
The near resolvable 2-(13, 4, 3) designs and

thirteen-player whist tournaments∗

Harri Haanpää and Petteri Kaski
Laboratory for Theoretical Computer Science

Helsinki University of Technology
P.O. Box 5400, FIN-02015 HUT, FINLAND.

e-mail: harri.haanpaa@hut.fi, petteri.kaski@hut.fi

Abstract

A v-player whist tournament is a schedule of games, where in each
round the v players are partitioned into games of four players each with
at most one player left over. In each game two of the players play as
partners against the other two. All pairs of players must play in the
same game exactly three times during the tournament; of those three
times, they are to play as partners exactly once. Whist tournaments
for v players are known to exist for all v ≡ 0, 1 (mod 4). The special
cases of directed whist tournaments and triplewhist tournaments are
known to exist for all sufficiently large v, but for small v several open
cases remain. In this paper we introduce a correspondence between
near resolvable 2-(v, k, λ) designs and a particular class of codes. The
near resolvable 2-(13, 4, 3) designs are classified by classifying the corre-
sponding codes with an orderly algorithm. Finally, the thirteen-player
whist tournaments are enumerated starting from the near resolvable
2-(13, 4, 3) designs.
Keywords:
near resolvable design, whist tournament, orderly algorithm
2000 Mathematics Subject Classification:
primary 05B05, secondary 05B30, 05-04, 94B25

∗Both authors were supported by Helsinki Graduate School in Computer Science and
Engineering (HeCSE). In addition, the first author was supported by a grant from the
Nokia Foundation and the second author by a grant from the Foundation of Technology,
Helsinki, Finland (Tekniikan Edistämissäätiö).

1

1 Introduction

The mathematical study of whist tournaments was started in the 1890s by

E. H. Moore. In the 1970s Baker, Hanani, and Wilson [5] showed that a

Wh(v) exists for all v ≥ 4 with v ≡ 0 (mod 4). According to Anderson’s

survey [3], the case v ≡ 1 (mod 4) was also settled in the 1970s; a proof of

these existence results may be found in Anderson’s book [2].

Particularly since the existence of Wh(v) was fully settled, the focus of

research has been on the existence of whist tournaments with additional

structure, such as directed whist tournaments DWh(v), triplewhist tour-

naments TWh(v) and also Z-cyclic Wh(v), DWh(v) or TWh(v), none of

which has been completely settled. We will quote only the existence results

essential for our work; for more information we refer the interested reader

to [3].

It follows from the results of Bennett and Zhang [6] and Zhang [26] on

resolvable perfect Mendelsohn designs that a DWh(v) exists for all v ≥ 5

with v ≡ 1 (mod 4), that a DWh(v) does not exist for v = 4 or v = 8,

and that a DWh(v) exists for all v ≡ 0 (mod 4), v ≥ 12 except possibly

for 48 values, the smallest of which are v = 12 and v = 16. Following

a classification of resolvable 2-(12, 4, 3) designs by Morales and Velarde in

[20] it was determined by Haanpää and Österg̊ard in [14] that no DWh(12)

exists.

A TWh(v) does not exist for v = 5 or v = 9. Lu and Zhu [16] show that

a TWh(v) exists for all v ≡ 0, 1 (mod 4) with v ≥ 12 except possibly for

v = {12, 56} ∪ {13, 17, 45, 57, 65, 69, 77, 85, 93, 117, 129, 133, 153}.

Ge and Zhu give a TWh(133) in [11]. Based on [20], it was found in [14] and,

2

independently, by Ge and Lam in [10] that no TWh(12) exists. A TWh(45)

and a TWh(56) are also constructed in [10]. Very recently, Abel and Ge [1]

have constructed a TWh(v) for the remaining open values of v except for

v = 13 and v = 17. In this paper we show that no TWh(13) exists, so only

the case v = 17 remains open.

In the literature there seem to be very few classification results concern-

ing whist tournaments. The Wh(v), DWh(v), and TWh(v) with v ≤ 12

are classified in [14]. Finizio [8] determines by computer the Z-cyclic Wh(v)

for v ≤ 21. There are three Z-cyclic Wh(13), one of which allows the con-

struction of a DWh(13) (or, as will be seen, four nonisomorphic ones) on

it.

In this paper we classify up to isomorphism the 13-player whist tour-

naments, directed whist tournaments, and triplewhist tournaments by first

producing a classification up to isomorphism of the underlying near resolv-

able 2-(13, 4, 3) designs and their near resolutions.

The rest of this paper is organized as follows. Section 2 contains defini-

tions of the combinatorial structures considered and the associated defini-

tions of equivalence and isomorphism. Section 3 examines a correspondence

between near resolutions of near resolvable designs and a particular class of

codes. Section 4 describes a classification algorithm for the nonisomorphic

near resolvable 2-(13, 4, 3) designs and their near resolutions that utilizes

this correspondence. Section 5 describes an approach for classifying the non-

isomorphic Wh(13) and DWh(13) from the nonisomorphic 2-(13, 4, 3) near

resolutions. Section 6 presents the classification results for the structures

considered. By examining the Wh(13), we find that no TWh(13) exists.

3

2 Definitions

In this section we give definitions of whist tournaments, 2-(v, k, λ) designs,

and related concepts necessary for this work. We first describe whist tour-

naments in prose and then proceed to give a more formal definition.

A whist tournament is a schedule of games, where in each round the

v players are partitioned into games of four players each with at most one

player left over. All pairs of players must play in the same game exactly

three times during the tournament. Additionally, the order of the players

in a game is relevant. The players are generally thought to sit on the north,

east, south, and west side of the playing table. North and south are partners,

as are east and west. Every pair of players must play as partners exactly

once during the tournament.

A directed whist tournament is a whist tournament with the additional

property that for any pair of distinct players, pi and pj , the player pj plays

once as pi’s left-hand opponent and once as pi’s right-hand opponent.

In a triplewhist game north and east, as well as south and west, are

opponents of the first kind, and north and west, as well as south and east,

are opponents of the second kind. A triplewhist tournament is a whist

tournament with the additional property that every pair of players plays

once as opponents of the first kind and once as opponents of the second

kind.

While it is clear that for a whist tournament to run smoothly, it is

necessary to assign an order to the rounds as well as to place the players in

specific seats, from a mathematical point of view this ordering presents little

of interest. Hence, we wish to avoid unnecessary ordering in our definition

of a whist tournament. One may interpret our following definition of a

whist tournament as the definition of a certain equivalence class of whist

4

tournaments.

For our purposes a whist game is a partner relation over four players. The

partner relation may be represented as a permutation p over the players in

the whist game; when p(x) denotes the partner of x, we must have p(x) 6= x

and p2(x) = x for all players x in the whist game.

A directed whist game is two relations over the same four players: the

partner relation as for a whist game, and a left-hand opponent relation. The

left-hand opponent relation may also be represented as a permutation ` over

the players in the game; when `(x) is the left-hand opponent of x, we must

have `2 = p.

A triplewhist game is three relations over the same four players: the

partner relation p as for a whist game, a first-kind opponent relation o1 and

a second-kind opponent relation o2. As for p, oi(x) 6= x for each x in the

game, and o2
i (x) = x. Furthermore, p(x) 6= o1(x) 6= o2(x) 6= p(x).

A v-player whist tournament (directed whist tournament, triplewhist tour-

nament) Wh(v) (DWh(v), TWh(v)) is an ordered pair consisting of a v-

element set P of players and a set of rounds, each of which is a partition

of P into whist games (directed whist games, triplewhist games) with at

most one player left over. Each unordered pair of distinct players must play

three times at the same whist game, and they must be partners in exactly

one of the games. In a directed whist tournament, every player must also

meet every other player exactly once as a left-hand opponent. In a triple-

whist game, every player must meet every other player exactly once as an

opponent of the first kind and exactly once as an opponent of the second

kind.

Whist tournaments of various kinds are often presented as sets of sets

of ordered four-tuples of players, where the elements of each four-tuple may

5

be interpreted as the player seated on the north, east, south, and west side

of the table in the corresponding game. The seating order then induces the

partner and left-hand opponent relations.

Certain whist tournaments may be described as an orbit of an initial

round under the action of a cyclic group. Such Wh(v) are known as Z-

cyclic. For v = 4q, the number of rounds in the tournament and the order

of the cyclic group is v − 1; one player remains fixed. For v = 4q + 1, the

number of rounds and the order of the cyclic group is v.

If each game in a Wh(v), DWh(v), or TWh(v) is replaced by the four-

element set of the players in that game, the result is a (near) resolution of

a 2-(v, 4, 3) design.

A 2-(v, k, λ) design is a pair (P,B), where P is a set of v points and B is

a multiset of k-subsets of P—called blocks—such that every pair of distinct

points occurs in exactly λ blocks. A parallel class in a design is a set of blocks

that partitions the point set. A near parallel class is a set of pairwise disjoint

blocks whose union is the point set minus one point. A (near) resolution of

a design is a partition of the multiset of blocks into (near) parallel classes.

A design is (near) resolvable if it has a (near) resolution.

Let Sv denote the symmetric group on v points. Let Sv act on P in the

natural way and in the induced fashion on the set systems over the point

set P . We consider two designs, two resolutions, two Wh(v), two DWh(v),

or two TWh(v) x1 and x2 isomorphic, if σ(x1) = x2 for some σ ∈ Sv.

3 Near resolutions and gap codes

In this section we describe a correspondence between near resolutions of

2-(v, k, λ) designs and a particular kind of codes. The correspondence is

analogous to that between resolutions and certain error-correcting codes

6

discovered by Semakov and Zinov’ev [23]; the main difference is that we

have to pay special attention to the points that do not belong to the near

parallel classes of a near resolution.

We require some basic results from design theory. A standard double

counting argument gives that every point of a 2-(v, k, λ) design occurs in

exactly r of the b blocks, where

r(k − 1) = λ(v − 1), vr = bk. (1)

For a design to be near resolvable it is clearly necessary that k divides v−1.

Denoting the number of blocks in a near parallel class by q and the number

of near parallel classes by n, we obtain from (1) that

v = kq + 1, n = b/q = r + λ/(k − 1). (2)

Thus, it is a necessary condition for the existence of a near-resolvable 2-(v, k, λ)

design that v ≡ 1 (mod k), and λ ≡ 0 (mod k − 1).

We continue with some coding-theoretic definitions. Let Zq = {0, 1, . . . ,

q − 1} and Zq,∗ = Zq ∪ {∗}, where “∗” is a distinct symbol, which will

represent a point missing from a near parallel class, that is, a gap. A word

of length n over Zq,∗ is an ordered n-tuple of elements of Zq,∗. We write

Zn
q,∗ for the set of all words of length n over Zq,∗. The symbol at position

1 ≤ i ≤ n in a word x ∈ Zn
q,∗ is denoted by x(i). The distance between two

words x, y ∈ Zn
q,∗ is defined by

d(x, y) := |{i : x(i) 6= y(i) or x(i) = ∗ or y(i) = ∗}|.

(The term “distance” is somewhat misleading since d is clearly not a metric

7

on Zn
q,∗. We warn the reader that the symbol “∗” is used with a different

interpretation in e.g. [13, 25].) The gap weight of a word x ∈ Zn
q,∗ is defined

by w∗(x) := |{i : x(i) = ∗}|. A gap code of length n is a nonempty subset

of Zn
q,∗. The minimum distance of a gap code C ⊆ Zn

q,∗ is

d(C) := min
x,y∈C, x 6=y

d(x, y).

We say that C is equidistant if d(x, y) = d(C) for all distinct x, y ∈ C and

that C has constant gap weight w if w∗(x) = w for all x ∈ C. A (n, M, d, w)q

gap code is a gap code with M codewords over Zn
q,∗ with minimum distance

d and constant gap weight w.

We are now ready to describe the correspondence between near resolu-

tions and codes. Let N be a near resolution of a 2-(v, k, λ) design (P,B),

where for convenience we assume P = {1, . . . , v}. Denote the near parallel

classes of N by N1, . . . , Nn and the blocks in Ni by Ni(0), . . . , Ni(q − 1) for

1 ≤ i ≤ n. Note that upon doing this we implicitly introduce an ordering

of the parallel classes and the blocks in each near parallel class. The code

C that corresponds to N under this labeling of the near parallel classes and

blocks is now defined as follows. With each point p ∈ P we associate a word

xp ∈ Zn
q,∗ defined by

xp(i) :=


j iff p ∈ Ni(j) and

∗ iff no such j exists
for 1 ≤ i ≤ n. (3)

As every pair of distinct points must occur in the same block in λ near

parallel classes, and since every point must occur in a total of r blocks,

the resulting code C = {xp : p ∈ P} is easily seen to be equidistant with

8

distance d and constant gap weight w, where

d = n− λ, w = n− r. (4)

Example 1 The (9, 9, 6, 1)2 gap code and the near resolution of a 2-(9, 4, 3)

design below illustrate the correspondence.



0 0 0 0 0 0 0 0 ∗,

0 0 0 1 1 1 ∗ 1 0,

0 1 1 0 0 ∗ 1 1 0,

0 1 1 1 1 0 0 ∗ 1,

1 0 ∗ 0 1 0 1 1 1,

∗ 0 1 1 0 1 1 0 1,

1 1 0 ∗ 0 1 0 1 1,

1 1 0 1 ∗ 0 1 0 0,

1 ∗ 1 0 1 1 0 0 0



↔



{{0, 1, 2, 3},{4, 6, 7, 8}},

{{0, 1, 4, 5},{2, 3, 6, 7}},

{{0, 1, 6, 7},{2, 3, 5, 8}},

{{0, 2, 4, 8},{1, 3, 5, 7}},

{{0, 2, 5, 6},{1, 3, 4, 8}},

{{0, 3, 4, 7},{1, 5, 6, 8}},

{{0, 3, 6, 8},{2, 4, 5, 7}},

{{0, 5, 7, 8},{1, 2, 4, 6}},

{{1, 2, 7, 8},{3, 4, 5, 6}}


Conversely, every (n, v, d, w)q gap code C whose parameters satisfy (1),

(2), and (4) for some positive integers v, k, λ, r, b defines a near resolution

of a 2-(v, k, λ) design. Namely, denote the words in C by x1, . . . , xv and

for convenience, let the point set of the design be {1, . . . , v}. Note that

here we implicitly introduce an ordering of the words in the code. The

near resolution that corresponds to C under this labeling of the codewords

consists of the blocks

Ni(j) := {p : xp(i) = j}, (5)

where 1 ≤ i ≤ n and 0 ≤ j ≤ q − 1. It is not immediately clear that the

blocks defined by (5) constitute a near resolution of a 2-(v, k, λ) design. The

9

following theorem shows that this is the case.

Theorem 2 Every (n, M, d, w)q gap code C whose parameters satisfy (1),

(2), (4), and M = v for some positive integers v, k, λ, r, b is equidistant with

distance n − λ. Moreover, every non-“∗” symbol occurs exactly k times in

every position; the symbol “∗” occurs exactly once in each position.

Proof. Denote by kij the number of occurences of symbol j 6= ∗ at position

i in the words of C. By the minimum distance condition we have

d

(
v

2

)
≤

∑
1≤`<`′≤v

d(x`, x`′) =
n∑

i=1

(
v

2

)
−

q−1∑
j=0

(
kij

2

) ;

equality holds if and only if the code is equidistant. Multiplying by two,

using (4), and arranging terms, we obtain

λv(v − 1) ≥
n∑

i=1

q−1∑
j=0

k2
ij −

n∑
i=1

q−1∑
j=0

kij .

The rightmost sum above is the number of non-“∗” symbols in the code,

and hence it equals v(n − w) = vr. As the sum of the kij is constant, the

sum of their squares is minimized when the kij are equal. Thus,

λv(v − 1) ≥ nq

(
vr

nq

)2

− vr = vr
vr

nq
− vr,

where equality holds when the code is equidistant and every non-“∗” symbol

occurs an equal number of times in every position. Noting that nq = b and

using (1), we obtain

vr(k − 1) ≥ vrk − vr.

Since equality holds, C must be equidistant and every non-“∗” symbol must

10

occur exactly k times in every position. 2

The correspondence given by (3) and (5) clearly depends on the labeling

chosen for the blocks (words). By introducing a suitable equivalence for

codes we can ignore this dependence; moreover, the equivalence classes of

codes will be in a one-to-one correspondence with the isomorphism classes

of near resolutions as we shall see.

We say that two codes are equivalent if one can be obtained from the

other by permuting the positions and the non-“∗” values in each position.

It will be convenient to view the equivalence classes of codes as orbits of

a group action. For this purpose we require the following definitions. Let Sn

denote the symmetric group on {1, . . . , n} and, by a slight abuse of notation,

let Sq denote the group of all permutations of Zq,∗ that fix the symbol “∗”.

(Our permutations compose from right to left, that is, πρ(i) = π(ρ(i)).)

Denote by Sq o Sn the wreath product of Sq by Sn. We regard the elements

of Sq o Sn as ordered pairs (µ, π), where π ∈ Sn and µ = (µ1, . . . , µn) is an

ordered n-tuple of permutations µi ∈ Sq. The group operation on Sq o Sn is

given by

(µ, π)(ν, ρ) = (ξ, η), where (6)

η := πρ (7)

ξi := µiνπ−1(i) (8)

Now, an element (µ, π) ∈ Sq o Sn acts on a word x ∈ Zn
q,∗ by permuting the

positions so that position i becomes position π(i), followed by a permutation

µi of the non-“∗” values in each position i. In notation, (µ, π)x = y, where

11

y is a word defined by

y(i) := µi(x(π−1(i))) for all 1 ≤ i ≤ n. (9)

It is straightforward to check that this indeed is a group action. As codes

are sets of words, this induces an action on codes. In particular, two codes

are equivalent if and only if they are on the same orbit of this action.

Theorem 3 For n, M , d, q, w, v, k, λ that satisfy (1), (2), (4), and

M = v, the equivalence classes of (n, M, d, w)q gap codes are in a one-

to-one correspondence with the isomorphism classes of near resolutions of

2-(v, k, λ) designs.

Proof. Let N andN ′ be two isomorphic near resolutions. Hence, there exists

a σ ∈ Sv such that N ′ = σN . Label the near parallel classes and blocks

in N and N ′ arbitrarily as Ni(j) and N ′
i(j), respectively, where 1 ≤ i ≤ n

ranges over the near parallel classes and 0 ≤ j ≤ q−1 ranges over the blocks

in a near parallel class. Since N ′ = σN , there exists a (µ, π) ∈ Sq o Sn such

that

N ′
i(j) = σNπ−1(i)(µ

−1
i (j)) for all 1 ≤ i ≤ n and 0 ≤ j ≤ q − 1. (10)

Apply (3) to N and N ′ (subject to the labelings chosen) to obtain the

corresponding codes C = {x1, . . . , xv} and C ′ = {x′1, . . . , x′v}. Let p ∈

{1, . . . , v}. By (3), we have x′σ(p)(i) = j iff σ(p) ∈ N ′
i(j), that is, by (10) iff

σ(p) ∈ σNπ−1(i)(µ
−1
i (j)). Thus, x′σ(p)(i) = j iff p ∈ Nπ−1(i)(µ

−1
i (j)), that is,

by (3) iff xp(π−1(i)) = µ−1
i (j). By (9) we have x′σ(p)(i) = j iff (µ, π)xp(i) = j.

This shows that C ′ = (µ, π)C, so C and C ′ are equivalent.

Conversely, let C and C ′ be two equivalent gap codes. Hence, there

12

exists a (µ, π) ∈ Sq o Sn such that C ′ = (µ, π)C. Label the words in C and

C ′ arbitrarily as x1, . . . , xv and x′1, . . . , x
′
v, respectively. Since C ′ = (µ, π)C,

there exists a σ ∈ Sv such that

x′σ(p) = (µ, π)xp. (11)

Apply (5) on C and C ′ (subject to the labeling chosen) to obtain the near

resolutions Ni(j) and N ′
i(j), respectively, where 1 ≤ i ≤ n ranges over the

near parallel classes and 0 ≤ j ≤ q − 1 over the blocks of a near parallel

class. By (5), we have σ(p) ∈ N ′
i(j) iff x′σ(p)(i) = j, that is, by (11) iff

(µ, π)xp(i) = j. By (9), we have σ(p) ∈ N ′
i(j) iff µi(xp(π−1(i))) = j.

Thus, we have σ(p) ∈ N ′
i(j) iff xp(π−1(i)) = µ−1

i (j), that is, by (5) iff

p ∈ Nπ−1(i)(µ
−1
i (j)). This shows that N ′

i(j) = σNπ−1(i)(µ
−1
i (j)), so N and

N ′ are isomorphic. 2

4 Generation of near resolutions

In this section we use an orderly algorithm to generate a complete set of

equivalence class representatives of (13, 13, 10, 1)3 gap codes. By Theorem

3 and Equation (5) these correspond to a complete set of isomorphism class

representatives of near resolutions of 2-(13, 4, 3) designs. From these we

classify up to isomorphism the near resolvable 2-(13, 4, 3) designs by inves-

tigating the designs underlying the near resolutions.

Our algorithm for classifying gap codes has the structure of an orderly

algorithm [7, 22]. (For a survey on computational methods in design theory,

see [12].) Let G be a finite group that acts on a finite totally ordered set X.

The order on X induces the standard lexicographic order on the set of all

13

subsets of X: for S, T ⊆ X we have S < T iff there exists an x ∈ X such

that x ∈ S, x /∈ T , and for all y < x we have y ∈ S iff y ∈ T . The induced

action of G on subsets of X partitions the subsets into orbits. We call a

subset S ⊆ X canonical if it is the lexicographic minimum of its orbit.

Theorem 4 When started on the empty set, the following method generates

every canonical subset of X: Given a canonical subset S ⊆ X, construct each

of the subsets S ∪ {x} where x ∈ X and s < x for all s ∈ S, and apply the

procedure recursively to those newly constructed subsets that are canonical.

Proof. Define f(S) := S \ {max S} for ∅ 6= S ⊆ X. We remark that

f is weakly monotonic on k-subsets: for two k-subsets S, T ⊆ X, S < T

implies f(S) ≤ f(T). Also note that for any g ∈ G, f(g(S)) ≤ g(f(S)),

as both are obtained from g(S) by removing an element — the maximum

element in case of f(g(S)). Clearly, every canonical set C ⊆ X may be

visited in the search only via f(C). Thus, C will be visited iff f(C) is

visited and canonical. By weak monotonicity of f we find that C ≤ g(C)

implies f(C) ≤ f(g(C)) ≤ g(f(C)). The canonicity of C then implies

f(C) ≤ g(f(C)) for all g ∈ G and therefore f(C) is canonical. Visiting

the empty set provides the induction base necessary for showing that all

canonical subsets are visited. 2

We construct the canonical codes using a codeword-by-codeword back-

track search algorithm of the type described in Theorem 4. Our X is the set

Zn
q,∗ with standard lexicographic order: for x, y ∈ Zn

q,∗ we have x < y iff there

exists an i ∈ {1, . . . , n} such that x(i) < y(i) and for all j ∈ {1, . . . , i − 1}

we have x(j) = y(j), where the order on Zq,∗ is 0 < 1 < · · · < q − 1 < ∗.

Our G is the group Sq o Sn, which acts on X by (9).

Since (9) preserves the distances between words, we need not consider

14

augmenting the code under construction with words that would cause the

equidistance condition to be violated. The augmenting codewords are con-

structed using coordinatewise backtrack search with pruning whenever a

(partial) codeword cannot satisfy the equidistance condition regardless of

how the remaining coordinates are completed.

Our implementation of the canonicity test subject to the action (9) is

analogous to that described in [15]; the only difference is that the present

test keeps the symbol “∗” fixed at all times and permutes only the symbols

{0, 1, . . . , q − 1}.

Analogously to the nonexistence proof of a resolvable 2-(15, 5, 4) design

in [15], we perform isomorph rejection only up to 6 codewords. For each

canonical code with 6 codewords, we complete the search by determining

the maximum cliques of a graph. The vertices of the graph correspond

to the words of gap weight 1 that are both lexicographically larger than

the codewords in the code and at distance 10 from each codeword in the

code. Two vertices are connected by an edge iff their distance is 10. For

each 7-clique in this graph, the words that correspond to the vertices of

the clique form a (13, 13, 10, 1)3 gap code together with the 6 codewords

in the canonical code. The codes found in this manner are then tested for

canonicity. For determining the maximum cliques, we use the algorithm in

[21].

We classify the nonisomorphic near resolvable 2-(13, 4, 3) designs using

the classification of the near resolutions as follows. For each near resolution,

we find the underlying design and compute its canonical representative.

(See e.g. [12, Section 9.5] on how to use the nauty [19] graph canonical

labeling software for this task.) We then associate the near resolutions to

each near resolvable design by sorting the canonical representatives of the

15

near resolvable designs.

The search for the nonisomorphic 2-(13, 4, 3) near resolutions was per-

formed using the batch system autoson [18] on a network consisting of 15

Linux workstations with CPUs ranging from 1-GHz Athlon Thunderbird to

200-MHz Pentium. The classification was completed in approximately two

months of CPU time. Following the classification of the near resolutions,

the underlying resolvable designs were classified in less than two minutes of

CPU time on a 450-MHz Pentium II.

5 Generation of whist tournaments

In this section we generate the nonisomorphic Wh(13) and DWh(13). The

whist tournaments may be generated from the near resolutions by convert-

ing the near resolutions into logic programs, essentially instances of the

satisfiability problem, such that the satisfying truth assignments correspond

to whist tournaments with the given underlying resolution. We then use

Smodels [24] to solve the resulting logic programs. The encoding is straight-

forward. For every pair of points x < y in block Bb, the variable pxyb is

introduced to represent whether the players x and y play as partners in

game b. For DWh(v) the variable `xyb represents whether y is the left-hand

opponent of x in game b. It is convenient to encode the restrictions by using

cardinality clauses, allowed in Smodels, using which one may constrain the

number of true literals in some subset of the literals. For example, we may

specify the equivalent of |{pxyb|x, y ∈ Bb ∧ pxyb}| = 1 for all player pairs

x < y to ascertain that each player partners every other player exactly once.

Isomorph rejection for the whist tournaments is carried out by transform-

ing the problem to graph isomorphism. We defined Wh(v) and DWh(v) as

a kind of a set system in Section 2; now we represent the set system as a

16

directed graph whose vertices correspond to the elements of the set system

and whose edges represent the membership relation; x ∈ y is represented by

the edge (x, y). For every x, i, and t such that x is the ith element of an

ordered tuple t, we add an auxiliary vertex uxit, introduce the edges (x, uxit)

and (uxit, t) and color the vertex uxit with color i so that information about

the position in the tuple is preserved in the graph encoding.

Thus, to construct the graph we introduce one vertex for the tournament,

n vertices for the rounds, b vertices for the games, v vertices for the players,

and v(v − 1) vertices for the ordered pairs of players. We add an edge from

each of the round vertices to the tournament vertex and from each game

vertex to the round vertex. From each player vertex add an edge to each

ordered pair the player appears in; then, split these last edges in two by

adding a midvertex to each edge and color that vertex with color 1 or 2

according to whether the player is the first or second player in that ordered

pair. Finally, add edges to each game from the ordered pairs that appear

in the relevant relation, which is the partner relation for Wh(v) and the

left-hand opponent relation for DWh(v).

The automorphism group of the graph, limited to act on the player

vertices only, gives us the automorphism group of the whist tournament.

For performance reasons we use undirected graphs instead of directed

graphs. For Wh(13), as the partnership relation is symmetric, we represent

the relation as two pairs of unordered partner pairs instead of four pairs

of ordered partner pairs. One may verify that these modifications do not

interfere with the computation of the automorphism group of the whist

tournament.

We identify the nonisomorphic graphs, that is, the nonisomorphic whist

tournaments, by computing an invariant with nauty [19]. By examining the

17

automorphism group orders of the whist tournaments and their underlying

near resolutions, we may verify that the invariant is powerful enough to

distinguish between the whist tournaments with the same underlying reso-

lution.

Classifying the 13-player whist tournaments took less than an hour on

a 500 MHz Pentium III computer after computing the 2-(13, 4, 3) near res-

olutions.

6 Results

There are 10171 nonisomorphic near resolutions, with 10121 nonisomorphic

underlying designs. All of these designs are simple, that is, they contain no

repeated blocks. The near resolvable 2-(13, 4, 3) designs are grouped by the

order of their automorphism group and the number of nonisomorphic near

resolutions they admit in Table 1. No design has two near resolutions with

automorphism groups of different order, and in the vast majority of cases the

order of automorphism group of the near resolutions is equal to the order of

the automorphism group of the underlying near resolvable design. The few

exceptions are indicated by prefixing superscripts of the form a · b, where a

indicates the number of near resolvable designs whose resolutions all have

automorphism groups of order b.

It is possible to construct a Wh(13) on 414 of the near resolutions. For

399 of them the Wh(13) is unique and has the same automorphism group

as the underlying resolution. These are grouped by order of automorphism

group in Table 2. The 15 near resolutions with more than one Wh(13) are

summarized in Table 3.

The partner relations in a TWh(v) obviously define a Wh(v). By symme-

try, the first kind opponent relation and the second kind opponent relation

18

define another two Wh(v). These three Wh(v) have the property that every

block of the underlying near resolution is partitioned into pairs of partners

once in each of the three possible ways. Since all near resolvable 2-(13, 4, 3)

designs are simple, the existence of a TWh(13) would imply the existence

of three Wh(13) with the same underlying resolution with no whist game

in common. However, as only four near resolutions admit the construction

of more than two different but not necessarily nonisomorphic whist tourna-

ments, it can be verified by hand that any two Wh(13) with the same one of

those four as the underlying near resolution always have at least one game

where the players are split into partner pairs identically. This implies that

no TWh(13) exists.

There were six resolutions upon which a DWh(13) could be constructed.

All DWh(13) constructed on a particular resolution had the same underlying

Wh(13); thus the Wh(13)-orbit is of length 1 under the automorphism group

of the resolution. The DWh(13) are summarized in Table 4.

We find the same three Z-cyclic Wh(13) as Finizio [8]. There are three

Wh(13) that have an automorphism group whose order is divisible by 13,

and their automorphism groups must contain the cyclic group of order 13 as

a subgroup. The orbit of a round under the cyclic group must be of length

13, as the group permutes each player in turn to the sitout position. Thus,

these three tournaments are Z-cyclic. One of them allows the construction

of a DWh(13) (actually four nonisomorphic ones) on it.

Some examples of structures with a large automorphism group are given

in Table 5. Naturally the structures underlying the structures of more re-

strictive types serve as additional examples of structures of less restrictive

types. We have used GAP4 version 4r2 [9] in manipulating the structures

into a convenient form.

19

Table 1: Number of near resolvable designs by order of automorphism group
and number of nonisomorphic near resolutions

Order of automorphism group
1 2 3 4 6 12 39 156 total

near resolutions 1 9806 4·146 213 10 1 2·66 1 10083
2 19 10 2·12 1 32
4 2 2·12 2·32 6

total 9827 48 223 12 1 8 1 1 10121

Table 2: Near resolutions with a unique Wh(13)
Automorphism group order 1 2 3 4 6 12 39 156
Number of whist tournaments 344 3 44 2 1 2 2 1

Table 3: Near resolutions with more than one Wh(13)
Number of resolutions 7 1 4 1 1 1
Order of automorphism group of resolution 1 3 3 6 6 12
Wh(13) orbit lengths 1,1 3 1,1 1,2,2 1,1,1 1,2

Table 4: Near resolutions of 2-(13, 4, 3) designs with DWh(13) by automor-
phism group order
Automorphism group order 4 6 6 12 12 156
DWh(13) orbit lengths 1,1 1,1 1,1,3,3 1,1 1,1,3,3 1,1,3,3

Table 5: Examples of structures
Aut. group order DWh(13)

156 Z13({(1, 5, 12, 8), (2, 10, 11, 3), (4, 7, 9, 6)})

12
Z12({(0, 3, 6, 9), (1, 4, 7, 10), (2, 5, 8, 11)})∪
Z12({(∞, 4, 0, 7), (1, 3, 9, 2), (6, 10, 11, 8)}

Aut. group order Wh(13)
39 Z13({(1, 2, 4, 8), (3, 6, 12, 11), (5, 9, 7, 10)})
39 Z13({(1, 8, 5, 10), (2, 4, 3, 11), (6, 7, 9, 12)})

Aut. group order 2-(13, 4, 3) near resolution

12
A4({{ε, a2ba, aba2, b}, {a, ab, ba, bab}, {a2, a2b, aba, ba2)})∪
A4({{∞, ε, a, b}, {a2bab, aba2, ba}, {a2, a2ba, aba, bab}).

Aut. group order near resolvable 2-(13, 4, 3) design

12
A4({v1, v2, e13, e34}) ∪A4({v1, v2,m12,34,m13,24})∪
A4({v1, e12, e13,m14,23}) ∪A4({e12, e13, e34,m13,24})∪
A4({e12, e34,m12,34,m13,24})

20

In Table 5, the DWh(13) with automorphism group of order 156 may

be obtained by a well known Galois Field construction given by Baker. The

underlying Wh(13) and the underlying near resolvable 2-(13, 4, 3) design also

have an automorphism group of order 156. The point set is understood to

be Z13, and the automorphism group consists of permutations of the form

x 7→ ax + b, where 0 6= a ∈ Z13 and b, x ∈ Z13. Another DWh(13) with

automorphism group order 156 may be obtained by mirroring (inverting the

left-hand opponent relation in) all three tables of the initial round; if 1 or

2 tables are mirrored, the resulting DWh(13) will have an automorphism

group of order 52. By mirroring the second and third table one may obtain

the DWh(13) given by Finizio. The second tournament is a DWh(13) with

Z12 as the full automorphism group; ∞ is a fixed point under the action

of the group. The DWh(13) consists of two orbits of rounds. The orbits

have length 1 and 12 respectively. Note that while the group permutes the

players to different seats in the first orbit, the relations in the games remain

unchanged and we consider the rounds identical. The underlying Wh(13),

near resolution and design also have the same automorphism group. Another

DWh(13) with the same automorphism group may be obtained by mirroring

this DWh(13).

The two Wh(13) in Table 5 were given by Finizio, have automorphism

groups of order 39 and have nonisomorphic underlying near resolutions.

Both underlying near resolutions also have automorphism group order 39.

By mapping the players of the second by x 7→ 2x (mod 13), one may verify

that both have the unique near resolvable 2-(13, 4, 3) design with an auto-

morphism group of order 39 as the underlying design.

The near resolution and near resolvable design given in Table 5 both

have an automorphism group that is isomorphic to the alternating group

21

A4 = 〈a, b〉, where a = (1, 2, 3) and b = (1, 2)(3, 4). The action of the group

on the points is different, however. The thirteen points of the near resolution

are the twelve elements of A4 together with ∞, a point fixed by the action of

A4; the group A4 acts on the points by multiplication from the left. Clearly,

A4 acts transitively on the points other than ∞. The points of the near

resolvable design, on the other hand, may be seen as the vertices, edges, and

perfect matchings of the complete graph with vertex set V = {v1, v2, v3, v4}.

Let A4 act on V in the obvious way, and let the action on the edges and

matchings be the induced action. In Table 5, eab stands for the edge {va, vb},

and mab,cd represents the matching {eab, ecd}. Here the vertices, edges and

matchings form orbits of lengths 4, 6, and 3, respectively.

7 Conclusions

We present a correspondence between the near resolutions of near resolvable

balanced incomplete block designs and a particular class of codes. We then

use the correspondence to generate the 10171 near resolutions of 2-(13, 4, 3)

designs. The near resolutions have a total of 10121 nonisomorphic underly-

ing near resolvable designs, all of which are simple. We find that it is possible

to construct a Wh(13) on 414 of the near resolutions, and that there are a

total of 421 nonisomorphic Wh(13). Similarly, six near resolutions admit

the construction of a DWh(13), and there are 18 nonisomorphic DWh(13).

Finally, by examining Wh(13) with the same underlying near resolution, we

find that no TWh(13) exists.

Performing a similar classification for v = 16 or v = 17 would be inter-

esting since v = 16 is the smallest case for which the existence of a DWh(v)

is open, and v = 17 is the only case for which the existence of a TWh(v) re-

mains open. In our estimation, however, considerable improvements to the

22

method in this paper are necessary to make such a classification feasible.

Acknowledgements

The authors wish to thank Clement Lam and Patric Österg̊ard for discus-

sions and numerous helpful comments.

References

[1] R. J. R. Abel and G. Ge, An almost completion for the existence of

triplewhist tournaments TWh(v), submitted for publication.

[2] I. Anderson, Combinatorial Designs: Construction Methods, Ellis Hor-

wood, Chichester, 1990.

[3] I. Anderson, A hundred years of whist tournaments, J. Combin. Math.

Combin. Comput., Vol. 19 (1995) pp. 129–150.

[4] I. Anderson, Whist tournaments, In (C. J. Colbourn and J. H. Dinitz,

eds.), The CRC Handbook of Combinatorial Designs, CRC Press, Boca

Raton (1996) pp. 504–508.

[5] R. Baker, Whist tournaments, Congr. Numer., Vol. 14 (1975) pp. 89–

100.

[6] F. E. Bennett and X. Zhang, Resolvable Mendelsohn designs with

block size 4, Aequationes Math., Vol. 40 (1990) pp. 248–260.

[7] I. A. Faradžev, Constructive enumeration of combinatorial objects,

Colloq. Internat. CNRS, 260, CNRS, Paris (1978) pp. 131–135.

[8] N. J. Finizio, Orbits of cyclic Wh[v] of ZN -type, Congr. Numer.,

Vol. 82 (1991) pp. 15–28.

23

[9] The GAP Group, GAP — Groups, Algorithms, and Programming,

Version 4.3; 2002. (http://www.gap-system.org)

[10] G. Ge and C. W. H. Lam, Some new triplewhist tournaments TWh(v),

J. Combin. Theory Ser. A, Vol. 101 (2003) pp. 153–159.

[11] G. Ge and L. Zhu, Frame constructions for Z-cyclic triplewhist tour-

naments, Bull. Inst. Combin. Appl., Vol. 32 (2001) pp. 53–62.

[12] P. B. Gibbons, Computational methods in design theory, In (C. J. Col-

bourn and J. H. Dinitz, eds.), The CRC Handbook of Combinatorial

Designs, CRC Press, Boca Raton (1996) pp. 718–740.

[13] R. L. Graham and H. O. Pollak, On the addressing problem for loop

switching, Bell System Tech. J., Vol. 50 (1971) pp. 2495–2519.

[14] H. Haanpää and P. R. J. Österg̊ard, Classification of whist tourna-

ments with up to 12 players, Discrete Appl. Math., to appear.

[15] P. Kaski and P. R. J. Österg̊ard, There exists no (15,5,4) RBIBD, J.

Combin. Des., Vol. 9 (2001) pp. 357–362.

[16] Y. Lu and L. Zhu, On the existence of triplewhist tournaments

TWh(v), J. Combin. Des., Vol. 5 (1997) pp. 249–256.

[17] R. Mathon and A. Rosa, 2-(v, k, λ) designs of small order, In (C. J. Col-

bourn and J. H. Dinitz, eds.), The CRC Handbook of Combinatorial

Designs, CRC Press, Boca Raton (1996) pp. 3–41.

[18] B. D. McKay, autoson – a distributed batch system for UNIX worksta-

tion networks (version 1.3), Technical Report TR-CS-96-03, Computer

Science Department, Australian National University (1996).

24

[19] B. D. McKay, nauty user’s guide (version 1.5). Technical Report TR-

CS-90-02, Computer Science Department, Australian National Uni-

versity (1990).

[20] L. B. Morales and C. Velarde, A complete classification of (12,4,3)-

RBIBDs, J. Combin. Des., Vol. 9 (2001) pp. 385–400.

[21] P. R. J. Österg̊ard, A fast algorithm for the maximum clique problem,

Discrete Appl. Math., Vol. 120 (2002) pp. 197–207.

[22] R. C. Read, Every one a winner; or, how to avoid isomorphism search

when cataloguing combinatorial configurations, Ann. Discrete Math.,

Vol. 2 (1978) pp. 107–120.

[23] N. V. Semakov and V. A. Zinov’ev, Equidistant q-ary codes with max-

imal distance and resolvable balanced incomplete block designs, Prob-

lems of Information Transmission, Vol. 4, No. 2 (1968) pp. 1–7; trans-

lated from Problemy Peredachi Informatsii, Vol. 4, No. 2 (1968) pp.

3–10 (Russian).

[24] T. Syrjänen and I. Niemelä, The Smodels system, In (T. Eiter,

W. Faber, M. Truszczyński, eds.), Logic Programming and Nonmono-

tonic Reasoning: Proc. 6th International Conference, LPNMR 2001,

Lecture Notes in Artificial Intelligence, Springer, Berlin, 2173 (2001)

pp. 434–438.

[25] P. M. Winkler. Proof of the squashed cube conjecture, Combinatorica,

Vol. 3 (1983) pp. 135–139.

[26] X. Zhang, On the existence of (v, 4, 1)-RPMD, Ars Combin., Vol. 42

(1996) pp. 3–31.

25

