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We explore the classical pattern avoidance question indke of irreducible permutationse., those in which there

is no index: such thato (i + 1) — o(¢) = 1. The problem is addressed completely in the case of avoidiireg

or two patterns of length three, and several well known secge are encountered in the process, such as Catalan,
Motzkin, Fibonacci, Tribonacci, Padovan and Binary nursbédso, we present constructive bijections between the
set of Motzkin paths of length — 1 and the sets of irreducible permutations of lengttrespectively fixed point free
irreducible involutions of lengtBn) avoiding a patterm for « € {132, 213, 321}. This induces two new bijections
between the set of Dyck paths and some restricted sets ofipaions.

Keywords: Pattern avoiding permutation; irreducible permutatiarccgssion; involution; Motzkin path

1 Introduction and notation

Let S,, be the set of permutations ¢n] = {1,2,...,n}, i.e, all one-to-one correspondences framh

into itself. LetS be the set of all permutations. We represent a permutatiens,, in one-line notation

o = o109 -0, Whereo; = o(i) foralli € [n]. We denote by", 0¢ ando ! the classical symmetries

of o, i.e, thereverses” = o,, - - - 01, thecomplement® = (n — o1 + 1) - - - (n — 05, + 1) and theinverse
Letq =q1---qx, k > 1, be a sequence of pairwise different positive integers.rétiectionred(q) of ¢

is the permutation %), obtained fromy by replacing the-th smallest number af with 7 for 1 < i < k.

For instance, ify = 53841 then we have red) = 42531. A permutations € S,, avoidsthe pattern

m € Sk, k > 1, if and only if there does not exist a sequence of indicesi; < iz < -+ < i < n such

thato,, oy, - - - 04, is order-isomorphic tor (see [SS85, Wes90]).e. such thatr =red(o;,04, - - - 03, ).

We denote bys,, () the set of permutations i,, avoiding the patterm. For example, ift = 123 then

52143 € S5(w) while 21534 ¢ Ss(w). In the case where does not avoidr (or equivalentlycontains

), 7 is said to benvolvedin o which is denotedr < 0. A setF of permutations is called germutation

classifitis closed downwards under this involvement relatioramy classical sequences in combinatorics

appear as the cardinality of pattern-avoiding permutatiasses. A large number of these results were

firstly obtained by West and Knuth [Knu73, SS85, Wes90, We¥@E95] (see the surveys of Kitaev and

Mansour [KM, Man02]). Also Béna [B6n04] has written a bablat is dedicated to the notion of pattern

avoiding permutations. Some generalizations of patteoidance can be viewed in [Barll, Pud10].
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A successiolin a permutatior € S, is a pair(o;,0;41), 1 <i <n—1,witho;41 —o; = 1. For
instance, the paif3, 4) is the only one succession = 53421. Using the terminology of Atkinson and
Stitt (see [AS02]), a permutation with no successions vélhlso calledrreducible They show how the
notion of irreducibility plays, in some sense, a dual rolenpared to indecomposability (a permutation
o = oy - - - oy, ISsindecomposablé there does not exigt < n — 1 such that - - - o, is a permutation of
[p]). Indeed, irreducible permutations are crucial for thestarction of a basis of some wreath products
C 1 Z where( is a class of permutations adis the class of identity permutations (see [AS02]). On
the other hand, an irreducible permutation can be also degea permutation avoiding the bi-vincular
pattern(12, {1}, {1}) (see [Par09]).

LetS" be the set of irreducible permutations of lengtiFor example, we ha&!" = {132,213, 321}.
The cardinality of the set§"" is known (see [Ros68, Tan76, Tie43]) and given by

n—1

(n—l)!Z(—l)an;k.

k=0

More generally, permutations with a given number of sudoessalso appeared in combinatorial theory
literature (see [Kap44, Rio65]).

In this paper, we explore the classical pattern avoidanestopn in the case of irreducible permutations.
The problem is addressed completely in the case of avoidiegotwo patterns of length three, and sev-
eral well-known sequences are encountered, such as thuGatotzkin, Fibonacci, Binary, Tribonacci
and Padovan numbers. In Section 2, we present general eativaegesults for sets of permutations that
areexpandedi.e., closed under inflatigrandclosed under deflatiarin particular, we give bivariate gen-
erating functions according to the length of permutatiomd the number of successions. Generalizing
the two concepts of inflation and deflation for sets of fixedpfree involutions, we obtain similar results
for involutions. In Section 3, we give exhaustive enumegatesults for sets of irreducible permutations
avoiding one pattern of length three. For the sets countdtidiotzkin numbers, we exhibit bijections
between them and the set of Motzkin paths. In Section 4, wesfon sets of irreducible permutations
avoiding two patterns of length three. In Sections 5 and 6stwdy irreducible (fixed point free) involu-
tions avoiding one pattern of length three. Exhaustive esmative results are obtained, and we construct
bijections between fixed point free irreducible involusaf length2n avoidinga € {132,213, 321} and
Motzkin paths of lengtm — 1.

2 Preliminaries

A setF of permutations is said to #osed under inflatiofalso calledexpanded[AS02]) if whenever a
permutations = 84 v € F so is the permutation obtained by replacingith i (: + 1), after increasing
by one each other’s values greater thémo. A setF of permutations is said to i#osed under deflation
if whenever a permutation = ¢ (i + 1) -y so is the permutation obtained by replacing + 1) with
i, after decreasing by one each other’s values greater(ihar) in o. In the following, these two last
elementary transformations will be respectively calleftion and deflationof o. Obviously, a sefF
of irreducible permutations is closed under deflation sit&elements do not contain any successions.
A set closed under pattern involvement is closed under dwflaMoreover, a set closed under pattern
involvement is expanded if and only if every basis elemeirtéglucible (see Lemma 5, [AS02]).

In this section we provide general lemmas about generatimgfions for sets of permutations and fixed
point free involutions which are expanded and closed unefaiibn.
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Lemmal Let.F be a set of permutations which is expanded and closed undetida; letG be the set
of its irreducible permutations. We denoteddy:) the generating function @, and f (x, y) the bivariate
generating function ofF where the coefficient af”y* is the number of permutations of lengthwith
exactlyk successions. Then we have

f(:v,y)=g(1_xyx)-

In particular, the generating function of is g (z/(1 — x)).

Proof. Let 7%, n > 1,0 < k < n — 1, be the set of permutations of lengthin F containing exactly
k successions. Obviously, we ha#®™” = G, = F0 for n > 1. Leto be a permutation itF¥, i.e, o
contains exactly successions. We define the successiodsef indicesi € [n — 1] such tha{o;, 0;11)
is a succession af, and.JJ, = {i € [n],i — 1 € I,}. SinceF is expanded and closed under deflation, a
permutationr € ]:vzﬁllnl can be uniquely obtained from a permutatiog 7* by deleting all entries;,
i € J, and reducing the result to a permutationkjlf_’“‘lg‘. This construction produces a simple bijection
from }';Tj”gl to the setF!- of permutations inF,, having the succession set equal$o

Since inflations of terms in an irreducible permutation espond exactly to the terms in the geometric
series expansiop— = = + ya? + y*z® + .., the above bijection implies

T

flay) =gz +ya® + 2> +...) = g( ).

1—yx
O

Now we give a similar Lemma for fixed point free involutions this case, we slightly modify the
two concepts of inflation and deflation. L&tbe a set of involutions with no fixed points. We say that
F is expandedclosed under inflationif whenever an involutior € F and(4,5), 1 < i < j < n,
such thato; = j, so is the permutation’ obtained fromo by replacingo; with (o; + 1)(0; + 2), o
with o;(o; + 1), and increasing by in&) =card(¢ € {i + 1,5 + 1},¢ < k} each other’s valuek. For
instance, ifr =34127856,i=2,j =4,theno’ =4561 239 (10) 7 8. On the other hand, we
say that is closed under deflatioifiwhenever an involutiom € F and(i,j), 1 <i < j <n— 1, such
thato; = j, 0,41 = j + 1, so is the permutatios’ obtained froms by deleting(é + 1) and(j + 1) and
reducing the result to a permutation. Obviously the setldhad point free involutions is expanded and
closed under deflation.

Lemma 2 Let.F be a set of fixed point free involutions which is expanded éoskd under deflation; let
G be the set of its irreducible involutions. We denotg f) the generating function &, and f (z, y) the
bivariate generating function oF where the coefficient af*y* is the number of involutions of length
with exactlyk successions. Then we have

72
f(x,y)—g< m)

In particular, the generating function of is g (\/:172/(1 — :cQ)).
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Proof. This proof is a simple counterpart of the previous one. lfisai to remark that an involution with
no fixed points is necessarily of even length. |

Lemma 1 ensures that if we know the generating function of & séirreducible permutations, then we
can easily obtain the bivariate generating function (adicgrto the length and the number of successions)
of the wreath produdf : Z whereZ is the class of identity permutations (the wreath prodlict is the
closure under inflation off). An immediate consequence ig: G is a set of irreducible permutations
such that the wreath produ¢} ! Z is enumerated by the Catalan numbers ([Slo], A00018) tfidr
enumerated by the Motzkin numbers ([Slo], AO0100Bherefore, irreducible permutations 8f («),

n > 1, a € {321,213,132}, are enumerated by the Motzkin numbers (see Theorem 2).

3 Avoiding a pattern of length 3

In this section, we study the avoidance of one pattern oftteBdor irreducible permutations. The first
part uses arguments with generating functions while thersgpart presents bijective proofs for the sets
of permutations counted by Motzkin numbers. All enumematisults of this section are listed in Table
1.

3.1 Using generating functions

For a = 231, Atkinson and Stitt give a proof of Remark 1 (see [AS02], #er6.1). The bijection
X : o — (o°)", allows to conclude forx = 312.

Remark 1 For o € {231,312}, the generating function for the se®&™ (), n > 0, of irreducible
permutations avoiding is given by
2(1+2)

~1+
l+z+a22+ /(1 —2+22)? — 82

(see [Slo], A078481).

Theorem 1 The generating function for the sef§(123), n > 0, of irreducible permutations of length
n avoiding the patterri23 is given by (see [Slo], A114487):

2
14222 4+1 -4z

Proof. Let o be a permutation i5,, (123)\S7"(123). It necessarily contains a successi{@nk + 1),
1 < k < n —1; let us take the leftmost succession. Theoan be writtero = uk(k + 1)v where
1 < k < n -1, such thatu andv are two subsequences|af. Sinceos avoids123, the set of values in
u necessarily equals to the interjal+ 2, n]. Sov belongs taS;_1(123), u avoids the pattern23 and
does not contain any successions. fét) be the generating function for the s&§"(123), n > 0, the
above decomposition of implies

c(w) = f(z) =2 - f(2) - c(a),

wherec(z) = 1142 gi“” is the generating function for the sefg(123), i.e., the generating function for
the well-known Catalan numbers (see [Slo], AO0018). We dedu

Fla) = c(x) _ 2 '
L+a2-c(r) 1422241—4x
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O

Theorem 2 For o € {321,213,132}, the setsSi"" (), n > 1, are enumerated by the Motzkin numbers
(see [Slo], A0O01006).

Proof. Fora € {321,213,132}, the setS(a) = |J Sn(«) is expanded and closed under deflation. Let
n=1

g(z) be the generating function &' («); Lemma 1 of Section 2 proves thetr) = g(z/(1 — z)) and
thus:

g(x) = c(z/(1 + x)).

More precisely, the se7"(a), n > 1, is enumerated by thg: — 1)-th term of the Motzkin sequence
([Slo], A001006). O
In fact, Lemma 1 yields the more general result:

Theorem 3 For o € {321,213,132}, let S(«) be the set of permutations avoiding and f(x, y) its
bivariate generating function, where the coefficient:6f/* is the number of permutations of length
with k successions i§(«). Then we have

fan =(amrm)

wherec(z) is the generating function for the Catalan numbers.

Pattern Sequence Sloane ap,n > 1
_ 2(14x)
{231}, {312} [ASO2 | -1 + FPNTCYSY T o A078481 | 1,1,3,7,19,53,153
2
{123} T T A114487 | 1,1, 3,10, 31,98, 321
{321}, {213}, {132} loz—vl-2e-307 A001006 | 1,1,2,4,9,21,51

Tab. 1. Wilf-equivalence classes for patterns of length 3 in iretle permutations.

3.2 Bijective proofs

A Motzkin path of lengthn is a lattice path starting 0, 0), ending at(n, 0), and never going below the
x-axis, consisting of up sted$ = (1, 1), horizontal steps? = (1,0), and down step® = (1,-1).

A Dyck path of length2n is a Motzkin path of the same length that does not contain amizdntal
steps. Dyck paths of lengtn are enumerated by the well-known Catalan numbers ([SIoP0A8) and
Motzkin paths by the Motzkin numbers ([Slo], A001006). Wéereo Donaghey, Shapiro [DS77] and
Stanley [Sta] for several combinatorial classes enumeiatehe Motzkin and Catalan numbers.

e Bijective proof forS: " (132).

Here we construct a bijection betwe&fji”(132) and the set of Motzkin paths of length— 1. We
define the mayf that transforms a permutation= o103 - - - 0, € S (132) into the Motzkin path\/ of
lengthn — 1 obtained by the following process:

For each from 1 ton — 1,
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(a) ifo; < 0;41, then thei-th step ofM is a down stefD;

(b) if o; > 041 and there existg > ¢ + 1 such that; = o; + 1, then thei-th step ofM is an up step
U;

(c) otherwise, thé-th step ofM is an horizontal stef .

For instance, the permutatiof$, 321, 213, 4213, 3214, 3241 and4321 are respectively transformed
by f into the Motzkin paths?, HH, UD, HUD, UHD, UDH, HHH (see Figure 1 for an example
with n = 14).

Let us prove thaff is a one-to-one correspondence betwsgii (132) and the set of Motzkin paths
of length(n — 1). Leto be a permutation of"" (132). Let us takei, 1 < i < n — 1, such that) is
verified. Then, there exisfs> i + 1 such thatr; = o; + 1. Sinceo avoidsl32, o;_; < o; and the index
j — 1 > i verifies the caséu). Conversely, ifi, 1 <1i < n — 1, satisfieqa) theno; < ;1. Sinceo is
irreducible, we have;; # o; + 1. Thus, there exist$ # ¢ andj # ¢ + 1 such thav; = 0,41 — 1. As
o avoids132, we necessarily have < ¢ andj verifies(b). Hence, there is a one-to-one correspondence
between up steps and down steps such that each up step imtebogth a down step on its right. This
is precisely the characterization of the Motzkin paths.

Conversely, lef\/ be a Motzkin path of lengtfr. — 1) and let us prove that there exists a permutation
o € 8"(132) such thatf (o) = M. We proceed by induction omin order to construct the permutation
o € SUr(132).

We distinguish two cases: (I = mHm’' wherem andm’ are two Motzkin paths and such that
does not contain any horizontal steps on fhaxis, and (2)M = mUm’D wherem andm’ are two
Motzkin paths such that: does not belong to the case (1).

-(Q) f M = mHm/, then we haveM = f(o) wherec = fny such thaty (resp. redsn)) is
recursively obtained from the Motzkin path’ (resp.m). Notice that the position of in o creates the
horizontal stepd betweenmn andm’'.

-(2)If M = mUm/D, then we havé = f(o) whereo = 5(n — 1)yn such thaty (resp. red8(n —
1))) is recursively obtained from the Motzkin path’ (resp. m). Sincem does not belong to (1), its
associated permutation necessarily have its greatesesteom the last position. We conclude with a
simple induction.

Notice that paths of type (1) are mapped to permutations &/tass element is not, and paths of type
(2) are mapped to permutations that end with

For example, iftM = mUm/D with m = UHD andm’ = UDH (n = 9), then38 = 7658,
red38) = 3214, v = 3241 ando = 765832419. If M = mHm’' withm = UHD andm’ = UDH
(n = 8), then38 = 7658, red 38) = 3214, v = 3241 ando = 76583241.

Finally, the mapf is a one-to-one correspondence betw&§ii(132) and the set of Motzkin paths of
length(n — 1). O

e Bijective proof forS:"(321).

Here we construct a bijection betwe&fi”(321) and the set of Motzkin paths of length— 1. Let
o = o109+ 0, be a permutation i (321), and fori € [n] we denote bys; the maximum of the
set{o1,09,...,0;}. We define the map that transforms a permutationc S¥""(321) into the Motzkin
pathM of lengthn — 1 obtained by the following process:

For eachi from 1 ton — 1,
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Fig. 1. The Motzkin path UHUDDUUUDDUDD and its corresponding permutations =
(12) (11) 98 (10) (13) 53246 1 7 (14) ande’ = 2416 3 58 (10) (12) 7 9 (14) (11) (13) lying
respectively inS{;"(132) andS{;" (321).

(a) ifs; + 1 < 0i4+1, then thei-th step of M is an up stef/;

(b) if there existgi < i such thav; 11 = s; + 1 ands; + 1 < 11, then thei-th step ofM is a down
stepD;

(c) otherwise, thé-th step ofM is an horizontal stef .

For instance, the permutatiof$, 132, 213, 1324, 3142, 2143 and2413 are respectively transformed
by g into the Motzkin paths?, UD, HH,UDH, HUD, HHH,UH D (see Figure 1 for an example of
length14).

Let us prove thay is a one-to-one correspondence betwsgfi(321) and the set of Motzkin paths of
length(n — 1). Leto be a permutation of""(321). Let us takei, 1 < i < n — 1, such that(a) is
verified. Sinces; + 1 < 0,41, there existg > i + 1, such thav; = s; + 1. A consequence is that the
indexj — 1,7 < j — 1 < n, verifies (b). Conversely, let us takel < i < n — 1, satisfying(b). So
there isj < i such thav,; 1 = s; + 1 ands; + 1 < ¢;41 and the index verifies(a). Thus, there is a
one-to-one correspondence between up steps and down stdpthat each up step is associated with a
down step onits right. This is precisely the characternzatif the Motzkin paths.

Conversely, lef\/ be a Motzkin path of lengtfi. — 1) and let us prove that there exists a permutation
o € 8'"(321) such thayy(c) = M. We proceed by induction omin order to construct the permutation
o€ 87(321).

We distinguish four cases: (If = U¥Dm; 2) M = U¥H*m; (3) M = H*Um; and ()M =
HH...H,withk > 1,¢ > 0, and wheren is a suffix of the Motzkin pati/.

-If M = U*Dm, then we have\l = g(c) whereo is recursively obtained from the permutation
such thay(n) = U*~! Hm by adding 1 on the left of and after increasing by one all valuesofNotice
that7 cannot begin with 1 since there would be a down step just &fter. Thuss does not contain any
successions and avoid21.

- If M = U* H*m wherem does not begin with .

If £ = 1, then we havel = g(o) whereo is recursively obtained from the permutatiersuch that
g(m) = Ukm by insertingl between theék + 1) and (k + 2)-th positions ofr and after increasing by
one all values ofr greater or equal thah Sinceg(n) = U*m andm does not start witd7, we have
mr+2 7 1 and the previous insertion a@fdoes not create any succession and any padt@irn

If M = U*H*m wherem does not begin with and with¢ # 1, then we havel = g(c) where
o is recursively obtained from the permutatiersuch thaty(r) = U* H~"'m by insertingmy ¢ 1 + 1
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between thék + ¢) and(k + ¢ + 1)-th positions ofr and after increasing by one all valuesrofreater
or equal thanrg o1 + 1.

Since the first step af: is not H, we necessarily have eithef o1 > Sk1e+ 1 O Tpgpr1 < Skte
which implies that the insertion of,,_; + 1 does not create a succession at posifioa- ¢ + 1) in
o. Also, the insertion ofr;;¢—1 + 1 between th€k + ¢) and (k + ¢ + 1)-th positions cannot create a
succession at positiofk + £). So, the permutation does not contain any succession.

Let us assumey ¢, = mrre. Since the(k + ¢ — 1)-th step isH, there isj < k + ! — 1 such that
7j + 1 = mr4¢. Therefore, the insertion ofy,—1 + 1 between thék + ¢) and(k + ¢ + 1)-th positions
does not create a pattedf1 (sincer does not contain any pattesal).

Now, let us assume that, ., > 7 + 1. If we havery 1 = siye then the insertion ofy, + 1
between thék + ¢) and(k + ¢ + 1)-th positions cannot create a pattern 321. If we have 1 # Sk,
we necessarily have, -1 < mi4¢ and all values lying ifil, 7;,—1] appear at positions < k + ¢. So,
the insertion ofs;, + 1 between theék + ¢) and(k + ¢ + 1)-th positions cannot create a pattern 321.
Finally, the permutationr belongs taS"(321).

-1f M = H*Um, thenwe havé! = g(c) wheres = mun’ such thay(ru) = H* andg(red(un’)) =
Um.

-If M = H*, then we have\l = g(o) whereo is recursively obtained from the permutatiorsuch
thatg(n) = H*~! by insertingr;_; + 1 in the last position and after increasing by one all values of
greater or equal thamy,_ + 1.

Below, we give an example for each previous case.

-If M = UDm with k = 2, m = UHDD, thenm = 3517246, g(mr) = UHUHDD ando =
14628357,

-if M = U*H*m with k = 2, ¢ = 3 andm = DD, thent = 2461735, g(r) = UUHHDD and
o = 35718246;

-if M = H*Um with k = 3, m = D, thenu = 2, mu = 3142, g(mu) = HHH, ur’ = 265,
g(132) = UD ando = 314265;

-if M = H* with k = 5, thenm = 31425, g(n) = HHHH ando = 415263. O

The bijectionf (resp.g) from S (132) (resp.Si"(321)) to the set of Motzkin paths of length — 1)
induces a new constructive bijection between Dyck pathssantk restricted irreducible permutations:

Corollary 1 Let P, 11 be the set of permutatioms € 85211(132) such thatforalli, 1 < i < 2n — 1,
with o; > 0,41 there existg > i + 1 with o; = o; 4+ 1. Then the may induces a constructive bijection
betweenP;,,; and the set of Dyck Paths of length.

Corollary 2 Let P, ., be the set of permutations € Si'",,(321) such thate; = 1 and o1 —
max{o1,...,0;} < 2ando;11 — max{oy,...,0;} # 1forall 1 <i < 2n — 1. The mapy induces a
constructive bijection betweer,, , ; and the set of Dyck Paths of length.

For example, we hav@®; = {213}, P; = {42135,32415}, P; = {6421357,5462137, 6324157,
5324617, 4352617}, P} = {132}, P, = {13254,13524} andP, = {1325476, 1325746, 1352476, 1352746,
1357246}.
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4  Avoiding two patterns of length 3

In this section, we explore the avoidance of two patternen§th 3 for irreducible permutations. All
enumerative results of this section are listed in Table 2.

Theorem 4 For a € {231, 312}, the setsS"" (321, a), n > 1, are enumerated by the Padovan’s spiral
numbers defined by the generating funct@*”— (see [Slo], A134816).

32 _ 3

Proof. Let ¢ = n~y be a permutation i5:"" (321, ) where3 and~ are two subsequences fof — 1].
Sinceo avoids321, v = y172 - -7 IS an increasing subsequence (possibly emptynof 1]. We
distinguish two cases: (3)is empty; and (2) is not empty.

Case (1). This means thdte S, (321, o) and the last entry of is different fromn — 1. Conversely,
if we addn to the right of a permutatiom in " (321, ) such thatr,_; # n — 1, we obtain a
permutation ofS"" (321, ).

Case (2). Nowy = 172 - - - v IS not empty. For a contradiction, let us assuime 2. Then,s contains
the patterr812. Sinceo is irreducible, there is an elemeldf 5 such thaty,_1 < b < % < n which
implies thato contains the patterd31. Thus, we necessarily have= 1. In this caseg can be written
Bn(n — 1) wheres € 8", (321, ).

Let f(x) (resp. g(z)) be the generating function for permutationse S (321, «) (resp. o €
8irr(321, «) such thatr,, # n). The previous study induces thftr) = 1 + z - g(z) + 22 - f(x)

1

with g(z) = f(z) — z - g(z). We obtaing(z) = —3— andf(z) = 2 = L - h(z) where
h(z) is the generating function for the Padovan numbers (seé, [S90931). This corresponds to the
Padovan’s spiral numbers [Slo], A134816). O

Notice that this last proof shows that the three §&t&(321, 231), Si" (321, 312) andSi ™ (321, 231, 312)
are identical, not just equinumerous. To my knowledge gli®no analogous result in the enumeration
of general (as opposed to irreducible) permutations.

Theorem 5 For a € {132,213}, the setS/" (321, «) is empty fom > 4. The seS"" (321, 123) is empty
forn > 5.

Proof. The result is well known forx = 123. Now, let us takex = 213 (the casex = 132 will be
obtained with a smple Wilf equivalence). Letbe a permutation af"" (321, 213). Writing o = Bny
with 5 and~ are two subsequences [of — 1], the avoidance o213 implies thats = 3 - - - 8%, where
B1 < B2 < --- < B; the avoidance o821 implies thaty = 172 ...y, Wherey; < 2 < -+ < .
Sinceo is irreducible and avoid213, v and/ contain at most one element which implies that there does
not exist any permutationsin S (321, 213) whenevem > 4. O

Theorem 6 Forn > 1, the setS"" (213, 132) is reduced to the unique permutatiofn — 1) - - - 321.

Proof. Let o be a permutation ir5/""(213,132). We can writec = j3n~y where and~ are two
subsequences &f — 1]. Sinces avoids213, we have8 = 10z - - Bk, Wheref; < By < -+ < Sg.
Sinceo is irreducible, we havg, # n — 1, and thusn — 1 lies in. Sincey avoids132, 5 is empty
(otherwise,S1n(n — 1) would be a pattern32). Thus we haver = nvy. A straightforward induction
providess = n(n —1)---321. 0

Theorem 7 The setsS¥"(231,312), n > 0, are enumerated by the Tribonacci numbers (see [Slo],
A000213).
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Proof. Let o be a permutation i (231, 312). Sinces avoids312, it can be writtenr = 3n~y where
B and~ are two subsequences|af— 1] such that eithety = v1 - - -y, withy; > 79 > -+ >y, oryis
empty. Sincey avoids231, 8 does not contain any values greater thanThus we have eitheris empty
ory=pn(n—1)(n—2)---(n—k)whereg € S, _,(231,312).

Let f(x) (resp.g(z)) be the generating function f&" (231, 312), n > 0, (resp. forSi (231, 312),
n > 1, with the restriction that permutations do not end wi)h Then we have (z) = 1 + = + zg(x) +

g(z). The above structure of a permutatior9fi” (231, 312) ensures thaj(z) = (L -1- :c) fz

11—z )
Thus we havef (z) = ﬁjiﬁ, that corresponds to the Tribonacci numbers [Si1]00213. O
Theorem 8 For « € {231,312} and 3 € {132,213}, the setsS/" («, 3), n > 1, are enumerated by the
Fibonacci numbers (see [Slo], AO00045).

Proof. Let o = o042 -+ 0, be a permutation i5""(231,213). Sinces avoids231 and213, theno;,
1 < i < n, is either the smallest or the greatest element of théset; 11, ..., 0, }. We deduce that
can be written eithes = 1ny or ¢ = n~y, wherey avoids231 and213. If a,, = cardS/"(231,213))
thena; = 1, ax = 1, anda,, = a,,—1 + a,,—> Which defines the Fibonacci numbers.

The classical symmetries deal with the remaining cases. O

Theorem 9 For a € {312,231}, the setsSi"" (123, ), n > 1, are enumerated by the Triangular numbers
nln1) (see [Slo], AO00217).

Proof. Leto = 0103 - - - 0, be a permutation i$" (123, 312). Sinceos avoids123 and312, o can be
writteno = k(k — 1)---¢ny wherel < ¢ < k < n and~ is a decreasing sequence of integers. For
k fixed, 1 < k < n — 2, there arek possible permutations obtained whenetefescribed1, k]. For

k = n — 1, the permutatiorin — 1)n(n — 2) - -- 21 is not irreducible, thus we do not consider it. In this
case, there ar@ — 2) possible permutations. Finallgi " (123, 312) is enumerated by +2 + 3 + - - - +
m=2)+(n—-2)+1= @ which is the Sloane’s sequence A000217. A simple symmetasghe
result fora = 231. O

Theorem 10 For a € {132,213}, the setsS"" (123, «), n > 1, are enumerated by the sequence [Slo],
A005251.

Proof. Leto = o103 - - - 0, be a permutation i (123, 132). Sinces avoids123 and132, o, is either
(n — 1) orn. In the case where; = n, theno can be writterr = ny wherey € S, (123,132). In
the case where; =n — 1,0 can be writteno = (n — 1)(n — 2) - - (n — k)ny, 2 < k <n — 1, where
v belongs toS™, ,(123,132). If a,, = cardS¥"(123,132)) then we deduce,, = a,_1 + an_3 +
Qpn_4 + -+ + a1 + 1 wherea; = 1 andas = 1 which corresponds to the Sloane’s sequence A005251.
The casex = 213 is obtained by symmetry. O

5 Fixed point free involutions

In this section, we study the avoidance of one pattern oftleBdor fixed point free irreducible involu-
tions,i.e., for involutions with no fixed points and no successions.ellimerative results of this section
are listed in Table 3. LePZ (resp.DZ'"") be the set of fixed point free (resp. fixed point free irreblei
involutions. These sets restricted to their lengtilements will be respectively denot®d,, andDZ"™".
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Pattern Sloane Sequence
{321,231}, {321,312} A134816 Padovan’s spiral
{321,132}, {321,213} 1,1,1,0,0,0,...
{321,123} 1,1,2,3,0,0,...
{213,132} 1,1,1,1,...
{231,312} A000213 Tribonacci
{231,132}, {231,213}, {312,132}, {312,213} | A000045 Fibonacci
{123,231}, {123, 312} A000217 nin—1)
{123,132}, {123,213} A005251 | 1,1,2,4,7,12,21,37,65

Tab. 2: Wilf-equivalence classes for two pattern subset§:pin irreducible permutations.

5.1 Enumerative results

Theorem 11 The setsDIﬁfT, n > 0, are enumerated by the sequenggedefined byug = 0, as = 1,
aon = (2n — 2)agn—2 + (2n — 4)ag,—4 forn > 2 andasg,+1 = 0 for n > 0 (see [Slo], A165968).

Proof. Obviously, there does not exist any fixed point free involns of odd length; thugs, 1 = 0 for
n > 0. Now, leto be an irreducible involution of lengthn, n > 2, with no fixed points. Lek be the
index in[2n — 1] such thav;, = 2n (and alsara,, = k).

Let 7 be the involution of lengtfi2n — 2) obtained fromv by deletingk and2n, and reducing the result
to an involution of lengtt{2n —2). Two cases occuraf 7 is irreducible; andi) 7 has the two successions
(mk—1, ) and(k — 1, k). Conversely, each irreducible involution of len@th can be obtained from an
involution 7 belonging to one of the two previous casesdnd ().

Thus, the generating function for the permutations type (@) is (2n — 2)as,—2.

Now let us consider involutions of typé)( Let.A,,_» be the set of involutions of lengtt2n — 2)
with exactly two successions and with no fixed points. An lation in A5, o can be extended into
an irreducible involution of lengtn of type () in two possible ways. So, let be an involution in
As,—o such that(mg, 74+1) and (k,k + 1) are the two successions. From we construct the pair
(k,m') € [2n — 4] x DIY" , wherer’ is obtained fromr by deleting the two entries;,, ; and(k + 1),
and reducing the result to a permutation of len(th — 4). Since we obtain the same permutation in
7’ € DIYT_, by deletingr), andk, the cardinality ofd,,,_» is half the cardinality of2n — 4] x DY,
Therefore, the generating function for the number of intiohs of type §) is given by?2 - (2"’4)#
Finally, we concludes,, = (2n — 2)az,—2 + (2n — 4)ag,—4 forn > 2. ]

More generally, the proofs of Lemmas 1 and 2 imply that theae&gl -agy, fixed point free involutions
of length2n with exactly2k successions, wherg,, is the sequence defined in Theorem 11.

Theorem 12 For o € {132,213,321} andn > 0, the setsDZ4" () of irreducible involutions of length
2n without fixed points and avoiding the pattesn are enumerated by the Motzkin numbers (see [Slo],

A001006). The generating function fBE"" (a) is given by:2 V(322 0+e%)

212
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Proof. Since the seDZ(«) is expanded and closed under deflation, we apply Lemma 2 ¢ib8et: As
the generating function f&PZ,(a), n > 0, is f(z) = c(2?), wherec(z) = 1=4=2% is the generating
function for the Catalan numbers, the generating functwZ'™" («) is

B x B 2 o 1+a?— /(1 -32?)(1+a?)

O
A simple application of Lemma 2 yields the bivariate geniagfunctionf(x,y) = ¢ (ﬁjy)ﬂ) of

the setDZ(«) of fixed point free involutions avoiding the pattesnfor o« € {321, 213, 132}, where the
coefficient ofz"y* gives the number of elements™Z,, (o) with exactlyk successions.

Theorem 13 For o € {231,312} andn > 0, the setsDZ5 " (a) of irreducible involutions of lengtBn
without fixed points and avoiding the patteznare enumerated b3 .

Proof. Let o = 231 ando = o109 - - - 09, be an irreducible involution of lengtdv without fixed points
and avoidingy. Sinces avoids231, we can decomposed= 3(2n)y(2k+1) where2k+1 < 2n—1,8 €
DIy (o) and(2n)v(2k+ 1) is a decreasing sequence of consecutive numbers in theahjtek + 1, 2n).
Therefore, ifas,, enumerates the s é’;f(oz), we deduce the inductiatn,, = ag+as+as+---+aan_2
whereay = 1. We obtaina,, = 2"~ ! for n > 1 with gy = 1. The casex = 312 is handled by the

symmetryoc — o~ 1. O

Theorem 14 The generating function for the s€bg'"" (123), n. > 0, of irreducible involutions of length
n without fixed points and avoiding the patter23 is

222 (221 — 422 — 1)
V1I—4x2 - (1 +22% + V1 —422)

Proof. Let o be an involution of lengti2n without fixed points containing at least one succession. We
suppose thafoy, o11) is the leftmost succession. Sineeavoids123, it is straightforward to see that
or =2n—kandogy 1 =2n —k+ 1.

Theno can be writtenio = A(2n — k)(2n — k + 1)Bk(k + 1)y where (resp.~) is a123-avoiding
sequence of elements jn — k + 2,2n] (resp.[1, k — 1]) without successions, such that (ay = v+
andg is a sequence of elements[in+ 2, 2n — k — 1] where red)5) is an involution of lengtfen — 2k — 2
without fixed points. See Figure 2 for an illustration of theisture ofo.

1
Let g(x) = %21 be the generating function for the set of involutions withfiked points and
avoiding123 (see for instance [DRS07]). Lgt«) be the generating function of irreducible involutions
without fixed points and avoidint23. We have

g(x) = f(z) = 2 - h(z?) - (g(z) +1)

whereh(z) is the generating function for irreducible permutationsiding the patterri23 (see Theorem
1). Finally, a simple calculation gives the desired results |
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A .

-y

Fig. 2: Proof of Theorem 14. The special structure of a fixed poirg fngolution avoidingl 23 and with at least one
succession.

Pattern Sequence Sloane aosn,n > 1
{} { 2nt1 =0 A165968 1,2,10,68,604
agn = (2n — 2)agp 2 + (2n — 4)ag, 4
{132}, {213}, {321} Motzkin A001006 | 1,1,2,4,9,21
{231}, {312} on—1 A000079 1,2,4,8,16,32
{123} 207 (2" V1 4w2 1) New | 1,2,8,30,109,401

V1—422 (14+2z4++/1—4x2)

Tab. 3: Fixed point free irreducible involutions avoiding at mosemattern ofSs.

5.2 Bijective proofs

Recall that a Motzkin path of length is a lattice path starting g0, 0), ending at(n,0), and never
going below ther-axis, consisting of up sted$ = (1, 1), horizontal stepgf = (1,0), and down steps
D=(1,-1).

« Bijective proof forDZ57 (132).

A fixed point free irreducible involutioa of length2n that avoids the pattert82 is necessarily of the
form o = 3B’ wheres’ belongs toS7"(132) and such that ré@) = 5'~* (all values of3 are greater
than those of3’). Using the bijectionf from Si""(132) to the set of Motzkin paths of lengtn — 1)
(see Section 3.2), we deduce immediately a constructieetivin f betweenDZ5" (132) and the set of
Motzkin paths of lengttin — 1) as follows: f(c) = f(3'). O

e Bijective proof forDZ4" (321).

This part presents a constructive bijection betw®dy’"(321) and the set of Motzkin paths of length
(n—1).

Leto = o1 --- 02, be an involution of lengtl2n without fixed points and that avoid21. Theno is
the product of: transpositions (cycles of length 2): = (¢1,71) - (€a,r2) -+ (€y,7) Wherel; < ly <
e <y, <o < --- < rpandr; < ¢ forl < i < n. Infact, the valuesg; (resp.r;) for1 < i < n,
are the left-to-right maxima (resp. right-to-left minima#)o, i.e., ¢; (resp.r;) is greater (resp. less) than
all values on its left (resp. right) is.
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Remark 2 It is well-known (see [DRSO07] for instance) that involuasf length2n without fixed points
and avoiding321 are enumerated by the-th Catalan number. Such an involution is associated to the
Dyck path from(0, 0) to (2n,0) by the following process: reading from left to right, we replace each
left-to-right maxima with = (1, 1) and each right-to-left minima witlh = (1, —1). For example, the
involution3 5172846109 = (3,1) - (5,2) - (7,4) - (8,6) - (10,9) is associated to the Dyck path
UUDUDUDDUD.

On the other hand; can be viewed as a matching by puttihrgpoints labeled from to 2n in this order,
and then connecting, fdr< j < n, the numberg; andr; by an arc (see Figure 4 for an illustration).

(1)

Fig. 3: The two forbidden configurations in the matching of an intioluo € DZ%"(321).

Therefore, a fixed point free involutianavoids321 means that its matching does not contain nesting
arcs,i.e. the configuration (1) in Figure 3 does not occur. Moreoweatpes not contain any successions
if and only if the configuration (2) in Figure 3 does not ocduwr, there does not exist two ares andas
such that, is obtained fronmu; by an horizontal translation @fi, 0). These two last conditions can also
be expressed using the one-line notation a@fs follows.

A fixed point free irreducible involution avoids321 if and only if, for1 < i < n — 1, at least one of
the two following statements is verified:

(A;) there exists a right-to-left minimum in between theé-th and(i + 1)-th left-to-right maxima;

(B;) there exists a left-to-right maximum between thi and(i + 1)-th right-to-left minima.

Let us define the map that transformsr € DZ47(321) into the Motzkin pathM from (0,0) to
(n — 1,0) defined as follows:

Forifrom1ton — 1,

(a) if B, is verified but not4;, then thei-th step ofM is an up stef/;
(b) if A; is verified but notB;, then thei-th step ofM is a down stefD;

(c) if A; andB; are verified, then théth step ofM is an horizontal step/ .

For instance, involution8143, 351624, 214365, 35172846, 35162487, 21573846 and 21436587 are
respectively transformed byinto H, UD, HH,UHD,UDH, HUD andH H H (see Figure 4 for an
example wit2n = 20).

Let us prove thah is a one-to-one correspondence betw®di’” (321) and the set of Motzkin paths
of lengthn — 1. Let o be an involution inDZ5 " (321). Using Remark 2¢ is associated with a Dyck
path where left-to-right maxima (resp. right-to-left nrimd) correspond to up steps (resp. down steps).
So, there is a one-to-one correspondence between up stp®an steps such that the image of an up
step is a down step lying on its right. This induces a onerte-@mrrespondencebetween the set of all

occurrences o/ U and the set of all occurrencesBfD such that the image hyof a UU-occurrence lies
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R en

Fig. 4 The Motzkin path UHUUDHDHD and its corresponding involution o =
3719(11)(13)2(14)4(16)5(17)68(19)(10)(12)(20)(15)(18).

on its right. This implies that there is a one-to-one coroesfence between the sef§p = {i,1 < i <

n — 1, (a) is verifiedt and Down = {i,1 <i < n— 1, (b) is verified: such thag(i) is greater than (we
havec(i) # i since the configuration (2) of Figure 3 does not occur). Adtinetion associates an up
step when € Up, a down step whehe Down and an horizontal step otherwigd) is a Motzkin path
of length(n — 1). Moreover this construction ensures that the images bf/two different involutions
necessarily yields two different Motzkin paths.

Conversely, from any Motzkin path/ of lengthn — 1, we construct an involution of lengtm without
fixed points and that avoidi®21, by the following process. More precisely, we will constrasequence of
red and green points where red (resp. green) points comdspdeft-to-right maxima (resp. right-to-left
minima) of the involution of lengtn. This sequence will characterize the desired involution.

We start the process with a red point followed by a green pdimtough the Motzkin pati/ from left
to right:

- if we meet an up stefy, then we add one red point just after the last red point, andddeone red
and one green points (in this order) on the right;

- if we meet a down stefy, then we add one green point on the right;
- if we meet horizontal stej/, then we add one red and one green points (in this order) argthie

For instance, this process applying to the Motzkin path= U H D provides the following steps:

Step O:@ Stepl.eec e Step2:eece0c 0@ Step3:eecec 0@
Fig. 5: Construction of the involutionr = 35172846 from the Motzkin path\/ = UH D.

At each step of this process, we add only one green point orighe Moreover, the number of red
points is, at each step, at most the number of green poirttse @&nd of the process, there is equality. The
configuration(2) of Figure 3 does not occur. Therefore, the obtained matotwmngesponds to that of a
fixed point free irreducible involution that avoi@81 and such that its image byis exactly the Motzkin
path M. We conclude thak is a one-to-one correspondence betwBdR'" (321) and the set of Motzkin
paths of lengtm — 1. O
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Notice that the above construction appears as a geneiafizaft the bijection of P. Manara and C.
Perelli Cippo, [MC10], which transforms a restricted seMuftzkin paths into the set of simple involu-
tions avoiding the patters21.

6 Pattern avoiding involutions

In this section, we present enumerative results for setgedicible involutions avoiding one pattern of
length three (see Table 4).

Theorem 15 For o € {231,312}, the setZ " («), n > 0, of irreducible involutions of length avoiding
« are enumerated by the Tribonacci numbers (see [Slo], AOBP21

Proof. A length n irreducible involutions avoiding 231 can be writtengnvyk, 1 < k& < n, where
B € Zj"", (o) such that the last value ¢f is different fromn — 1 wheneverk = n, and wherewyk =
n(n—1)---(k+1)k. Letg(z) (resp.h(z)) be the generating function for the s&$" (o), n > 0, (resp.
for the sets of irreducible involutions of lengthavoidinga such that the last value is different fram.
According to the above structure of it is straightforward to see thg{(z) = 1 + 2 £ y= ) + zh(x)

with (1 + z)h(z) = g(x). Thus we obtaiy(z) = W which is the generating functlon for the
Tribonacci numbers. The case= 312 is handled by the symmetey — o~ 1. O

Theorem 16 The generating function for the set§” (123), n > 0, of irreducible involutions of length

HH H H v 1—2zx— 222 +4w ++/1—4x2
n avoiding123 is given by (22) (L1 22 T/ T—da?) "

Proof. Let o be an involution of length containing at least one succession. We supposédhat 1)
is the leftmost succession. Sineeavoids123, it is straightforward to see thaf, = n — k andoy1 =
n — k + 1. We distinguish two cases: either @) # k or (2) oy, = k.

In the first casey can be writterr = A(n—k)(n—k+1)8k(k+1)y wherel (resp.y) is al123-avoiding
sequence of elementsjin — k + 2, n| (resp.[1, k — 1]) without successions, such that rap¢ v~ and
B is a sequence of elements[in+ 2, n — k — 1] where redg) is an involution of lengtn — 2k — 2.

In the second case, can be writterv = Ak(k + 1)y where) (resp.v) is al23-avoiding sequence of
elements ik + 2, n] (resp.[1, k — 1]) without successions, such that rajH ~ 1.

Let g(z) = =LH2Ev1-4e" he the generating function for the set of involutions avaidi 23 (see
[SS85]). Letf(x) be the generating function of irreducible involutions @ling 123. The above structure
of o implies

g(x) = f(z) = 2" - h(2?) - g(x) + 2% - h(2?)

whereh(z) is the generating function for irreducible permutationsiding the patterri23 (see Theorem
1). Finally, a simple calculation yields the desired result O

Theorem 17 For « € {132,213, 321}, the generating function for the sef§” (o), n > 0, of irreducible
involutions of lengtn avoidinga is given by (see [Slo], A125189):

2(1+2)(1 + 2?)
1—z+a22 234+ (1+2)V1— 222 - 3%
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Proof. Fora = 132, 0 € Z¥"(«) can be written eithes = AnS3vyk where(vk)~! = red\n) €
Sjm(132) and such that € Z/'",, (132) or o = fn where € Z"" («) such that its last value is
different fromn — 1. If f(x) is the generating function faf/"" (o), the above structure of implies
that f(z) = g(z?)f(z) + zg(2?)f(z) + 1 + = whereg(z) is the generating function for irreducible
permutations avoiding32 and ending witm. So, we havey(z) = zh(x) whereh(x) is the generating
function for irreducible permutations avoiding2 and not ending with; thusg(z) = x(M (z)—g(z)+1)
where)M (z) = 1=2=v1-22-32" s the generating function for irreducible permutationsiding 132 (see
Theorem 2). A simple calculation gives the resultdos= 132.

Fora = 213, the result is obtained from = 132 with the symmetry — (o7)°.

Fora = 321, let f(z) be the generating function fa@i""(a). Then we havef(z) = h(z) + g(x)
whereh(z) (resp. g(z)) is the generating function faPZ"" () (resp. forZi"(a)\DZ“"(a)). On
the other hand, we havg(z) = fi(z) + f2(x) andg(z) = h(z)f1(x) where fi(x) (resp. fa(x)) is
the generating function for permutationsZfi” (o) with the last value equal ta (resp. different from
n). Then we havefi(z) = zfa2(2), fi(z) = 175 - f(z) andg(z) = 5 - h(z) - f(z). We obtain
f(@) = h(z) + 15 - h(z) - f(x). Sinceh(x) is known using Theorem 12, a simple calculation gives the
desired result. |

Problem: It remains to obtain the generating function for the g€t§, n > 0, of irreducible involutions
of lengthn.

Pattern Sequence Sloane an,mn>1
{} ? ? 1,3,5,13,37,107, 341, 1141
2(1+z)(1+z?)
{132}, {213}, {321} 2o e L (Lha)Y1 37 5 A125189 | 1,2,2,3,5,7,11,17,27,42
172w72w2+4w3+m
{123} 22 (11 2e4 1/ T—229) New 1,3,4,9,16,31,58,112
{231}, {312} Tribonacci A000213 1,1,1,3,5,9,17,31,57

Tab. 4: Irreducible involutions avoiding at most one patterrSaf
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