutations obtained wheneverℓ describes[1, k]. For
k = n − 1, the permutation(n − 1)n(n− 2) · · · 21 is not irreducible, thus we do not consider it. In this
case, there are(n− 2) possible permutations. Finally,Sirr

n (123, 312) is enumerated by1+ 2+3+ · · ·+
(n− 2) + (n− 2) + 1 = n(n−1)

2 which is the Sloane’s sequence A000217. A simple symmetry gives the
result forα = 231. 2

Theorem 10 For α ∈ {132, 213}, the setsSirr
n (123, α), n ≥ 1, are enumerated by the sequence [Slo],

A005251.

Proof. Let σ = σ1σ2 · · ·σn be a permutation inSirr
n (123, 132). Sinceσ avoids123 and132, σ1 is either

(n − 1) or n. In the case whereσ1 = n, thenσ can be writtenσ = nγ whereγ ∈ Sirr
n−1(123, 132). In

the case whereσ1 = n− 1, σ can be written:σ = (n− 1)(n− 2) · · · (n− k)nγ, 2 ≤ k ≤ n− 1, where
γ belongs toSirr

n−1−k(123, 132). If an = card(Sirr
n (123, 132)) then we deducean = an−1 + an−3 +

an−4 + · · · + a1 + 1 wherea1 = 1 anda2 = 1 which corresponds to the Sloane’s sequence A005251.
The caseα = 213 is obtained by symmetry. 2

5 Fixed point free involutions
In this section, we study the avoidance of one pattern of length 3 for fixed point free irreducible involu-
tions,i.e., for involutions with no fixed points and no successions. Allenumerative results of this section
are listed in Table 3. LetDI (resp.DIirr) be the set of fixed point free (resp. fixed point free irreducible)
involutions. These sets restricted to their lengthn elements will be respectively denotedDIn andDIirr

n .
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Pattern Sloane Sequence

{321, 231}, {321, 312} A134816 Padovan’s spiral

{321, 132}, {321, 213} 1, 1, 1, 0, 0, 0, . . .

{321, 123} 1, 1, 2, 3, 0, 0, . . .

{213, 132} 1, 1, 1, 1, . . .

{231, 312} A000213 Tribonacci

{231, 132}, {231, 213}, {312, 132}, {312, 213} A000045 Fibonacci

{123, 231}, {123, 312} A000217 n(n−1)
2

{123, 132}, {123, 213} A005251 1, 1, 2, 4, 7, 12, 21, 37, 65

Tab. 2: Wilf-equivalence classes for two pattern subsets ofS3 in irreducible permutations.

5.1 Enumerative results
Theorem 11 The setsDIirr

n , n ≥ 0, are enumerated by the sequencean defined bya0 = 0, a2 = 1,
a2n = (2n− 2)a2n−2 + (2n− 4)a2n−4 for n ≥ 2 anda2n+1 = 0 for n ≥ 0 (see [Slo], A165968).

Proof. Obviously, there does not exist any fixed point free involutions of odd length; thusa2n+1 = 0 for
n ≥ 0. Now, letσ be an irreducible involution of length2n, n ≥ 2, with no fixed points. Letk be the
index in[2n− 1] such thatσk = 2n (and alsoσ2n = k).

Letπ be the involution of length(2n−2) obtained fromσ by deletingk and2n, and reducing the result
to an involution of length(2n−2). Two cases occur: (a) π is irreducible; and (b) π has the two successions
(πk−1, πk) and(k − 1, k). Conversely, each irreducible involution of length2n can be obtained from an
involutionπ belonging to one of the two previous cases (a) and (b).

Thus, the generating function for the permutationsσ of type (a) is (2n− 2)a2n−2.
Now let us consider involutions of type (b). Let A2n−2 be the set of involutions of length(2n − 2)

with exactly two successions and with no fixed points. An involution in A2n−2 can be extended into
an irreducible involution of length2n of type (b) in two possible ways. So, letπ be an involution in
A2n−2 such that(πk, πk+1) and (k, k + 1) are the two successions. Fromπ, we construct the pair
(k, π′) ∈ [2n− 4]× DIirr

2n−4 whereπ′ is obtained fromπ by deleting the two entriesπk+1 and(k + 1),
and reducing the result to a permutation of length(2n − 4). Since we obtain the same permutation in
π′ ∈ DIirr

2n−4 by deletingπk andk, the cardinality ofA2n−2 is half the cardinality of[2n− 4]×DIirr
2n−4.

Therefore, the generating function for the number of involutions of type (b) is given by2 · (2n−4)·a2n−4

2 .
Finally, we concludea2n = (2n− 2)a2n−2 + (2n− 4)a2n−4 for n ≥ 2. 2

More generally, the proofs of Lemmas 1 and 2 imply that there are n−1
k

·a2n fixed point free involutions
of length2n with exactly2k successions, wherea2n is the sequence defined in Theorem 11.

Theorem 12 For α ∈ {132, 213, 321} andn ≥ 0, the setsDIirr
2n (α) of irreducible involutions of length

2n without fixed points and avoiding the patternα, are enumerated by the Motzkin numbers (see [Slo],

A001006). The generating function forDIirr
n (α) is given by

1+x2−
√

(1−3x2)(1+x2)

2x2 .
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Proof. Since the setDI(α) is expanded and closed under deflation, we apply Lemma 2 of Section 2. As

the generating function forDIn(α), n ≥ 0, is f(x) = c(x2), wherec(x) = 1−
√
1−4x
2x is the generating

function for the Catalan numbers, the generating function forDIirr
n (α) is

g(x) = f(
x√

1 + x2
) = c(

x2

1 + x2
) =

1 + x2 −
√

(1− 3x2)(1 + x2)

2x2
.

2

A simple application of Lemma 2 yields the bivariate generating functionf(x, y) = c
(

x2

1+(1−y)x2

)

of

the setDI(α) of fixed point free involutions avoiding the patternα for α ∈ {321, 213, 132}, where the
coefficient ofxnyk gives the number of elements inDIn(α) with exactlyk successions.

Theorem 13 For α ∈ {231, 312} andn ≥ 0, the setsDIirr
2n (α) of irreducible involutions of length2n

without fixed points and avoiding the patternα, are enumerated by2n−1.

Proof. Let α = 231 andσ = σ1σ2 · · ·σ2n be an irreducible involution of length2n without fixed points
and avoidingα. Sinceσ avoids231, we can decomposedσ = β(2n)γ(2k+1) where2k+1 ≤ 2n−1, β ∈
DIirr

2k (α) and(2n)γ(2k+1) is a decreasing sequence of consecutive numbers in the interval [2k+1, 2n].
Therefore, ifa2n enumerates the setDIirr

2n (α), we deduce the inductiona2n = a0+a2+a4+ · · ·+a2n−2

wherea0 = 1. We obtaina2n = 2n−1 for n ≥ 1 with a0 = 1. The caseα = 312 is handled by the
symmetryσ → σ−1. 2

Theorem 14 The generating function for the setsDIirr
n (123), n ≥ 0, of irreducible involutions of length

n without fixed points and avoiding the pattern123 is

2x2(x2
√
1− 4x2 − 1)√

1− 4x2 · (1 + 2x4 +
√
1− 4x2)

.

Proof. Let σ be an involution of length2n without fixed points containing at least one succession. We
suppose that(σk, σk+1) is the leftmost succession. Sinceσ avoids123, it is straightforward to see that
σk = 2n− k andσk+1 = 2n− k + 1.

Thenσ can be written:σ = λ(2n − k)(2n − k + 1)βk(k + 1)γ whereλ (resp.γ) is a123-avoiding
sequence of elements in[2n− k + 2, 2n] (resp.[1, k − 1]) without successions, such that red(λ) = γ−1

andβ is a sequence of elements in[k+2, 2n−k− 1] where red(β) is an involution of length2n− 2k− 2
without fixed points. See Figure 2 for an illustration of the structure ofσ.

Let g(x) =
1

1−4x2 −1

2 be the generating function for the set of involutions without fixed points and
avoiding123 (see for instance [DRS07]). Letf(x) be the generating function of irreducible involutions
without fixed points and avoiding123. We have

g(x)− f(x) = x4 · h(x2) · (g(x) + 1)

whereh(x) is the generating function for irreducible permutations avoiding the pattern123 (see Theorem
1). Finally, a simple calculation gives the desired results. 2
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β

λ

γ

Fig. 2: Proof of Theorem 14. The special structure of a fixed point free involution avoiding123 and with at least one
succession.

Pattern Sequence Sloane a2n, n ≥ 1

{}
{

a2n+1 = 0

a2n = (2n − 2)a2n−2 + (2n − 4)a2n−4

A165968 1, 2, 10, 68, 604

{132}, {213}, {321} Motzkin A001006 1, 1, 2, 4, 9, 21

{231}, {312} 2n−1 A000079 1, 2, 4, 8, 16, 32

{123} 2x2(x2
√
1−4x2−1)√

1−4x2·(1+2x4+
√
1−4x2)

New 1, 2, 8, 30, 109, 401

Tab. 3: Fixed point free irreducible involutions avoiding at most one pattern ofS3.

5.2 Bijective proofs

Recall that a Motzkin path of lengthn is a lattice path starting at(0, 0), ending at(n, 0), and never
going below thex-axis, consisting of up stepsU = (1, 1), horizontal stepsH = (1, 0), and down steps
D = (1,−1).

• Bijective proof forDIirr
2n (132).

A fixed point free irreducible involutionσ of length2n that avoids the pattern132 is necessarily of the
form σ = ββ′ whereβ′ belongs toSirr

n (132) and such that red(β) = β′−1 (all values ofβ are greater
than those ofβ′). Using the bijectionf from Sirr

n (132) to the set of Motzkin paths of length(n − 1)
(see Section 3.2), we deduce immediately a constructive bijectionf̄ betweenDIirr

2n (132) and the set of
Motzkin paths of length(n− 1) as follows:f̄(σ) = f(β′). 2

• Bijective proof forDIirr
2n (321).

This part presents a constructive bijection betweenDIirr
2n (321) and the set of Motzkin paths of length

(n− 1).
Let σ = σ1 · · ·σ2n be an involution of length2n without fixed points and that avoids321. Thenσ is

the product ofn transpositions (cycles of length 2):σ = 〈ℓ1, r1〉 · 〈ℓ2, r2〉 · · · 〈ℓn, rn〉 whereℓ1 < ℓ2 <
· · · < ℓn, r1 < r2 < · · · < rn andri < ℓi for 1 ≤ i ≤ n. In fact, the valuesℓi (resp.ri) for 1 ≤ i ≤ n,
are the left-to-right maxima (resp. right-to-left minima)of σ, i.e., ℓi (resp.ri) is greater (resp. less) than
all values on its left (resp. right) inσ.
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Remark 2 It is well-known (see [DRS07] for instance) that involutions of length2n without fixed points
and avoiding321 are enumerated by then-th Catalan number. Such an involution is associated to the
Dyck path from(0, 0) to (2n, 0) by the following process: readingσ from left to right, we replace each
left-to-right maxima withU = (1, 1) and each right-to-left minima withD = (1,−1). For example, the
involution3 5 1 7 2 8 4 6 10 9 = 〈3, 1〉 · 〈5, 2〉 · 〈7, 4〉 · 〈8, 6〉 · 〈10, 9〉 is associated to the Dyck path
UUDUDUDDUD.

On the other hand,σ can be viewed as a matching by putting2n points labeled from1 to2n in this order,
and then connecting, for1 ≤ j ≤ n, the numbersℓj andrj by an arc (see Figure 4 for an illustration).

. . . . . . . . .. . . . . . . . .. . . . . .. . .

(1) (2)

Fig. 3: The two forbidden configurations in the matching of an involution σ ∈ DIirr

2n (321).

Therefore, a fixed point free involutionσ avoids321 means that its matching does not contain nesting
arcs,i.e. the configuration (1) in Figure 3 does not occur. Moreover,σ does not contain any successions
if and only if the configuration (2) in Figure 3 does not occur,i.e., there does not exist two arcsa1 anda2
such thata2 is obtained froma1 by an horizontal translation of(1, 0). These two last conditions can also
be expressed using the one-line notation ofσ as follows.

A fixed point free irreducible involutionσ avoids321 if and only if, for 1 ≤ i ≤ n− 1, at least one of
the two following statements is verified:

(Ai) there exists a right-to-left minimum inσ between thei-th and(i+ 1)-th left-to-right maxima;
(Bi) there exists a left-to-right maximum between thei-th and(i+ 1)-th right-to-left minima.
Let us define the maph that transformsσ ∈ DIirr

2n (321) into the Motzkin pathM from (0, 0) to
(n− 1, 0) defined as follows:

For i from 1 ton− 1,

(a) if Bi is verified but notAi, then thei-th step ofM is an up stepU ;

(b) if Ai is verified but notBi, then thei-th step ofM is a down stepD;

(c) if Ai andBi are verified, then thei-th step ofM is an horizontal stepH .

For instance, involutions2143, 351624, 214365, 35172846, 35162487, 21573846 and21436587 are
respectively transformed byh into H , UD, HH , UHD, UDH , HUD andHHH (see Figure 4 for an
example with2n = 20).

Let us prove thath is a one-to-one correspondence betweenDIirr
2n (321) and the set of Motzkin paths

of lengthn − 1. Let σ be an involution inDIirr
2n (321). Using Remark 2,σ is associated with a Dyck

path where left-to-right maxima (resp. right-to-left minima) correspond to up steps (resp. down steps).
So, there is a one-to-one correspondence between up steps and down steps such that the image of an up
step is a down step lying on its right. This induces a one-to-one correspondencec between the set of all
occurrences ofUU and the set of all occurrences ofDD such that the image byc of a UU-occurrence lies
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Fig. 4: The Motzkin path UHUUDHDHD and its corresponding involution σ =
3719(11)(13)2(14)4(16)5(17)68(19)(10)(12)(20)(15)(18).

on its right. This implies that there is a one-to-one correspondencēc between the setsUp = {i, 1 ≤ i ≤
n− 1, (a) is verified} andDown = {i, 1 ≤ i ≤ n− 1, (b) is verified} such that̄c(i) is greater thani (we
havec̄(i) 6= i since the configuration (2) of Figure 3 does not occur). As thefunctionh associates an up
step wheni ∈ Up, a down step wheni ∈ Down and an horizontal step otherwise,h(σ) is a Motzkin path
of length(n − 1). Moreover this construction ensures that the images byh of two different involutions
necessarily yields two different Motzkin paths.

Conversely, from any Motzkin pathM of lengthn− 1, we construct an involution of length2n without
fixed points and that avoids321, by the following process. More precisely, we will construct a sequence of
red and green points where red (resp. green) points correspond to left-to-right maxima (resp. right-to-left
minima) of the involution of length2n. This sequence will characterize the desired involution.

We start the process with a red point followed by a green point. Through the Motzkin pathM from left
to right:

- if we meet an up stepU , then we add one red point just after the last red point, and weadd one red
and one green points (in this order) on the right;

- if we meet a down stepD, then we add one green point on the right;

- if we meet horizontal stepH , then we add one red and one green points (in this order) on theright.

For instance, this process applying to the Motzkin pathM = UHD provides the following steps:

Step 0: Step 1: Step 2: Step 3:

Fig. 5: Construction of the involutionσ = 35172846 from the Motzkin pathM = UHD.

At each step of this process, we add only one green point on theright. Moreover, the number of red
points is, at each step, at most the number of green points; atthe end of the process, there is equality. The
configuration(2) of Figure 3 does not occur. Therefore, the obtained matchingcorresponds to that of a
fixed point free irreducible involution that avoids321 and such that its image byh is exactly the Motzkin
pathM . We conclude thath is a one-to-one correspondence betweenDIirr

2n (321) and the set of Motzkin
paths of lengthn− 1. 2
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Notice that the above construction appears as a generalization of the bijection of P. Manara and C.
Perelli Cippo, [MC10], which transforms a restricted set ofMotzkin paths into the set of simple involu-
tions avoiding the pattern321.

6 Pattern avoiding involutions
In this section, we present enumerative results for sets of irreducible involutions avoiding one pattern of
length three (see Table 4).

Theorem 15 For α ∈ {231, 312}, the setsIirr
n (α), n ≥ 0, of irreducible involutions of lengthn avoiding

α are enumerated by the Tribonacci numbers (see [Slo], A000213).

Proof. A length n irreducible involutionσ avoiding 231 can be writtenβnγk, 1 ≤ k ≤ n, where
β ∈ Iirr

k−1(α) such that the last value ofβ is different fromn − 1 wheneverk = n, and wherenγk =
n(n− 1) · · · (k+1)k. Let g(x) (resp.h(x)) be the generating function for the setsIirr

n (α), n ≥ 0, (resp.
for the sets of irreducible involutions of lengthn avoidingα such that the last value is different fromn).

According to the above structure ofσ, it is straightforward to see thatg(x) = 1 + x2 g(x)
1−x

+ xh(x)

with (1 + x)h(x) = g(x). Thus we obtaing(x) = x2−1
x3+x2+x−1 which is the generating function for the

Tribonacci numbers. The caseα = 312 is handled by the symmetryσ → σ−1. 2

Theorem 16 The generating function for the setsIirr
n (123), n ≥ 0, of irreducible involutions of length

n avoiding123 is given by1−2x−2x2+4x3+
√
1−4x2

(1−2x)(1+2x4+
√
1−4x2)

.

Proof. Let σ be an involution of lengthn containing at least one succession. We suppose that(σk, σk+1)
is the leftmost succession. Sinceσ avoids123, it is straightforward to see thatσk = n − k andσk+1 =
n− k + 1. We distinguish two cases: either (1)σk 6= k or (2)σk = k.

In the first case,σ can be writtenσ = λ(n−k)(n−k+1)βk(k+1)γ whereλ (resp.γ) is a123-avoiding
sequence of elements in[n− k + 2, n] (resp.[1, k − 1]) without successions, such that red(λ)= γ−1 and
β is a sequence of elements in[k + 2, n− k − 1] where red(β) is an involution of lengthn− 2k − 2.

In the second case,σ can be writtenσ = λk(k + 1)γ whereλ (resp.γ) is a123-avoiding sequence of
elements in[k + 2, n] (resp.[1, k − 1]) without successions, such that red(λ)= γ−1.

Let g(x) = −1+2x+
√
1−4x2

2x−4x2 be the generating function for the set of involutions avoiding 123 (see
[SS85]). Letf(x) be the generating function of irreducible involutions avoiding123. The above structure
of σ implies

g(x)− f(x) = x4 · h(x2) · g(x) + x2 · h(x2)

whereh(x) is the generating function for irreducible permutations avoiding the pattern123 (see Theorem
1). Finally, a simple calculation yields the desired results. 2

Theorem 17 For α ∈ {132, 213, 321}, the generating function for the setsIirr
n (α), n ≥ 0, of irreducible

involutions of lengthn avoidingα is given by (see [Slo], A125189):

2(1 + x)(1 + x2)

1− x+ x2 − x3 + (1 + x)
√
1− 2x2 − 3x4

.
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Proof. For α = 132, σ ∈ Iirr
n (α) can be written eitherσ = λnβγk where(γk)−1 = red(λn) ∈

Sirr
k (132) and such thatβ ∈ Iirr

n−2k(132) or σ = βn whereβ ∈ Iirr
n−1(α) such that its last value is

different fromn − 1. If f(x) is the generating function forIirr
n (α), the above structure ofσ implies

that f(x) = g(x2)f(x) + xg(x2)f(x) + 1 + x whereg(x) is the generating function for irreducible
permutations avoiding132 and ending withn. So, we haveg(x) = xh(x) whereh(x) is the generating
function for irreducible permutations avoiding132 and not ending withn; thusg(x) = x(M(x)−g(x)+1)

whereM(x) = 1−x−
√
1−2x−3x2

2x is the generating function for irreducible permutations avoiding132 (see
Theorem 2). A simple calculation gives the result forα = 132.

Forα = 213, the result is obtained fromα = 132 with the symmetryσ → (σr)c.
For α = 321, let f(x) be the generating function forIirr

n (α). Then we havef(x) = h(x) + g(x)
whereh(x) (resp. g(x)) is the generating function forDIirr

n (α) (resp. forIirr
n (α)\DI irr

n (α)). On
the other hand, we havef(x) = f1(x) + f2(x) andg(x) = h(x)f1(x) wheref1(x) (resp. f2(x)) is
the generating function for permutations inIirr

n (α) with the last value equal ton (resp. different from
n). Then we havef1(x) = xf2(x), f1(x) = x

1+x
· f(x) andg(x) = x

1+x
· h(x) · f(x). We obtain

f(x) = h(x) + x
1+x

· h(x) · f(x). Sinceh(x) is known using Theorem 12, a simple calculation gives the
desired result. 2

Problem: It remains to obtain the generating function for the setsIirr
n , n ≥ 0, of irreducible involutions

of lengthn.

Pattern Sequence Sloane an, n ≥ 1

{} ? ? 1, 3, 5, 13, 37, 107, 341, 1141

{132}, {213}, {321} 2(1+x)(1+x2)

1−x+x2−x3+(1+x)
√
1−2x2−3x4

A125189 1, 2, 2, 3, 5, 7, 11, 17, 27, 42

{123} 1−2x−2x2+4x3+
√
1−4x2

(1−2x)(1+2x4+
√
1−4x2)

New 1, 3, 4, 9, 16, 31, 58, 112

{231}, {312} Tribonacci A000213 1, 1, 1, 3, 5, 9, 17, 31, 57

Tab. 4: Irreducible involutions avoiding at most one pattern ofS3.
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