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ABSTRACT

This work extends previous research on numerical solution o
nonlinear systems in musical acoustics to the realm of neal
musical circuits. Wave digital principles and nonlineatstspace
simulators provide two alternative approaches exploredhis
work. These methods are used to simulate voltage amplifica-
tion stages typically used in guitar distortion or ampliiéicuits.
Block level analysis of the entire circuit suggests a stateased
upon the nonlinear filter composition technique for conimegct
amplifier stages while accounting for the way these stages-in
act. Formulations are given for the bright switch, the diolifgper,

a transistor amplifier, and a triode amplifier.

1. INTRODUCTION

This research attempts to model and simulate highly noatine
circuits used primarily for electric guitar effects. Sucffioes
aim to preserve the heritage of circuits whose componentd) s
as vacuum tubes, or particular vintage transistors, arerbieg
increasingly rare. Circuit schematics and accurate devicdel
equations can sufficiently model circuit behavior. Usingsth
with Kirchhoff's Current Law (KCL) and Kirchhoff’'s Voltage
Law (KVL), one can derive a system of nonlinear equations tha
accurately replicates a circuit’s input-to-output redaghip over
time. By exploiting the progress of contemporary digitaingut-
ing power, modeling vintage circuits based on archives efrth
circuit schematics and device characteristics can ensatettie
unique sound of these circuits will be available for futuemera-
tions of musicians.

Numerical simulation of lumped nonlinear systems has been
studied extensively in the literature [1-7]. The musicalestics
or digital audio effects community has developed two prawgi
methods for simulating ordinary differential equationghmion-
linearities based on wave digital principles or directiyvag a
nonlinear state-space system. Both methods have beerdppli
the same types of problems in nonlinear musical acoustitsemn
also applicable to certain classes of nonlinear circuigsidisr mu-
sical effects.

This work extends attempts to simulate musical circuitetas
upon solving ordinary differential equations [7-10]. Thetm
vation for this work is to investigate block-based modeliagh-
niques [11] applied to a more complete simulation of elegtro
circuits used in musical effects processing. Circuits radiy di-
vide into stages [12] which may interact with adjacent stage
“load” them, and are apt for description as a two-way sigroa/fl
diagram as in [11]. This work presents examples of how discui
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Figure 1: Two-port scattering element defines network dack
ing incident wave, reflected waveé, and port impedancg.

ous schemes exist that account for the mutual interactitwessn
blocks [4,11,13].

This paper reviews the wave digital formulation for represe
ing circuits as digital filters, and the K-method of compiatasl
musical acoustics, and then demonstrates the appligatiilihese
techniques to circuits in guitar electronics: the brighttsiy the
diode clipper, a transistor amplifier, and a triode amplifier

2. REVIEW OF METHODS IN COMPUTATIONAL
MUSICAL ACOUSTICS

2.1. Wave Digital Formulation

The wave digital formulation [14] views the linear N-portaiit
network as a scattering junction, replacing voltdgand current
I variables that define a single port by incidehand reflected3
waves, and a port impedandg > 0, as depicted in Fidl1 for a
two-port. Doing so allows instantaneous reflections to lraiel
nated by matching port impedances when ports of differeraks
are connected together, resulting in a computationalllizagae
wave digital filter (WDF) structure.

The variable transformation to the wave domain is

A=V +RI

B=V - RI 1)

and the inverse formulation existsiz > 0.

2.1.1. Wavedigital elements

In the wave digital filter, circuit elements such as resistoapac-
itors and inductors become port impedances and delay, licapp

ble, as shown in Talkl 1. They are computed by substitufthg (1)
into the Kirchhoff definitions of the elements and computihg
reflected waves due to the change in impedance from the port to
the element. Usually the port impedance is chosen suchhbat t
instantaneous reflection is matched, resulting in a refledtiee

may be represented as blocks in such a modeling scheme. Variport (RFP).
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Element Portimpedance Reflected wave
ResistorR R,=R bn] =0
CapacitorC R,=T/2C bln] = a[n — 1]
Inductor L R,=2L/T bln] = —aln — 1]
Short circuit R,=X bln] = —aln]

Open circuit R,=X bln] = a[n]

\oltage sourcd’s | R, =X bln] = —aln] + 2V.
Currentsourcds | Ry, = X bln] = a[n] + 2R, 1
TerminatedV/; R,, = R; bln] = Vs
Terminated/ R, = Rs bln] = Rpls

WO e

TerminatedV Terminated

Table 1: Wave digital elements: Port impedances and reflecte
waves. The last two elements are sources lumped with aansest

as shown. Elements with unmatched port impedances can be se

to any non-negative port impedangg = X.
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Figure 2: Three-port adaptors and corresponding circhizisatic

2.1.2. Interconnections of elements: wave digital adaptors

The topology of the circuit is represented by adaptors, whic
compute the scattering among connected ports given their po
impedances. Because connections can often be describemnis t
of series and parallel electrical arrangements, seriegarallel
adaptors have been studied in detail and are used for camgect
elements in wave digital filters. Parallel and series adaptothe
three-port case are shown schematically in Hig. 2. Theesaadt
relations for elements and adaptors are derived by suthstjt(ll)
into the Kirchhoff equations defining the element or adaptor

The scattering relations for N-port parallel adaptors éverg
by

_ 2G,
G+ Gt 4G
ap = Y101 + 7202 + -+ + Ynan

by = ap — ay,

where~, is the scattering parameter for porty = 1 : N, a, is
a parallel junction wave variable, aibd is the reflected wave for
portv.
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The scattering relations for N-port series adaptors arngy

- 2R,
T Ri+ Rt + Ry
as =a1+az+ -+ an

bu = Qy — Yv0s
wherea,, is a series junction wave variable, ahdis the reflected
wave seen at pott.

The reader is referred to the comprehensive tutorial by Fet-
tweis [14] for the scattering relations of other elementd adap-
tors.

Each adaptor can have at most one reflection free port (RFP),
identified by a symbol T on the input terminal, whose impe@anc
is matched to the equivalent impedance of all the other ports
ined. Because of this, adaptors naturally form a directed t
structure (see FigEl B 7 below) with the RFP oriented tosvérd
root of the tree.

The entire tree in the classical WDF formulation naturally
admits only one element with an instantaneous reflectiomctwh
must be placed at the root of the tree. All other elements must
not have an instantaneous reflection. While the tree arraege
is suggested in [14], a more thorough development is predent
in [2].

2.1.3. Nonlinear wave digital elements

Nonlinear elements are also derived by substitution[bf (19 i
the Kirchhoff definition of the element, and solving for the r
flected waveb [15]. This often produces an instantaneous reflec-
tion, which in the classical WDF, must be placed at the roghef
tree. Thus, WDFs can handle only a single nonlinearity,caigjn
modified approaches might be able to handle more [16].

Wave digital filters can also implement nonlinear reactance
such as capacitors and inductors by defining an auxiliary tpor
the element whose wave variables correspond to the state var
ables of the reactance. For example, for a nonlinear capacit
Q = C(V)V, the wave variables at the auxiliary port would be
defined in terms of charg@ and voltagé’. The transformed vari-
able definitions can then be used in the defining equationiseof t
nonlinear reactance. The reader is referred to [1, 17] faaildel
derivations and usage.

2.1.4. Practical considerations

Because WDFs are often arranged in a tree structure, with dat
dependency flowing from the leaves up to the root, and then fro
the root back down to the leaves, it is convenient to labehtaree
signals in terms of: for signals going up the tree (through the RFP,
marked with T), andi for signals traveling down the tree [2, 11].
Otherwise, naming signals in terms of incident and refleaizaees
between WDF components can quickly become unwieldy.

Once the WDF elements and adaptors are defined, the WDF
tree is sufficient to represent its computational structtitee fol-
lowing examples will present their algorithms as WDF trees.

2.1.5. Computational complexity

WDFs take advantage of the linear complexity of parallel sed
ries adaptors to produce very compact signal processing. dod
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particular, N-port parallel and series adaptors with one reflection
free port incur a computational costdf— 1 multiplies and2 N —2
adds. In comparison, general-port scattering matrices require
a full matrix-vector multiply, and a direct implementatiarould
have N? multiplies and(N — 1)? adds.

A WDF with N elements synthesized as a binary tree of 3-port
parallel and series adaptors as described in [11] would Nave2
3-port adaptors. The computational cost of a straightfoaivira-
plementation of these adaptors would b¥ — 4 multiplies and
4N — 8 adds. Thus, the linear order of complexity is preserved
globally. Clearly, if a circuit can be decomposed into peatand
series connections, using adaptors instead of full soagtenatri-
ces to represent the circuit presents a great computataivain-
tage.

2.2. State-Space with Memoryless Nonlinearity (SSMN)

Most nonlinear characteristics for devices in guitar dicoan be
described as memoryless nonlinearities. The circuits baret
fore be represented in state-space form with separate ferrtise
linear and nonlinear parts of the system. Numerical salutib
such systems results in a discrete-time state-space systbran
embedded memoryless nonlinearity. This class of solvesstea
referred to as State-Space with Memoryless NonlineariMN)
solvers.

2.2.1. K-method

An SSMN approach was developed in computational musical

acoustics as the so-called K-method [3], using a partiaukzrix
representation of nonlinear state-space systems. Notethba
variable names are modified here from the original expositio
clarify the relationship with standard state-space foatiohs, and
to aid interpretation for the following examples.

The K-method deals with a broad class of systems that can be

expressed in the form

x = Ax + Bu + Ci, 2)

i=1f(v), v = Dx + Eu + Fi, 3)
wherex is a vector representing the state of the systamepre-
sents the input, anidrepresents the contribution from the nonlinear

part to the time derivative of the state. In the following exdes,

choosingi to be the nonlinear device currents leads to the most

convenient derivation ofJ2), hence the choice of varialdeme.
The devices are voltage-controlled current sources; threpre-
sents these controlling voltages. MatridesB, C represent linear
combinations of the state, inputs, and nonlinear part tifet¢tthe
evolution of the state. The nonlinear contributi@h (3) ifirtd
implicitly with respect toi and in general also depends on a linear
combination ofx andu.

Discretizing [2) by a numerical integration method, sofvin
for x,, and substituting into[q3) results in an implicit system of
equations that can be solved for Under conditions presented
in [3] amounting to the existence of a unique solutibrran be
expressed as a function of a parameigr

2.2.2. Computational algorithm

If the trapezoidal rule is used to discretize the time déixeain
@), state update comprises the following three-step phaee

1. prn = DH(oI+A)xp—1+(DHB+E)u,+DHBu, 1+
DHCi, 1

2. in = g(pn)
3. xpn = H(aI+ A)xp—1 + HB(u, + un—1) + HC(i, +
in—l)

where subscripts denote the time ind&k,= (oI — A)™!, o =

2/T if no prewarping is used, and, = g(p») is an implicitly
defined transformation df(v),
in = f(Kin + pn), 4

due to the discretization, whel€ = DHC 4+ F. This is a linear
transformation of states and inputs to generate an efteatput
to the original nonlinear functiofi. Functiong(p,) sometimes
can be found analytically froni(4), but usually needs to Heesb
numerically by Newton’s method or, if possible, fixed poitetra-
tion [13]. The state update then takes the past state, priegen,
and nonlinear contributions to compute the present state.

The outputy is generally expressed as a linear combination of
the states, inputs, and nonlinear part,

yYn = onn + Bou,, + Coin-

Once this procedure is defined, only the matride8, C, D,
E, F, A,, B,, andC, and the functiorf(v) need to be given to
describe the system under consideration.

2.2.3. Computational complexity

The K-method solution involves matrix multiplies, and camt
porary CPU architectures were designed with such opesaiion
mind. The K-method approach stands to benefit greatly frata da
parallelism at the computer architecture level.

If the coefficient matrices and the nonlinear function in the
algorithm outlined in Sec[1Z4.2) are precomputed oneegtim-
putational complexity for the linear parts of the systemgprax-
imatelyO (N* + NM + NP), whereN is the number of states,
M is the number of inputs, ang is the number of nonlinear out-
puts. This quadratic complexity is a disadvantage comptaréue
WDF, but the K-method is directly applicable to a broademgen
of circuits.

3. APPLICATION TO VARIOUS GUITAR CIRCUITS

The following examples apply the WDF and SSMN formulations
to various circuits found in guitar electronics. We perfedrall
simulations using custom code in MATLAB and utilized New#on
method to solve any nonlinear equations.

3.1. Bright switch/filter

The bright switch (Figd3) is commonly found in guitar amléf
tion circuits and sometimes in the electronics of the eleguitar
itself as part of a volume knob implemented as a resistiviagel
divider. When engaged, it provides a low impedance pathifgr h
frequencies to bypass part of the voltage divider.

The WDF tree for the bright switch is shown in F[J. 4 and
its signal processing algorithm can be derived by inspadtiom
this tree. The capacitor was chosen to be at the top of the tree
because, when it is disconnected, the open circuit at thetop
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I = Tty Ch
Rs I Vo

Figure 6: Schematic of the diode clipper with high-pass amd |

Figure 3: Schematic of the bright switch from guitar elestes. pass capacitors.
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Figure 4: WDF tree to implement the bright switch. Adaptori®2 ~ Figure 7: WDF tree of the two-capacitor diode clipper. Didies
root. root.
the tree produces an instantaneous reflection. Using tleetiefh- diodes are two physically separate nonlinearities but eacdm-

bined into a single equivalent nonlinearity summing theirents
by KCL because they are connected in parallel. In the WDF, the
two diodes are modeled by the voltage-controlled curremtcso

free wave digital capacitor sets its port impedance andiresja
parallel two-port adapter P2 to match the impedance of tee re
of the tree. The bright switch is suited to implementationaas
WDF because of its switched nature. The computational klatk

a WDF correspond directly to the physical circuit elemewtsich Lao(V) = 2L sinh (V/V), ®)

can easily be rearranged to reflect a different structure. wherel;(V) is the current through the two diodek, and Vare
Figure[d shows the magnitude response of the bright switch physical parameters of the diodes, drds the controlling voltage

simulated using the valueS = 120pF, R; = (1 — vol)MQ, across the diodes.

R, = (vol)MQ, R, = 100k2, wherevol € [0, 1] is the value of Device parameters for the following simulations dte =

the volume potentiometer. 2.2kQ, C), = 0.47uF, C; = 0.01uF, I, = 2.52 x 107 ?A, and

Vi = 45.3mV.
3.2. Two-capacitor diode clipper

The behavior of various numerical methods applied to the sin 3.21. WDF implementation

gle capacitor diode clipper was previously studied extehgi[7]. The current state of WDF technology is well suited for maatgli
Here we consider the diode clipper including the effecthief®C circuits connected in series and parallel and with a singée@ort
blocking capacitor. The nonlinearities cause the pole eftigh- nonlinearity. The diode clipper is a prime example of thiheT

pass frequency to move depending on the signal level. Becaus tree corresponding to the computational structure of theFVitD
this pole is at low frequencies, this could have a notablyilded the diode clipper is shown in Fig 7. The input is the voltagerse

effect, especially in the presence of transients. V. and the output is the junction voltage of the parallel adapto
The two-capacitor diode clipper is shown in Ai§j. 6. The two

Ok --__Yol=Y o ______ |
@ -10r . b S
Nl I vol=0.1 e i +—
p =20r . VOO o 5
S -30- : 3
s e O
240k - -.—. vol=0.01_ _ _ .-
=
_50, 4
vol=0.001 . , , , , ,
-60- ‘ ‘ ] 0 5 10 15 20 25 30
20 200 2k 20k Time (ms)
Frequency (Hz)
Figure 8: Simulated output of two-capacitor diode clippmrdine
Figure 5: Magnitude response of the volume attenuator witihb input with frequency 80 Hz, amplitude 4.5V. Identical ottt
switch engaged for values of volume as shown. produced by WDF and K-method.
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The nonlinear relationship between the incident and redtect
waves to this block in the WDF is derived by substituting tlaver
variable definitiond{]1) intd]5) and solving the resultingplicitly
defined nonlinear function fdr= f(a) using numerical methods.
Specifically, the nonlinear equation to be solved is

21, sinh <“+b) _azb_

=0.
2V, 2R,

Conditions for which a solution exists are given in [1, 15].

This nonlinear relationship = f(a) is then placed at the
top of the tree representing the rest of the diode clipperdognt
delay-free loops in the signal processing algorithm.

This example demonstrates the power of the WDF formula-
tion to build up algorithms modularly to simulate circuit3he
additional high-pass capacitaf;, is added to the single capacitor
diode clipper by replacing the original resistive voltagarge (in-
side the dotted box in Fi@l 6) with the series combinationhef t
source and the capacitor. Thus, the structure of the WDreaferi
directly from the connectivity of the modeled circuit.

3.2.2. K-Method implementation

The matrices for the K-method representation of the dioge cl
per can be found by application of KCL at the two nodes with
unknown voltages.

These equations are

Ich = ChVon = Gs(Vs — Va)
CZVO ChVCh - [d(vo)~

3.2.4. Comparative discussion

The signal flow diagram to update the state for both methods in
volve linear operations followed by a static nonlinearibhgdanore
linear operations. The nonlinearity is also present in tkerdte-
time feedback loop, which alters the order of the nonlirgari
Considering the nonlinearity as a separate operation opaem
rable cost, the WDF requires only 4 multiplies and 8 adds faém
ment the diode clipper. In contrast, the K-method usingaigitt-
forward implementation of matrix-vector multiplicatioequires
13 multiplies and 12 adds. However, it is not straightforvay
derive WDFs for the examples that follow.

3.3. Common-emitter transistor amplifier with feedback

Figure[® shows the common-emitter amplification stage frioen t
Boss DS-1 [12], which employs a bipolar junction transigeiT)
in the shunt-shunt feedback configuration, giving rise toaa-t
simpedance amplifier. The feedback resistor exists mainbyas
the base of the BJT at a desired operating point. The cirtagt a
features mild emitter degeneration as is common with these a
plifiers, which reduces the gain and improves the smalladitim-
earity of the stage. Because of the high gain from nottenode
¢, this stage is highly sensitive to the DC bias voltage of niagde
which is determined by the design of the circuit. Using imeot
resistor values affects the output swing, which in turn ierfices
the shape and symmetry of the clipped output.

The design values for this circuit al®; = 100k(2, R. =
10k, R; = 100k, Ry = 470k2, R. = 220, C; = 0.047uF,

Choosing the state variables to be the voltages across the tw Cy = 250pF", andC, = 0.47uF.

capacitorsx = [ Vo Von ]T with the polarity of the voltages
indicated by + on the capacitors in Fig. 6, we solvelfprand Ve,
usingV, = V, + Vey, to define the intermediate node voltage in
terms of the state variables, and set V; to be the input. We let
the nonlinear part = I4(V,), which makesy = V;, the input to
the nonlinearity. The state variablg is also the output.

. G 1
o — A s — Vo — - =1 o
V. 37 (Vs = Vo — Vo) e a(Vo)
. G
VCh - C_(VS - Vo - VCh)
h

The resulting K-method matrices are

a=| Gla ] met1ol
B GUa ] B=[0],
C::_léol], F=[0].
3.2.3. Smulation results

The output of the diode clipper simulated using an inputaigf
80Hz, 4.5V amplitude, is plotted in Fill 8. The sampling nases

8x oversampled the audio sampling rate of 48000 Hz to reduce

signal aliasing in the output. Identical output was prodiog the
nonlinear WDF and the K-method. Notice the first cycle of the
output has a different period than the steady-state respamdi-
cating that the high-pass capacitor does indeed affecegponse

of the circuit to transients and should be included in madels

DAFX-

3.3.1. Bipolar Junction Transistor (BJT) device model

Figure[ID depicts generic model for the bipolar junctiomsia-
tor comprising voltage-controlled current sources. Th& Bas
three terminals, the collector, base, and emitter, whosecis
are controlled by voltages across two pairs of the termjigls=
Vo — Ve, Voe = Vi, — V. By conservation of current, only two of
the terminal current definitions are needed to completesgitiee
the current-voltage (I-V) characteristics. We U$éV., Vi) and
I.(Vie, Vie) here. Semiconductor devices such as the BJT also
have nonlinear resistances and capacitors, which require de-
tailed models; however, for simplicity, we assume that we roe:
glect these effects for the signal levels of this circuithie taudio
frequency band.

A complete, yet simple, physically derived model for com-
puter simulation, the Ebers-Moll model [18] defines thedwiing
current-voltage (I-V) characteristics:

I = i_i lexp (Voe/Vir) — 1] — Is [exp (Ve /Vir) — 1] (B)

I = Isexp (Vie Vi) = 1] = 25 fexp (Vee/ Vi) = 1] (1)

b— 5

Br

Device parameters for this simulation are = 26mV, 8r =
200, Br = 0.1, ar = Br/ (1+ Br), I, = 6.734 x 10~ '°A. The
reader is referred to textbooks on electronic devices, [@.8j, for
detailed interpretation of these parameters.

S fexp (Vie/Vr) — 1] + é—R fexp (Vie/Vir) — 1] (8)
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Figure 9: Schematic of the common-emitter amplifier withdfee
back.

Figure 10: Generic BJT device model.

3.3.2. K-Method formulation

Using the generic description of Fig]10 for I-V characticis

we find the K-method matrices for this circuit. Again defining
the state to be the voltages across each of the three capacito
x=[Voi Vie Voo }T with the polarity of the voltages in-
dicated by + on the capacitors in F[g. 9, we can use KCL to find
equations at each of the nodes, and solvexforThe inputs are
u=[ Vi Vee |7, the input voltage and the supply rail. The
nonlinearity is given by

i= [ L(Vie,Voe)  Le(Voe, Vi) |7,

the currents at the base and collector terminals of the BId, a
requires an input = [ Vie Vi ]T. The output is found from

Vo =Vi = Vei — Ve — Vo

The K-method matrices then give the appropriate linear ¢oaab
tions of these variables using conductante= 1/ R, in place of
the corresponding resistance:

Get+Gi+G; Ge+Gy Gi
o Ci e T Cy
A _ GetGy GGGy G
- C C C ’
e e e
Co Co Co
r Ge+G+G; G [ _
74 -& D— 1 0 0
B = GetGy _ Ge 0 1 0 |’
o Cr | -
G 0 1 0
L Co E=|, ol
[ 1/Ci 1/Cs -
C = 0 I/Cf 5 F — 7R€ 7Re
0 0 L 0 0 ’

Output (V)
o

35 26 27 28 29
Time (ms)

30

Figure 11: Output of the common-emitter amplifier for sinpun
of 0.2V, 1kHz.

The formulation given admits a generic device model. While
the Ebers-Moll model for a BJT is used here specifically, i&is
simple model that does not account for the many nonidesiife
real devices. In practice, the distortion performance efdincuit
is highly sensitive to the accuracy of the device models,ctvhi
usually represent some simplification of reality. This fatation
allows for the use of tabulated device models obtained éxger
tally for greatest accuracy.

3.3.3. Smulation results

The BJT amplifier was simulated at a sampling rat8 »fthe au-

dio rate 48000 Hz. The results are shown in Eg. 11. Note the
asymmetry of the duty cycle of the output given a sine wavetinp
This is due to the asymmetry in the nonlinearity: one polatiips

at a lower level than the other. This injects an offset at DRictv

is being filtered out by the DC blocking capacitor at the ottpu
causing the the bias of the output waveform to shift downvedrd

ter the initial transient at 26 ms (not shown). A slowly shiftbias
would affect the distortion of subsequent nonlinear stages

3.4. Common-cathode triode amplifier with supply bypass

In guitar circuits, the ubiquitous common-cathode triodgkfier
stage (Fig[CIR) provides preamplification gain. Severaheké
stages can be cascaded for a high-gain amplifier. This ticui
essentially the same configuration as a BJT common-emitter a
plifier. The grid resisto?, and parasitic Miller capacitana€y
are shown explicitly in this simulation circuit. The catfeorksis-
tor Ry determines the operating bias point for the circuit. Often a
bypass capacital’;; is placed across the cathode resistor to coun-
teract the effects of gain degeneration caused by the oesistd
gives a bandpass gain.

For this simulation, the circuit design usedRs = 70k,
Ry = 150092, R, = 100kQ2, R; = 1MQ, C; = 0.047uF, Cf =
2.5pF, C = 25uF.

3.4.1. Triode device model

The triode differs slightly from the BJT in the device modéihile
the BJT is controlled by the voltages across the base-eaite
base-collector ports, owing to different operating pnihes, the
triode is controlled by the voltages across the gate-catteat
cathode-anode ports. The triode device model is shown ifflHig
The classic Child-Langmuir triode equation for the plate-cu
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VPP
S 200
R =
cf P 5
s 510
+
Vp
° 0
I Rg —_'i 5 55 6 65 7 75 8
g ml W - Time (ms)
Vi
o Ri Figure 14: Plate voltage of common-cathode amplifier foe &R
— ! Ck

put of 2.8V, 1000 Hz.

the currents through the grid and plate terminals, and regan
inputv = [ Ver Vi }T, the voltages across the grid-cathode,
and plate-cathode ports. The K-method matrices, usingwmnnd
tanceG, = 1/R, in place of the corresponding resistance, are
then

~((Gi+Gy)Gp+GiGy) GqGp

: : 0
as | TEa T Tary |
Cy(Gg+Gyp) Cp(Gg+Gp) e
Figure 13: Generic triode device model. L 0 0 o
[ ((Gi+Gq)Gp+GiGy) ~GgyGp
. Ci(%g“ﬁGp) Ci(Gg+Gp)
rent [19] is used here as a proof of concept: B= —GqGp GyGp
Cp(Gg+Gp) Cp(Gg+Gp)
1 ion(E 3/2 L 0 0
I,=K <Ed (ngfn(d))) , where - Gy, Gy
Ci(Gg+Gp)  Ci(Gg+Gp)
C— &y -G,
Eq = pVyr + Vipr, T | T©@qFen  TrGgay |
and grid current, = 0. For the 12AX7 triode in this simulation, L o o
=835 K =173 x 1075A/V3/?[20]. T —Gy G, 4
The Child-Langmuir model allows the plate-cathode voltage ~ D = | “rE%  GrfC } ,
to become negative while plate-cathode current is positiien | Gpo+G, Gp+Gy -1

the grid voltage is sufficiently high. This unphysical beloav
demonstrates the inaccuracy of the model in a common redion o

. . . X _Gg Gp _ -1  _ =1

operation for guitar distortion. E—| G1G GG F—| GG Tty
The Child-Langmuir equation is admittedly a poor model for N g _G_ |’ T = = |

g q yap Gp1Gy GpiGy Gp+Gy  Gpt+Gy

simulation; however, the K-method formulation admits aeyah

two-port description of the triode, so any of the multitudérimde The output is taken to be the plate voltage and can be found by
models developed for circuit simulation in SPICE can begubto Vpr + Vi during simulation. This output contains a bias voltage
this method. In particular, this formulation accounts fue effects ~ and needs to be high-pass filtered for use in an audio plugin.

of grid conduction (not used with this model), which is cleiirto

be sonically significant [21]. 3.4.3. Smulation results

. The tube preamp was simulated using the Child-Langmuidério
3:4.2. K-method formulation model at a sampling rate 8fx the audio rate 48000 Hz. The plate

While a similar circuit was simulated using the wave digiitaimu- voltage for an input of 2.8V, 1000 Hz, is plotted in Higl 14.tNe

lation [9], the two-port nonlinear device does not yet rgaadmit that this device model has an unrealistically sharp cuteéding

a wave digital representation, and ad-hoc means were rmegaées  to the truncated tops of the waveforms in the figure.

generate a WDF. Alternatively, the K-method allows diréoits

lation of the common-cathode circuit in FIg112. 4. CONCLUSIONS
The state vector is the voltages across each of the capaci-
torsx = [ Vei Vey Ve }T, with the polarity of the volt- The nonlinear methods developed for computational musical

ages indicated by + on the capacitors in [ig. 12. The inpws ar acoustics are readily applied to musical circuits simatati For
u= [ Vi Vep }T, the input voltage and the supply rail. The accurate simulation, these methods require electronicelequa-

nonlinearity is given by tions that accurately model the nonlinearities. Device et®fbor
. bipolar junction transistors were designed with circuihsiation
i=[ La(Vor, Vor) Lp(Vor, Vor) |, in mind. This is not the case with currently available vacttuime
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models, which tend to result in unreliable simulations dudis-

continuities in the model or poorly behaved regions in theveu
fits. Vacuum-tube device models need to be improved befane no

linear computer simulation of vacuum-tube circuits canobee
realistic. Once accurate, numerically robust device nmodeé

available, they can be readily used with these two methods fo

solving nonlinear ordinary differential equations.

Wave digital filters offer computational efficiency, robusss

to coefficient quantization, and facilitate interfacingthvivave

variables, making them a worthwhile subject of study. Regne

tation of multiport nonlinearities is still under invesaigon.

For the K-method, states should correspond to the natata! st

elements of the circuit, namely capacitors and inductor®adSing
the appropriate state variables facilitates derivatiothefnonlin-
ear state-space equations and aids interpretation of Sudting
system.

For solving nonlinear systems, both methods are conceytual

similar in the overall order of operations. Both first conatlin-

ear combination of state and inputs — this is used as a pagatoet

a nonlinear function. Then to update the states they contipetzr
combinations of these variables with the outputs of theineat-

ity.

Circuits are made of canonical building blocks, which can be

identified. Circuits can be decomposed into stages by iispeaf

the schematic for these building blocks. Loading betweagest (a
form of feedback), and local and global feedback can be atedu

for by using nonlinear filter composition. The next step ivadd
simulations of the full signal path of a guitar distortiomaziit and
evaluate its real-time performance and reliability.

Further work can be done comparing the performance of these

simulation approaches against established circuit sitoal@lgo-
rithms.
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