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ABSTRACT

This work extends previous research on numerical solution of
nonlinear systems in musical acoustics to the realm of nonlinear
musical circuits. Wave digital principles and nonlinear state-space
simulators provide two alternative approaches explored inthis
work. These methods are used to simulate voltage amplifica-
tion stages typically used in guitar distortion or amplifiercircuits.
Block level analysis of the entire circuit suggests a strategy based
upon the nonlinear filter composition technique for connecting
amplifier stages while accounting for the way these stages inter-
act. Formulations are given for the bright switch, the diodeclipper,
a transistor amplifier, and a triode amplifier.

1. INTRODUCTION

This research attempts to model and simulate highly nonlinear
circuits used primarily for electric guitar effects. Such efforts
aim to preserve the heritage of circuits whose components, such
as vacuum tubes, or particular vintage transistors, are becoming
increasingly rare. Circuit schematics and accurate devicemodel
equations can sufficiently model circuit behavior. Using these
with Kirchhoff’s Current Law (KCL) and Kirchhoff’s Voltage
Law (KVL), one can derive a system of nonlinear equations that
accurately replicates a circuit’s input-to-output relationship over
time. By exploiting the progress of contemporary digital comput-
ing power, modeling vintage circuits based on archives of their
circuit schematics and device characteristics can ensure that the
unique sound of these circuits will be available for future genera-
tions of musicians.

Numerical simulation of lumped nonlinear systems has been
studied extensively in the literature [1–7]. The musical acoustics
or digital audio effects community has developed two prevailing
methods for simulating ordinary differential equations with non-
linearities based on wave digital principles or directly solving a
nonlinear state-space system. Both methods have been applied to
the same types of problems in nonlinear musical acoustics and are
also applicable to certain classes of nonlinear circuits used for mu-
sical effects.

This work extends attempts to simulate musical circuits based
upon solving ordinary differential equations [7–10]. The moti-
vation for this work is to investigate block-based modelingtech-
niques [11] applied to a more complete simulation of electronic
circuits used in musical effects processing. Circuits naturally di-
vide into stages [12] which may interact with adjacent stages, or
“load” them, and are apt for description as a two-way signal flow
diagram as in [11]. This work presents examples of how circuits
may be represented as blocks in such a modeling scheme. Vari-
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Figure 1: Two-port scattering element defines network blocks us-
ing incident wavea, reflected waveb, and port impedanceR.

ous schemes exist that account for the mutual interaction between
blocks [4,11,13].

This paper reviews the wave digital formulation for represent-
ing circuits as digital filters, and the K-method of computational
musical acoustics, and then demonstrates the applicability of these
techniques to circuits in guitar electronics: the bright switch, the
diode clipper, a transistor amplifier, and a triode amplifier.

2. REVIEW OF METHODS IN COMPUTATIONAL
MUSICAL ACOUSTICS

2.1. Wave Digital Formulation

The wave digital formulation [14] views the linear N-port circuit
network as a scattering junction, replacing voltageV and current
I variables that define a single port by incidentA and reflectedB
waves, and a port impedanceR ≥ 0, as depicted in Fig. 1 for a
two-port. Doing so allows instantaneous reflections to be elimi-
nated by matching port impedances when ports of different blocks
are connected together, resulting in a computationally realizable
wave digital filter (WDF) structure.

The variable transformation to the wave domain is

A =V + RI

B =V − RI (1)

and the inverse formulation exists∀R ≥ 0.

2.1.1. Wave digital elements

In the wave digital filter, circuit elements such as resistors, capac-
itors and inductors become port impedances and delay, if applica-
ble, as shown in Tab. 1. They are computed by substituting (1)
into the Kirchhoff definitions of the elements and computingthe
reflected waves due to the change in impedance from the port to
the element. Usually the port impedance is chosen such that the
instantaneous reflection is matched, resulting in a reflection-free
port (RFP).
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Element Port impedance Reflected wave
ResistorR Rp = R b[n] = 0
CapacitorC Rp = T / 2C b[n] = a[n − 1]
InductorL Rp = 2L / T b[n] = −a[n − 1]
Short circuit Rp = X b[n] = −a[n]
Open circuit Rp = X b[n] = a[n]
Voltage sourceVs Rp = X b[n] = −a[n] + 2Vs

Current sourceIs Rp = X b[n] = a[n] + 2RpIs

TerminatedVs Rp = Rs b[n] = Vs

TerminatedIs Rp = Rs b[n] = RpIs

RVs s+
−

TerminatedVs

RIs s

TerminatedIs

Table 1: Wave digital elements: Port impedances and reflected
waves. The last two elements are sources lumped with a resistance
as shown. Elements with unmatched port impedances can be set
to any non-negative port impedanceRp = X.

(a) Parallel

(b) Series

Figure 2: Three-port adaptors and corresponding circuit schematic

2.1.2. Interconnections of elements: wave digital adaptors

The topology of the circuit is represented by adaptors, which
compute the scattering among connected ports given their port
impedances. Because connections can often be described in terms
of series and parallel electrical arrangements, series andparallel
adaptors have been studied in detail and are used for connecting
elements in wave digital filters. Parallel and series adaptors in the
three-port case are shown schematically in Fig. 2. The scattering
relations for elements and adaptors are derived by substituting (1)
into the Kirchhoff equations defining the element or adaptor.

The scattering relations for N-port parallel adaptors are given
by

γν =
2Gν

G1 + G2 + · · · + Gn

ap = γ1a1 + γ2a2 + · · · + γnan

bν = ap − aν ,

whereγν is the scattering parameter for portν, ν = 1 : N, ap is
a parallel junction wave variable, andbν is the reflected wave for
portν.

The scattering relations for N-port series adaptors are given by

γν =
2Rν

R1 + R2 + · · · + Rn

as = a1 + a2 + · · · + an

bν = aν − γνas

whereap is a series junction wave variable, andbν is the reflected
wave seen at portν.

The reader is referred to the comprehensive tutorial by Fet-
tweis [14] for the scattering relations of other elements and adap-
tors.

Each adaptor can have at most one reflection free port (RFP),
identified by a symbol T on the input terminal, whose impedance
is matched to the equivalent impedance of all the other portscom-
bined. Because of this, adaptors naturally form a directed tree
structure (see Figs. 4, 7 below) with the RFP oriented towards the
root of the tree.

The entire tree in the classical WDF formulation naturally
admits only one element with an instantaneous reflection, which
must be placed at the root of the tree. All other elements must
not have an instantaneous reflection. While the tree arrangement
is suggested in [14], a more thorough development is presented
in [2].

2.1.3. Nonlinear wave digital elements

Nonlinear elements are also derived by substitution of (1) into
the Kirchhoff definition of the element, and solving for the re-
flected waveb [15]. This often produces an instantaneous reflec-
tion, which in the classical WDF, must be placed at the root ofthe
tree. Thus, WDFs can handle only a single nonlinearity, although
modified approaches might be able to handle more [16].

Wave digital filters can also implement nonlinear reactances
such as capacitors and inductors by defining an auxiliary port to
the element whose wave variables correspond to the state vari-
ables of the reactance. For example, for a nonlinear capacitor
Q = C(V ) V , the wave variables at the auxiliary port would be
defined in terms of chargeQ and voltageV . The transformed vari-
able definitions can then be used in the defining equations of the
nonlinear reactance. The reader is referred to [1, 17] for detailed
derivations and usage.

2.1.4. Practical considerations

Because WDFs are often arranged in a tree structure, with data
dependency flowing from the leaves up to the root, and then from
the root back down to the leaves, it is convenient to label thewave
signals in terms ofu for signals going up the tree (through the RFP,
marked with T), andd for signals traveling down the tree [2, 11].
Otherwise, naming signals in terms of incident and reflectedwaves
between WDF components can quickly become unwieldy.

Once the WDF elements and adaptors are defined, the WDF
tree is sufficient to represent its computational structure. The fol-
lowing examples will present their algorithms as WDF trees.

2.1.5. Computational complexity

WDFs take advantage of the linear complexity of parallel andse-
ries adaptors to produce very compact signal processing code. In
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particular,N -port parallel and series adaptors with one reflection
free port incur a computational cost ofN−1 multiplies and2N−2
adds. In comparison, generalN -port scattering matrices require
a full matrix-vector multiply, and a direct implementationwould
haveN2 multiplies and(N − 1)2 adds.

A WDF with N elements synthesized as a binary tree of 3-port
parallel and series adaptors as described in [11] would haveN −2
3-port adaptors. The computational cost of a straightforward im-
plementation of these adaptors would be2N − 4 multiplies and
4N − 8 adds. Thus, the linear order of complexity is preserved
globally. Clearly, if a circuit can be decomposed into parallel and
series connections, using adaptors instead of full scattering matri-
ces to represent the circuit presents a great computationaladvan-
tage.

2.2. State-Space with Memoryless Nonlinearity (SSMN)

Most nonlinear characteristics for devices in guitar circuits can be
described as memoryless nonlinearities. The circuits can there-
fore be represented in state-space form with separate termsfor the
linear and nonlinear parts of the system. Numerical solution of
such systems results in a discrete-time state-space systemwith an
embedded memoryless nonlinearity. This class of solvers may be
referred to as State-Space with Memoryless Nonlinearity (SSMN)
solvers.

2.2.1. K-method

An SSMN approach was developed in computational musical
acoustics as the so-called K-method [3], using a particularmatrix
representation of nonlinear state-space systems. Note that the
variable names are modified here from the original exposition to
clarify the relationship with standard state-space formulations, and
to aid interpretation for the following examples.

The K-method deals with a broad class of systems that can be
expressed in the form

ẋ = Ax + Bu + Ci, (2)

i = f(v), v = Dx + Eu + Fi, (3)

wherex is a vector representing the state of the system,u repre-
sents the input, andi represents the contribution from the nonlinear
part to the time derivative of the state. In the following examples,
choosingi to be the nonlinear device currents leads to the most
convenient derivation of (2), hence the choice of variable name.
The devices are voltage-controlled current sources; thusv repre-
sents these controlling voltages. MatricesA, B, C represent linear
combinations of the state, inputs, and nonlinear part that affect the
evolution of the state. The nonlinear contribution (3) is defined
implicitly with respect toi and in general also depends on a linear
combination ofx andu.

Discretizing (2) by a numerical integration method, solving
for xn and substituting into (3) results in an implicit system of
equations that can be solved fori. Under conditions presented
in [3] amounting to the existence of a unique solution,i can be
expressed as a function of a parameterpn.

2.2.2. Computational algorithm

If the trapezoidal rule is used to discretize the time derivative in
(2), state update comprises the following three-step procedure

1. pn = DH(αI+A)xn−1+(DHB+E)un+DHBun−1+
DHCin−1

2. in = g(pn)

3. xn = H(αI + A)xn−1 + HB(un + un−1) + HC(in +
in−1)

where subscripts denote the time index,H = (αI − A)−1, α =
2/T if no prewarping is used, andin = g(pn) is an implicitly
defined transformation off(v),

in = f(Kin + pn), (4)

due to the discretization, whereK = DHC + F. This is a linear
transformation of states and inputs to generate an effective input
to the original nonlinear functionf . Functiong(pn) sometimes
can be found analytically from (4), but usually needs to be solved
numerically by Newton’s method or, if possible, fixed point itera-
tion [13]. The state update then takes the past state, present input,
and nonlinear contributions to compute the present state.

The outputy is generally expressed as a linear combination of
the states, inputs, and nonlinear part,

yn = Aoxn + Boun + Coin.

Once this procedure is defined, only the matricesA, B, C, D,
E, F, Ao, Bo, andCo and the functionf(v) need to be given to
describe the system under consideration.

2.2.3. Computational complexity

The K-method solution involves matrix multiplies, and contem-
porary CPU architectures were designed with such operations in
mind. The K-method approach stands to benefit greatly from data
parallelism at the computer architecture level.

If the coefficient matrices and the nonlinear function in the
algorithm outlined in Sec. (2.2.2) are precomputed once, the com-
putational complexity for the linear parts of the system is approx-
imatelyO

`

N2 + NM + NP
´

, whereN is the number of states,
M is the number of inputs, andP is the number of nonlinear out-
puts. This quadratic complexity is a disadvantage comparedto the
WDF, but the K-method is directly applicable to a broader range
of circuits.

3. APPLICATION TO VARIOUS GUITAR CIRCUITS

The following examples apply the WDF and SSMN formulations
to various circuits found in guitar electronics. We performed all
simulations using custom code in MATLAB and utilized Newton’s
method to solve any nonlinear equations.

3.1. Bright switch/filter

The bright switch (Fig. 3) is commonly found in guitar amplifica-
tion circuits and sometimes in the electronics of the electric guitar
itself as part of a volume knob implemented as a resistive voltage
divider. When engaged, it provides a low impedance path for high
frequencies to bypass part of the voltage divider.

The WDF tree for the bright switch is shown in Fig. 4 and
its signal processing algorithm can be derived by inspection from
this tree. The capacitor was chosen to be at the top of the tree
because, when it is disconnected, the open circuit at the topof
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Figure 3: Schematic of the bright switch from guitar electronics.
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Figure 4: WDF tree to implement the bright switch. Adaptor P2is
root.

the tree produces an instantaneous reflection. Using the reflection-
free wave digital capacitor sets its port impedance and requires a
parallel two-port adapter P2 to match the impedance of the rest
of the tree. The bright switch is suited to implementation asa
WDF because of its switched nature. The computational blocks in
a WDF correspond directly to the physical circuit elements,which
can easily be rearranged to reflect a different structure.

Figure 5 shows the magnitude response of the bright switch
simulated using the valuesC = 120pF, Rt = (1 − vol)MΩ,
Rv = (vol)MΩ, Rs = 100kΩ, wherevol ∈ [0, 1] is the value of
the volume potentiometer.

3.2. Two-capacitor diode clipper

The behavior of various numerical methods applied to the sin-
gle capacitor diode clipper was previously studied extensively [7].
Here we consider the diode clipper including the effects of the DC
blocking capacitor. The nonlinearities cause the pole of the high-
pass frequency to move depending on the signal level. Because
this pole is at low frequencies, this could have a notably audible
effect, especially in the presence of transients.

The two-capacitor diode clipper is shown in Fig. 6. The two
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Figure 5: Magnitude response of the volume attenuator with bright
switch engaged for values of volume as shown.
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Figure 6: Schematic of the diode clipper with high-pass and low-
pass capacitors.

Vs P

D
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Ch

Figure 7: WDF tree of the two-capacitor diode clipper. DiodeD is
root.

diodes are two physically separate nonlinearities but can be com-
bined into a single equivalent nonlinearity summing their currents
by KCL because they are connected in parallel. In the WDF, the
two diodes are modeled by the voltage-controlled current source

Id(V ) = 2Is sinh (V/Vt) , (5)

whereId(V ) is the current through the two diodes,Is andVtare
physical parameters of the diodes, andV is the controlling voltage
across the diodes.

Device parameters for the following simulations areRs =
2.2kΩ, Ch = 0.47µF, Cl = 0.01µF, Is = 2.52 × 10−9A, and
Vt = 45.3mV.

3.2.1. WDF implementation

The current state of WDF technology is well suited for modeling
circuits connected in series and parallel and with a single one-port
nonlinearity. The diode clipper is a prime example of this. The
tree corresponding to the computational structure of the WDF for
the diode clipper is shown in Fig. 7. The input is the voltage source
Vs and the output is the junction voltage of the parallel adaptor.
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Figure 8: Simulated output of two-capacitor diode clipper for sine
input with frequency 80 Hz, amplitude 4.5 V. Identical output is
produced by WDF and K-method.
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The nonlinear relationship between the incident and reflected
waves to this block in the WDF is derived by substituting the wave
variable definitions (1) into (5) and solving the resulting implicitly
defined nonlinear function forb = f(a) using numerical methods.
Specifically, the nonlinear equation to be solved is

2Is sinh

„

a + b

2Vt

«

−
a − b

2Rp
= 0.

Conditions for which a solution exists are given in [1,15].
This nonlinear relationshipb = f(a) is then placed at the

top of the tree representing the rest of the diode clipper to prevent
delay-free loops in the signal processing algorithm.

This example demonstrates the power of the WDF formula-
tion to build up algorithms modularly to simulate circuits.The
additional high-pass capacitorCh is added to the single capacitor
diode clipper by replacing the original resistive voltage source (in-
side the dotted box in Fig. 6) with the series combination of the
source and the capacitor. Thus, the structure of the WDF derives
directly from the connectivity of the modeled circuit.

3.2.2. K-Method implementation

The matrices for the K-method representation of the diode clip-
per can be found by application of KCL at the two nodes with
unknown voltages.

These equations are

ICh = ChV̇Ch = Gs(Vs − Vx)

ClV̇o = ChV̇Ch − Id(Vo).

Choosing the state variables to be the voltages across the two
capacitorsx =

ˆ

Vo VCh

˜T
with the polarity of the voltages

indicated by + on the capacitors in Fig. 6, we solve forV̇o andV̇Ch

usingVx = Vo + VCh to define the intermediate node voltage in
terms of the state variables, and setu = Vs to be the input. We let
the nonlinear parti = Id(Vo), which makesv = Vo the input to
the nonlinearity. The state variableVo is also the output.

V̇o =
Gs

Cl
(Vs − Vo − VCh) −

1

Cl
Id(Vo)

V̇Ch =
Gs

Ch
(Vs − Vo − VCh)

The resulting K-method matrices are

A =

»

−Gs/Cl −Gs/Cl

−Gs/Ch −Gs/Ch

–

, D =
ˆ

1 0
˜

,

B =

»

Gs/Cl

Gs/Ch

–

, E =
ˆ

0
˜

,

C =

»

−1/Cl

0

–

, F =
ˆ

0
˜

.

3.2.3. Simulation results

The output of the diode clipper simulated using an input signal of
80 Hz, 4.5 V amplitude, is plotted in Fig. 8. The sampling ratewas
8× oversampled the audio sampling rate of 48000 Hz to reduce
signal aliasing in the output. Identical output was produced by the
nonlinear WDF and the K-method. Notice the first cycle of the
output has a different period than the steady-state response, indi-
cating that the high-pass capacitor does indeed affect the response
of the circuit to transients and should be included in models.

3.2.4. Comparative discussion

The signal flow diagram to update the state for both methods in-
volve linear operations followed by a static nonlinearity and more
linear operations. The nonlinearity is also present in the discrete-
time feedback loop, which alters the order of the nonlinearity.

Considering the nonlinearity as a separate operation of compa-
rable cost, the WDF requires only 4 multiplies and 8 adds to imple-
ment the diode clipper. In contrast, the K-method using a straight-
forward implementation of matrix-vector multiplication requires
13 multiplies and 12 adds. However, it is not straightforward to
derive WDFs for the examples that follow.

3.3. Common-emitter transistor amplifier with feedback

Figure 9 shows the common-emitter amplification stage from the
Boss DS-1 [12], which employs a bipolar junction transistor(BJT)
in the shunt-shunt feedback configuration, giving rise to a tran-
simpedance amplifier. The feedback resistor exists mainly to bias
the base of the BJT at a desired operating point. The circuit also
features mild emitter degeneration as is common with these am-
plifiers, which reduces the gain and improves the small-signal lin-
earity of the stage. Because of the high gain from nodeb to node
c, this stage is highly sensitive to the DC bias voltage of nodeb,
which is determined by the design of the circuit. Using incorrect
resistor values affects the output swing, which in turn influences
the shape and symmetry of the clipped output.

The design values for this circuit areRi = 100kΩ, Rc =
10kΩ, Rl = 100kΩ, Rf = 470kΩ, Re = 22Ω, Ci = 0.047µF,
Cf = 250pF, andCo = 0.47µF.

3.3.1. Bipolar Junction Transistor (BJT) device model

Figure 10 depicts generic model for the bipolar junction transis-
tor comprising voltage-controlled current sources. The BJT has
three terminals, the collector, base, and emitter, whose currents
are controlled by voltages across two pairs of the terminals, Vbe =
Vb − Ve, Vbc = Vb − Vc. By conservation of current, only two of
the terminal current definitions are needed to completely describe
the current-voltage (I-V) characteristics. We useIb(Vbe, Vbc) and
Ic(Vbe, Vbc) here. Semiconductor devices such as the BJT also
have nonlinear resistances and capacitors, which require more de-
tailed models; however, for simplicity, we assume that we can ne-
glect these effects for the signal levels of this circuit in the audio
frequency band.

A complete, yet simple, physically derived model for com-
puter simulation, the Ebers-Moll model [18] defines the following
current-voltage (I-V) characteristics:

Ie =
IS

αF
[exp (Vbe/VT ) − 1] − IS [exp (Vbc/VT ) − 1] (6)

Ic = IS [exp (Vbe/VT ) − 1] −
IS

αR
[exp (Vbc/VT ) − 1] (7)

Ib =
IS

βF
[exp (Vbe/VT ) − 1] +

IS

βR
[exp (Vbc/VT ) − 1] (8)

Device parameters for this simulation areVT = 26mV, βF =
200, βR = 0.1, αR = βR/ (1 + βR), Is = 6.734×10−15A. The
reader is referred to textbooks on electronic devices, e.g., [18], for
detailed interpretation of these parameters.
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Figure 9: Schematic of the common-emitter amplifier with feed-
back.
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Figure 10: Generic BJT device model.

3.3.2. K-Method formulation

Using the generic description of Fig. 10 for I-V characteristics,
we find the K-method matrices for this circuit. Again defining
the state to be the voltages across each of the three capacitors,
x =

ˆ

VCi Vbc VCo

˜T
with the polarity of the voltages in-

dicated by + on the capacitors in Fig. 9, we can use KCL to find
equations at each of the nodes, and solve forẋ. The inputs are
u =

ˆ

Vi VCC

˜T
, the input voltage and the supply rail. The

nonlinearity is given by

i =
ˆ

Ib(Vbe, Vbc) Ic(Vbe, Vbc)
˜T

,

the currents at the base and collector terminals of the BJT, and
requires an inputv =

ˆ

Vbe Vbc

˜T
. The output is found from

Vo = Vi − VCi − Vbc − VCo.

The K-method matrices then give the appropriate linear combina-
tions of these variables using conductanceGx = 1/Rx in place of
the corresponding resistance:

A =

2
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−
Gc+Gl+Gi
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−

Gc+Gl

Ci
−

Gl
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−
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»
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–
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»
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–
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Figure 11: Output of the common-emitter amplifier for sine input
of 0.2 V, 1 kHz.

The formulation given admits a generic device model. While
the Ebers-Moll model for a BJT is used here specifically, it isa
simple model that does not account for the many nonidealities of
real devices. In practice, the distortion performance of the circuit
is highly sensitive to the accuracy of the device models, which
usually represent some simplification of reality. This formulation
allows for the use of tabulated device models obtained experimen-
tally for greatest accuracy.

3.3.3. Simulation results

The BJT amplifier was simulated at a sampling rate of8× the au-
dio rate 48000 Hz. The results are shown in Fig. 11. Note the
asymmetry of the duty cycle of the output given a sine wave input.
This is due to the asymmetry in the nonlinearity: one polarity clips
at a lower level than the other. This injects an offset at DC, which
is being filtered out by the DC blocking capacitor at the output,
causing the the bias of the output waveform to shift downwardaf-
ter the initial transient at 26 ms (not shown). A slowly shifting bias
would affect the distortion of subsequent nonlinear stages.

3.4. Common-cathode triode amplifier with supply bypass

In guitar circuits, the ubiquitous common-cathode triode amplifier
stage (Fig. 12) provides preamplification gain. Several of these
stages can be cascaded for a high-gain amplifier. This circuit is
essentially the same configuration as a BJT common-emitter am-
plifier. The grid resistorRg and parasitic Miller capacitanceCf

are shown explicitly in this simulation circuit. The cathode resis-
tor Rk determines the operating bias point for the circuit. Often a
bypass capacitorCk is placed across the cathode resistor to coun-
teract the effects of gain degeneration caused by the resistor, and
gives a bandpass gain.

For this simulation, the circuit design used isRg = 70kΩ,
Rk = 1500Ω, Rp = 100kΩ, Ri = 1MΩ, Ci = 0.047µF, Cf =
2.5pF, Ck = 25µF.

3.4.1. Triode device model

The triode differs slightly from the BJT in the device model.While
the BJT is controlled by the voltages across the base-emitter, and
base-collector ports, owing to different operating principles, the
triode is controlled by the voltages across the gate-cathode and
cathode-anode ports. The triode device model is shown in Fig. 13.

The classic Child-Langmuir triode equation for the plate cur-
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Figure 12: Schematic of the common-cathode triode amplifier.
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Figure 13: Generic triode device model.

rent [19] is used here as a proof of concept:

Ip = K

„

Ed

„

1 + sign(Ed)

2

««3/2

, where

Ed = µVgk + Vpk,

and grid currentIg = 0. For the 12AX7 triode in this simulation,
µ = 83.5, K = 1.73 × 10−6A/V3/2 [20].

The Child-Langmuir model allows the plate-cathode voltage
to become negative while plate-cathode current is positivewhen
the grid voltage is sufficiently high. This unphysical behavior
demonstrates the inaccuracy of the model in a common region of
operation for guitar distortion.

The Child-Langmuir equation is admittedly a poor model for
simulation; however, the K-method formulation admits a general
two-port description of the triode, so any of the multitude of triode
models developed for circuit simulation in SPICE can be ported to
this method. In particular, this formulation accounts for the effects
of grid conduction (not used with this model), which is claimed to
be sonically significant [21].

3.4.2. K-method formulation

While a similar circuit was simulated using the wave digitalformu-
lation [9], the two-port nonlinear device does not yet readily admit
a wave digital representation, and ad-hoc means were necessary to
generate a WDF. Alternatively, the K-method allows direct simu-
lation of the common-cathode circuit in Fig. 12.

The state vector is the voltages across each of the capaci-
torsx =

ˆ

VCi VCf VCk

˜T
, with the polarity of the volt-

ages indicated by + on the capacitors in Fig. 12. The inputs are
u =

ˆ

Vi VPP

˜T
, the input voltage and the supply rail. The

nonlinearity is given by

i =
ˆ

Ig(Vgk, Vpk) Ip(Vgk, Vpk)
˜T

,
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Figure 14: Plate voltage of common-cathode amplifier for sine in-
put of 2.8 V, 1000 Hz.

the currents through the grid and plate terminals, and requires an
input v =

ˆ

Vgk Vpk

˜T
, the voltages across the grid-cathode,

and plate-cathode ports. The K-method matrices, using conduc-
tanceGx = 1/Rx in place of the corresponding resistance, are
then

A =

2

6

6

4

−((Gi+Gg)Gp+GiGg)
Ci(Gg+Gp)

GgGp

Ci(Gg+Gp)
0

GgGp

Cf (Gg+Gp)

−GgGp

Cf (Gg+Gp)
0

0 0 −Gk

Ck

3

7

7

5

,

B =

2

6

4

((Gi+Gg)Gp+GiGg)
Ci(Gg+Gp)

−GgGp
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−GgGp

Cf (Gg+Gp)

GgGp

Cf (Gg+Gp)

0 0

3

7

5
,

C =

2

6

4

Gg
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Gp

Cf (Gg+Gp)

−Gg

Cf (Gg+Gp)
1

Ck

1
Ck

3

7

5
,

D =

"

−Gg
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−Gp

Gp+Gg
−1

−Gg

Gp+Gg

Gg

Gp+Gg
−1

#

,

E =

"

Gg

Gp+Gg

Gp

Gp+Gg
Gg

Gp+Gg

Gp

Gp+Gg

#

, F =

"

−1
Gp+Gg

−1
Gp+Gg

−1
Gp+Gg

−1
Gp+Gg

#

.

The output is taken to be the plate voltage and can be found by
Vpk + Vk during simulation. This output contains a bias voltage
and needs to be high-pass filtered for use in an audio plugin.

3.4.3. Simulation results

The tube preamp was simulated using the Child-Langmuir triode
model at a sampling rate of8× the audio rate 48000 Hz. The plate
voltage for an input of 2.8 V, 1000 Hz, is plotted in Fig. 14. Notice
that this device model has an unrealistically sharp cutoff,leading
to the truncated tops of the waveforms in the figure.

4. CONCLUSIONS

The nonlinear methods developed for computational musical
acoustics are readily applied to musical circuits simulation. For
accurate simulation, these methods require electronic device equa-
tions that accurately model the nonlinearities. Device models for
bipolar junction transistors were designed with circuit simulation
in mind. This is not the case with currently available vacuum-tube
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models, which tend to result in unreliable simulations due to dis-
continuities in the model or poorly behaved regions in the curve
fits. Vacuum-tube device models need to be improved before non-
linear computer simulation of vacuum-tube circuits can become
realistic. Once accurate, numerically robust device models are
available, they can be readily used with these two methods for
solving nonlinear ordinary differential equations.

Wave digital filters offer computational efficiency, robustness
to coefficient quantization, and facilitate interfacing with wave
variables, making them a worthwhile subject of study. Represen-
tation of multiport nonlinearities is still under investigation.

For the K-method, states should correspond to the natural state
elements of the circuit, namely capacitors and inductors. Choosing
the appropriate state variables facilitates derivation ofthe nonlin-
ear state-space equations and aids interpretation of the resulting
system.

For solving nonlinear systems, both methods are conceptually
similar in the overall order of operations. Both first compute a lin-
ear combination of state and inputs – this is used as a parameter to
a nonlinear function. Then to update the states they computelinear
combinations of these variables with the outputs of the nonlinear-
ity.

Circuits are made of canonical building blocks, which can be
identified. Circuits can be decomposed into stages by inspection of
the schematic for these building blocks. Loading between stages (a
form of feedback), and local and global feedback can be accounted
for by using nonlinear filter composition. The next step is tobuild
simulations of the full signal path of a guitar distortion circuit and
evaluate its real-time performance and reliability.

Further work can be done comparing the performance of these
simulation approaches against established circuit simulation algo-
rithms.
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