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Abstract Metabolomics has advanced significantly in the

past 10 years with important developments related to

hardware, software and methodologies and an increasing

complexity of applications. In discovery-based investiga-

tions, applying untargeted analytical methods, thousands of

metabolites can be detected with no or limited prior

knowledge of the metabolite composition of samples. In

these cases, metabolite identification is required following

data acquisition and processing. Currently, the process of

metabolite identification in untargeted metabolomic studies

is a significant bottleneck in deriving biological knowledge

from metabolomic studies. In this review we highlight the

different traditional and emerging tools and strategies

applied to identify subsets of metabolites detected in

untargeted metabolomic studies applying various mass

spectrometry platforms. We indicate the workflows which

are routinely applied and highlight the current limitations

which need to be overcome to provide efficient, accurate

and robust identification of metabolites in untargeted

metabolomic studies. These workflows apply to the iden-

tification of metabolites, for which the structure can be

assigned based on entries in databases, and for those which
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are not yet stored in databases and which require a de novo

structure elucidation.
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Metabolite identification � Structure elucidation �
Mass spectrometry � Gas chromatography �
Liquid chromatography � Ultra performance liquid

chromatography � DIMS

1 Introduction

At the turn of the twenty-first century, advances in ana-

lytical and informatics technologies provided the drive for

the emerging scientific field of metabolomics to develop

and rapidly grow. Today, metabolomics tools are applied in

the investigation of microbial (Pope et al. 2007; Yuan et al.

2009; Kahar et al. 2011; Winder et al. 2011), plant

(Roessner et al. 2001; Farag et al. 2009; Lugan et al. 2010),

environmental (Viant 2008; Boroujerdi et al. 2009) and

mammalian (Oresic et al. 2008; Dunn et al. 2011a) sys-

tems. Metabolomics in these systems has a diverse range of

scientific objectives including the discovery of biomarkers

through to the understanding of biological mechanisms

related to genetic and/or environmental perturbations.

The experimental strategies applied in these studies can

be categorized into three classes: targeted analysis, semi-

targeted analysis and untargeted analysis (also known as

metabolic profiling, metabolite profiling or metabolomics)

(Fiehn 2002; Dunn et al. 2011a). These strategies differ in

many aspects including the level of quantitation (relative

vs. absolute), complexity of sample preparation, experi-

mental accuracy and precision, number of metabolites

detected, and the study objective (hypothesis generation/

discovery study vs. hypothesis testing study). One major

difference when comparing untargeted analysis to targeted

and semi-targeted analyses is the need for chemical iden-

tification and structural elucidation of detected metabolites.

For targeted and semi-targeted analyses, the chemical

identities of the metabolite or metabolites to be assayed are

known before data acquisition commences, and analytical

methods are developed to provide high accuracy, precision

and selectivity. These methods are developed with

the application of authentic chemical standards. The

subsequent process of deriving biological knowledge from

acquired data can be started immediately following data

analysis as the chemical identity of the metabolites is

known. This is a significant advantage of these strategies,

though fewer metabolites are typically detected and

reported, compared to untargeted analysis, and this may not

be appropriate for true discovery studies.

In untargeted analyses, fit-for-purpose analytical meth-

ods are developed to acquire data on a diverse range of

metabolites. Specific knowledge of which metabolites will

be detected prior to data acquisition is limited, though

information related to metabolite classes of interest can

allow an appropriate choice of analytical platform and

sample preparation method to provide enrichment of

metabolites of interest. The chemical identification and

structural elucidation of all, or more realistically, many

biologically interesting metabolites, is a labour-intensive

step that follows data acquisition and analysis and must

occur before biological interpretation is possible. It is,

therefore, important to realize that metabolite identification

in untargeted analysis has been highlighted repeatedly as a

significant bottleneck in mass spectrometry-focused meta-

bolomic studies (Dunn et al. 2011a; Wishart 2011); a sur-

vey at The American Society for Mass Spectrometry annual

conference in 2009 provided evidence of this bottleneck

across a wide set of researchers (http://fiehnlab.ucdavis.

edu/staff/kind/Metabolomics-Survey-2009/).

Untargeted metabolomics studies typically apply mass

spectrometry coupled to a range of diverse chromatographic

platforms, including gas chromatography (GC–MS and

comprehensive GC 9 GC; (Fiehn et al. 2000a; Roessner

et al. 2001; Welthagen et al. 2005; Huege et al. 2011), liquid

chromatography (LC–MS), and related advanced hardware

including ultra-performance liquid chromatography

(UPLC–MS, also referred to as ultra-high performance

liquid chromatography—UHPLC–MS; Theodoridis et al.

2008; Brown et al. 2009; Dunn et al. 2009; Spagou

et al. 2010), and capillary electrophoresis (CE–MS; Soga

et al. 2003; Ramautar et al. 2009). Alternatively, samples can

be directly injected or infused into the mass spectrometer

(direct infusion/injection mass spectrometry, DIMS; Sou-

tham et al. 2007; Beckmann et al. 2008; Taylor et al. 2009;

Fuhrer et al. 2011; Weber et al. 2011). The advantages and

limitations of the different mass spectrometry platforms

have been extensively reviewed (Dettmer et al. 2007; Dunn

2008; Lei et al. 2011). Despite recent technological

advancements in all mass spectrometry platforms, no single

analytical platform or manufacturer’s instrument is the

perfect tool for untargeted metabolomics, all having

advantages and limitations.

When applied to pure chemicals or to relatively simple

mixtures, mass spectrometry offers a range of powerful

tools that can be used for the characterization, structural
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elucidation, and identification of metabolites. These

include (i) the accurate measurement of the mass-to-charge

ratio (m/z) of molecular, fragment and associated ions; (ii)

the determination of relative isotopic abundances (RIAs)

(e.g., the relative abundance of 12C and 13C isotopomers) of

molecular and fragment ions; (iii) fragmentation of

molecular and fragment ions to define dissociation patterns

related to chemical structure; and (iv) the comparison of

experimental data to either databases containing physico-

chemical properties (e.g., molecular formulas and monoi-

sotopic masses) or mass spectral libraries containing

experimentally acquired chromatographic [e.g., retention

times (RTs) or retention indices] and mass spectrometry

data (e.g., fragmentation mass spectra). As an example,

Fiehn and Kind have defined how the ‘‘seven golden rules’’

of traditional analytical chemistry can be applied in

metabolite identification (Kind and Fiehn 2007). Data

applied for the identification or annotation of metabolites

can be collected in two different processes; (a) during the

data acquisition step of untargeted metabolomics (for

example, RT and electron-impact mass spectrum data for

GC–MS and m/z, MS/MS mass spectrum and RT data for

LC–MS) or (b) can be collected in a targeted manner fol-

lowing the data acquisition, processing and analysis stages

(for example, acquisition of MSn data for LC eluent frac-

tions collected during the data acquisition stage of untar-

geted metabolomics).

However, the challenge of metabolite identification is

still considerable in untargeted metabolomic studies.

Samples are complex and can contain hundreds or thou-

sands of chemical species, depending on the biological

system and sample type being studied. For example, bio-

fluids acquired from the human population contain

endogenous metabolites as well as exogenous metabolites

derived from diet (Lloyd et al. 2011), lifestyle and physical

activity (Pechlivanis et al. 2010), pharmaceuticals (Loo

et al. 2012), and the gut microflora (Wikoff et al. 2009),

most of them at low concentrations (micromolar or lower).

Complex mammalian systems are affected by many

intrinsic and extrinsic factors and can be thought of as

superorganisms (Goodacre 2007). From a knowledge per-

spective, the total qualitative composition of many meta-

bolomes is currently incomplete. Moreover, it is often not

known which metabolites should be present in a sample;

databases are available which contain large lists of the

expected metabolites in different organisms, based on

experimental, genomic and/or bibliographic data (for

example, The Human Metabolome Database—HMDB;

Wishart et al. 2009) and the metabolic reconstruction of

yeast (Herrgård et al. 2008), but these lists are far from

complete. Finally, the physicochemical diversity of the

metabolome is significantly greater than that of the prote-

ome (Wishart 2011), making generally applicable

identification strategies all but impossible. Characterization

of peptides and proteins, which are linear polymers com-

posed of about 20 amino acids, is significantly simpler than

characterizing the complex structural arrangements

observed in metabolites; although when modified post-

translationally (e.g., phosphate, glycans, etc.) protein

identification is challenging. All the points defined above

provide difficulties in chemically characterizing all detec-

ted metabolites or more realistically a subset of biologi-

cally interesting metabolites in a semi-automated or

automated process.

2 Challenges and requirements of metabolite

identification

The identification of metabolites in metabolomic samples

has to discriminate (i) metabolites of different nominal

mass; (ii) metabolites with the same nominal mass but

different molecular formula and monoisotopic mass; and

(iii) metabolites with the same nominal and monoisotopic

masses, but different chemical structures (including chi-

rality and isomerism; for example, leucine and isoleucine

are isomers with the same nominal and monoisotopic

masses). Furthermore, as single metabolites are usually

detected in a mass spectrometer as multiple different

derived species, correct assignment to the ‘‘parent’’

metabolite is essential. For example, in GC–MS, chemical

derivatisation by trimethylsilylation (TMS) reagents can

result in detection of amino acids containing 1, 2 or 3 TMS

groups; (Halket and Zaikin 2003), and in data acquired

from electrospray ionization (ESI) mass spectrometers a

single metabolite can form multiple different ion types

(e.g., sodium and potassium adduct ions, in addition to the

standard protonated form) (Brown et al. 2009). Each dif-

ferent detected form of a metabolite is commonly referred

to as a metabolic feature or a metabolite feature.

The identification challenge is, therefore, immense, and

confident unambiguous assignments of observed metabolic

features to a single metabolite are not always achievable.

The Chemical Analysis Working Group of the Metabolo-

mics Standards Initiative (MSI; http://msi-workgroups.

sourceforge.net) has defined four different levels of metab-

olite identification confidence (as defined in Table 1) and

methods on how to report metabolite identities (Sumner et al.

2007).

Definitive (level 1) identification requires comparison of

two or more orthogonal properties (e.g., RT/index, m/z,

fragmentation mass spectrum) of an authentic chemical

standard to the same properties observed for the metabolite

of interest analysed under identical analytical conditions

(in the researcher’s laboratory or a separate laboratory).

The probability of an accurate identification is high, but
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even if this level of information is available it may be

impossible to distinguish some metabolites. Many isomers,

especially stereoisomers, appear very similar or identical

based on chromatographic or mass spectrometric charac-

teristics, particularly in non-optimized and rapid analysis

methods that are commonly applied in untargeted meta-

bolomic studies. If an accurate identification of isomers is

required, and/or the presence of a mixture is suspected, the

development of chromatographic methods that unambigu-

ously separate different stereoisomers is required. Here,

NMR spectroscopy can be very powerful in determining

structural configurations of stereoisomers.

Putative (level 2 or 3) annotation is typically based on

one or two properties only and often relies on comparison

to data collected in different laboratories and acquired with

different analytical methods, instead of a direct comparison

with an authentic chemical standard under identical ana-

lytical conditions. The properties used depend on the

platform: e.g., in GC–MS the electron impact (EI) frag-

mentation mass spectra contained in GC–MS mass spectral

libraries can be applied for putative annotation; the frag-

mentation patterns are directly comparable because the

mechanism of fragmentation is reproducible across many

different GC–MS platforms. In LC–MS and UPLC–MS,

accurately measured m/z is typically the first property used

to identify metabolites, and may be combined with com-

parison of fragmentation spectra or RTs against experi-

mentally or computationally derived databases. Again, this

is not based on a comparison to an authentic chemical

standard applying an identical analytical method, and

therefore the resulting identifications are defined as

putative.

The difficulties in metabolite identification discussed

above and the current lack of full qualitative descriptions of

sample-specific metabolomes leads to two different types

of identification strategies being applied, (i) assignment of

the identity of a metabolite based on data stored in dat-

abases, and (ii) de novo structure elucidation where no data

on the metabolite can be found in any database.

3 Metabolite identification in GC–MS

and comprehensive GC 3 GC–MS derived datasets

3.1 Application of EI mass spectra and retention

indices

The majority of GC–MS and GC 9 GC–MS platforms

applied in metabolomic studies operate with EI ionization.

The metabolite identification workflow in untargeted met-

abolomic studies typically applies the RT/retention index

and/or the EI-derived mass spectrum for each detected

feature to provide identification of metabolites. EI ioniza-

tion operates with electron energies of 70 eV and is a

highly reproducible process, which imparts significant

internal energy (typically 10–20 eV) to the molecular ion

during the ionization process. Covalent bond fission fol-

lows with the creation of charged (positive charged ions are

most abundant) and neutral fragment species. The charged

fragment ions are detected and represented in an EI mass

spectrum. The fragmentation process is dependent on the

molecular structure, and the resulting mass spectrum pro-

vides information for metabolite identification. The mass

spectra for glutamic acid and glutamine are shown in

Fig. 1. A clear differentiation between the two metabolites

is achievable by visual inspection, as the two metabolites

have different molecular formulas and chemical structures.

Although widely applied, one limitation of EI mass

spectra for metabolite identification, especially when tri-

methylsilyl (TMS) derivatisation is applied, is the low

abundance and in some cases the absence of the molecular

ion (M?.), and in many cases a M-15?. fragment ion, in the

mass spectrum. Defining the mass of the molecular ion is

important in de novo metabolite identification to assist in

determination of the molecular formula (as discussed in

Sect. 4). Chemical ionization approaches (CI or atmo-

spheric pressure chemical ionization; APCI) are useful for

detection of (quasi-)molecular ions on GC–MS platforms

(Kumari et al. 2011; Wachsmuth et al. 2011).

The EI mass spectrum can be compared to mass spectra

acquired from authentic chemical standards accessible in

commercially or freely available mass spectral libraries to

aid identification. Several libraries are available which

Table 1 The four levels of metabolite identification confidence

defined by the Metabolomics Standards Initiative (Sumner et al. 2007)

Level Confidence of

identity

Level of evidence

1 Confidently

identified

compounds

Comparison of two or more

orthogonal properties with an

authentic chemical standard

analysed under identical analytical

conditions

2 Putatively annotated

compounds

Based upon physicochemical

properties and/or spectral similarity

with public/commercial spectral

libraries, without reference to

authentic chemical standards

3 Putatively annotated

compound classes

Based upon characteristic

physicochemical properties of a

chemical class of compounds, or by

spectral similarity to known

compounds of a chemical class

4 Unknown

compounds

Although unidentified and

unclassified, these metabolites can

still be differentiated and quantified

based upon spectral data
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contain either a generalized collection of chemicals

[of which a subset are metabolites; for example NIST08

(http://chemdata.nist.gov/mass-spc/ms-search/)] or only

metabolites [for example, Golm Metabolome Database

(GMD) (Kopka et al. 2005) and FiehnLib (Kind et al. 2009)].

The fragmentation patterns depend on the derivatization

process applied; available metabolite-specific libraries

mostly contain information on TMS-derivatized metabo-

lites. For other derivatisation processes, research laborato-

ries can construct their own libraries with authentic chemical

standards [for example, see Smart et al. (2010) who con-

structed a library for methyl chloroformate derivatives]. As

the EI ionization and subsequent molecular ion fragmenta-

tion processes are highly reproducible across different GC–

MS platforms they can provide putative (level 2) annota-

tions. In some cases the mass spectra of two different

metabolites (most importantly, stereoisomers) are very

similar, and identification of a metabolite is not possible at

level 2, but classification to a specific metabolite class (level

3) is possible. A common example of this problem is mono-

and disaccharides, or other polyhydroxylated metabolites,

which occur in multiple different stereoisomeric forms with

widely different biological functions (see Fig. 1 for an

example of two cyclohexanehexols, myo-inositol and scyllo-

inositol, which have almost identical mass spectra).

To achieve confident identification (level 1), the EI mass

spectra information is combined with comparison of

chromatographic RTs, or even better Kovats retention

indices (Malvoisin et al. 1979; Lisec et al. 2006; Dunn

et al. 2011b). Retention indices are a normalized measure

of RT that takes into account differences in column length,

internal diameter, film thickness, flow rate of carrier gas,

and oven temperature ramp, by spiking chemicals from a

homologous series into each analyzed sample. This pro-

cedure exploits the fact that the RT depends monotonically

and reproducibly on the number of carbon atoms among

the members of a homologous series for a given chro-

matographic stationary phase. Retention times of the

metabolites of interest are then compared to the RTs of the

members of the homologous series and expressed as a

retention index relative to the number of carbon atoms in

the most similar retention index markers. For example,

n-alkanes are commonly applied as retention index markers

(typically C10–C30) (Lisec et al. 2006; Dunn et al. 2011b).

Each of the alkanes is assigned a retention index that is

calculated as its carbon number multiplied by 100 (for

example, n-decane (C10H22) has a retention index of

1,000). Then, if C10 and C12 n-alkanes have RTs of 700 and

900 s and an unidentified metabolite has a RT of 800 s, its

retention index is calculated as 1,100. Fatty acid methyl

Fig. 1 EI mass spectra for (a) glutamic acid, (b) glutamine, (c) scyllo-

inositol and (d) myo-inositol. Clear differences in the EI mass spectra

are observed for glutamic acid and glutamine which allow their robust

differentiation and identification. No clear difference is observed in the

EI mass spectra for scyllo-inositol and myo-inositol and chromato-

graphic separation is required to provide differentiation
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esters have also been applied as retention index markers in

metabolomic studies (Kind et al. 2009). The application of

retention indices can allow the comparison of data across

different GC–MS platforms, though accuracy can be

dependent of column dimensions and stationary phase.

Retention index data are contained in many mass spectral

libraries.

3.2 Novel and developing methods

The identification methods described so far fail for those

metabolites not present in mass spectral libraries. As a con-

sequence GC–MS is used mainly for the semi-targeted anal-

ysis of known volatiles (e.g. Tikunov et al. 2005) or of

ubiquitous primary metabolites (e.g. Fiehn et al. 2000a;

Roessner et al. 2000) for which authenticated reference sub-

stances can easily be acquired. The large portion of still

unidentified metabolites from GC–MS metabolic profiles is in

most cases neither analyzed nor reported. These ‘‘uncharted’’

metabolites can typically exceed *66 % of all mass features

detectable by GC–EI–MS profiling of plants (Kopka J.,

unpublished data), though this estimate is highly dependent on

the sample origin; for example, in well studied microbes the

number of metabolites identified is higher (van der Werf et al.

2007). Advances in the fast classification and identification of

metabolites are essential, as it is obvious that only identified

metabolites can be experimentally assessed, manipulated and

understood in terms of their physiological role or their

involvement in disease mechanisms.

As the first step towards discovery and reporting of so

far unidentified metabolites, the concept of mass spectral

tags (MSTs) has been introduced (Desbrosses et al. 2005;

Kopka 2006). In an analogy to the expressed sequence tags

(ESTs) of molecular biology, MSTs represent the physi-

cochemical properties of so far unidentified metabolites. In

the case of GC–MS, MSTs comprise typically the full mass

spectrum and the chromatographic retention index (e.g.

Strehmel et al. 2008) of the chemically derivatized or non-

derivatized metabolite. Once these reference data are

indexed and archived in public databases, such as the GMD

(Kopka et al. 2005) or BinBase/FiehnLib (Kind et al.

2009), targeted searches and the matching of unidentified

metabolic features from GC–EI–MS studies of complex

samples to such reference MSTs can be performed. The

respective processes of matching the so far unidentified

metabolite and of the search for MSTs representing known

metabolites are essentially equivalent. Indeed GMD has

become a central repository of such unidentified MSTs,

primarily but not exclusively for plant metabolomic stud-

ies, next to the central community function of GMD as an

archive of biologically relevant GC–EI–MS reference data

of pure and authenticated reference substances (Wagner

et al. 2003; Kopka et al. 2005; Schauer et al. 2005;

Hummel et al. 2010). In the last 6 years, hundreds of such

unidentified MSTs with known relevance to biological

samples have accumulated and now await structural elu-

cidation (Kopka 2006; Hummel et al. 2010). The MST

concept has also recently been extended towards LC–MS

features (Matsuda et al. 2009; Fernie et al. 2011).

Whereas the cataloging of MSTs in metabolomic dat-

abases is the necessary descriptive basis for metabolite

discovery, efforts towards structural elucidation are

increasingly urgent. Still the most successful strategy of

metabolite identification is the analysis of pure reference

substances on the GC–MS system and the archiving of

obtained reference MST data together with the respective

structures and, where possible, their retention indices. Such

archives can easily be exchanged between laboratories via

public and academic databases, such as the GMD (e.g.

(Kopka et al. 2005; Strehmel et al. 2008). The commercially

available reference metabolites are, however, almost

exhausted, and shotgun approaches, which propose to map

all commercially available compounds, are too expensive

and inefficient because not all biologically relevant com-

pounds are commercially available. Therefore, the chemical

synthesis of metabolites, and in principle the biosynthetic

production of metabolites by heterologous expression of

enzymes with known function will become increasingly

important (for an example of biosynthesis of metabolites by

heterologous expression, though not for application in

metabolite identification see Komatsu et al. 2010).

Alternatively, metabolite identification can employ a

direct approach with NMR spectroscopy, i.e. the purification

of chemically derivatized or native GC–MS analytes either

by preparative GC (Eyres et al. 2008; Ochiai and Sasamoto

2010) or by a combination of preparative LC (Wang et al.

2010) and mapping of the obtained pure fractions to the GC–

MS profiling system. Unfortunately, a huge discrepancy can

exist between the 10–100 ng amounts which are typically

detectable in analytical GC- MS runs (e.g. Birkemeyer et al.

2003) and the approximately 0.1–1 mg required for struc-

tural elucidation by NMR. Multiple and replicate injections

to collect sufficient amounts of a purified metabolite can be

performed. The same forward identification strategy can be

applied for LC–MS and CE–MS platforms (Dear et al.

1999). The synthesis or production of xenobiotic metabolites

in cell culture systems (Schmidt et al. 2006) and subsequent

purification and identification will be an important tool in

future human studies, as are informatics approaches to pre-

dict detoxification mechanisms of xenobiotics (Kirchmair

et al. 2012). Until direct forward identification for MS based

metabolomics and other technology platforms become more

efficient, approaches that direct the chemical or biochemical

synthesis or the purification processes are in high demand.

Several other options for the classification (level 3

identification) of unidentified MSTs exist or are emerging
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(e.g. Hummel et al. 2010). Such classifications narrow the

structure search space for unidentified metabolites and thus

support full structural elucidation and inference of novel

biosynthesis pathways. The first gadget in the classification

tool box is the determination of the molecular formula of the

chemical derivative and/or the native metabolite, as had

been suggested more than a decade ago (e.g. Fiehn et al.

2000b). This will be discussed in more detail in Sect. 4.

However, systems that couple GC to high mass accuracy

(time-of-flight) spectrometers are now available. This will

possibly lead to substantial progress for GC–MS profiling. A

new generation of GC–MS technology for the identification

of metabolites in untargeted experiments would ideally

combine (i) sensitive and efficient ionization processes with

maintenance of molecular ions (which are essential for

metabolite characterization), (ii) MS/MS capability for

monitoring fragmentation, and (iii) high mass accuracy for

deducing the molecular formula of both molecular and

fragment ions. We believe these systems will start to become

a more standard and frequently applied tool for enhanced

MST classification and structural elucidation.

It is, however, well known that even highly accurate m/z

measurements can lead to assignment of multiple possible

molecular formulas. The number of putative formulas can

be reduced by assessing the exact masses of naturally

occurring isotopomers and the natural relative isotopomer

abundances (also defined as relative isotope abundances).

An even more effective approach uses element-specific full

in vivo stable isotope labeling, e.g. by 13C or 15N, to

increase the signal obtained from the isotopomer masses

(Birkemeyer et al. 2005; Kopka 2006; Huege et al. 2007,

2011). Comparison of fully 13C labeled isotopomers and

the unlabeled metabolite can be used to determine the

number of carbon atoms in the formula of the unidentified

MST or EI-fragment. Fully labelled samples can also yield

additional exact mass measurements, which allow the

reduction and ultimately removal of molecular formula

ambiguities by intersection analyses of the respective hit

lists. The use of natural and experimentally enriched mass

isotopomers for molecular formula inference has been

recently demonstrated for the analysis of unidentified

metabolites from LC–MS profiles (Giavalisco et al. 2009).

Before such approaches towards structure classification can

be routinely applied, the available technologies need to be

thoroughly evaluated with regard to the current limitations

of sensitivity, mass accuracy, and reproducibility as well as

their appropriateness for this highly demanding task of

metabolite identification.

When experimental advances are limited, it becomes

even more important to make the most of existing mass

spectral libraries and the linked molecular structure infor-

mation. Even though not fully understood, EI mass frag-

mentation patterns reflect the underlying molecular

structures and substructures, and careful manual interpre-

tation of the spectra can often elucidate the chemical

structure. This traditionally slow and manual process can

now be automated, and has been one of the earliest proof-

of-concept applications of machine learning technology.

One such example is the substructure identification option

of the NIST08 mass spectral library (http://chemdata.

nist.gov/mass-spc/ms-search/), which is highly useful for

the interpretation of EI mass spectra. As an alternative to

this ‘black box’ machine learning approach, GMD uses

decision tree technology for the prediction of substructures

from GC–MS fragmentation patterns and retention indices

(Hummel et al. 2010); this approach has the advantage that

the underlying rules of classification are available in a

human readable and understandable form. In short, the

molecular structures represented within GMD were parti-

tioned into classes that contain or do not contain predefined

substructures that frequently occur in metabolites, for

example amine-, carboxyl-, carbonyl and hydroxyl-moie-

ties. Decision trees were then trained to predict the

presence/absence of these substructures according to

abundance thresholds of fragment masses, with retention

index thresholds or mass differences within EI mass spectra

also contributing in a few cases. These machine learning

technologies support molecule identification by predicting

the substructures present in unidentified metabolites (with

associated confidence/quality scores), accelerating the

classification efforts and directing the structure elucidation

process (applying MSn, mass isotopomer analysis and

determination of exact mass) and the targeted chemical or

biochemical synthesis of the inferred metabolites.

Finally, prediction of RTs or retention indices can also

enhance the putative annotation of unidentified metabolites

(Mihaleva et al. 2009; Kumari et al. 2011). When com-

bined with accurate mass measurements and elemental

formula calculations, this strategy reduced the number of

putative molecular formulas (and in some cases returned a

single molecular formula (Kumari et al. 2011). The ability

to predict metabolite structures and retention indices in

silico is a significant advancement for the identification of

unknown metabolites where data from authentic chemical

standards are not available in mass spectral libraries.

4 Metabolite identification in LC–MS, CE–MS

and DIMS derived datasets

4.1 The use of accurate m/z measurements to define

molecular formula and to search electronic

resources

The accurate measurement of the m/z is frequently the first

process applied in the chemical identification of metabolic
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features detected in data sets acquired on LC–MS, CE–MS

and DIMS platforms. These platforms typically utilize ESI

sources (Fenn et al. 1989), though other ion sources (or

combinations of ionization mechanisms) are sometimes

used, including APCI (An et al. 2010). Measurements of

m/z can be used to match a metabolic feature to a single or

small number of molecular formula. The accuracy of this

measurement defines the number of molecular formula

matches; the greater the accuracy the lower the number of

molecular formula matches. The majority of mass spec-

trometers applied to this task operate at high mass resolu-

tions (5,000 to greater than 200,000) and mass accuracy

(\5 ppm) and include TOF and Fourier Transform-based

instruments but not quadrupole and ion trap instruments.

The molecular formula or formulas are then matched to

metabolites via searching of on-line databases. A single

molecular formula can correspond to multiple known

metabolites; therefore the application of accurate mea-

surements of m/z is an appropriate first step, but only

provides putative (level 2 or 3) annotation requiring further

verification. Other chemical and biological knowledge can

also be applied, in parallel to or in combination with

accurate measurements of m/z, to limit the number of

putative metabolite annotations for a single metabolic

feature. These will be discussed in the next section. The

workflow of applying accurate m/z data and biological

knowledge is summarized in Fig. 2.

The process of matching m/z to molecular formulas

starts with a large search space composed of all potential

molecular formulas. The reduction in search space size (or

in the number of potential molecular formulas) is achieved

by the matching of experimentally derived m/z information

to the equivalent m/z of specific molecular formulas. The

efficiency of this reduction process is dependent on the

resolution and accuracy of the mass spectrometer. The

majority of mass spectrometers operate with mass resolu-

tions of 5,000–50,000, which allows the resolution of

metabolites with the same nominal mass but different

monoisotopic masses [for example, glutamine (monoiso-

topic mass = 146.0691) and lysine (monoisotopic

mass = 146.1055)]. As mass resolution increases, the

ability to resolve ions of the same nominal mass but dif-

ferent monoisotopic mass is increased (see Fig. 3 for an

example). It should be remembered that even with high

Fig. 2 (a, b) The application of chemical, biological and MS data to

metabolite annotation of DIMS, LC–MS, UPLC–MS and CE–MS

data. A mass spectrum typically comprises of hundreds or thousands

of signals (or ‘features’) arising from many different metabolites as

well as the naturally occurring isotopes (e.g., 13C12Cn-1), adducts and

fragments of these metabolites. Putative metabolite annotation of

these signals can be in principle achieved using accurate measure-

ments of m/z; typically by assigning one or more molecular formula

(i.e. M = CcHhNnOoPpSs) to each accurate m/z measurement or

searching against a compound database on a peak-by-peak basis.

(c) RIA measurements can be used to determine the numbers of

certain atoms (e.g. C) present in a metabolite, which ultimately

improves the accuracy of assignment. (d) Biological samples

comprise of thousands of metabolites that are related through specific

chemical transformations or networks. Prior biological knowledge of

these transformations, in the form of substrate-product pairs, can also

significantly increase the accuracy of metabolite identification
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mass resolution, high mass accuracy is not necessarily

achieved and appropriate mass calibration is required to

provide high mass accuracy in these measurements (e.g.,

Scheltema et al. 2008). As mass accuracy increases, the

mass error range decreases and the number of proposed

molecular formulas decreases. This relationship is depen-

dent on m/z, and as m/z increases so will the number of

possible molecular formulas matching a given mass for a

defined mass error (Kind and Fiehn 2006). In this process,

unambiguous determination of a single molecular formula

is not always achievable even with high mass resolution

and the achievement of sub-ppm mass accuracies (Kind

and Fiehn 2006).

In LC–MS, CE–MS and DIMS applications, thousands of

metabolic features are detected, defined as m/z–RT pairs

(except for DIMS where no RT data are available). Signifi-

cant complexity is entwined in these data. A single metab-

olite is typically (but not always) detected as multiple

metabolic features, each having the same RT but a different

m/z. The different m/z values relate to different derivative

ions of the same metabolite. These can include protonated

and deprotonated ions, adducts, fragments, isotopomers,

dimers, multiply charged ions and Fourier transform artifact

peaks (Brown et al. 2009). The derivative ions depend on the

chemical properties of the metabolite as well as on the

sample matrix, solvents, metabolite concentrations, and

mass spectrometry platform and parameters (Tong et al.

1999; Zhu and Cole 2000; Schug and McNair 2002, 2003;

Brown et al. 2009). High salt contents can lead to complex

gas-phase non-covalent interactions during ESI ionization;

metabolite cluster ions containing multiple salt ions,

including Na?, K? and Cl-, have been observed in blood and

urine (Brown et al. 2009). Sample preparation can be used to

reduce this complexity, for example applying a desalting

process, though desalting of samples can lead to unwanted

loss of metabolites and therefore is not usually applied in

untargeted analysis. Figure 4 shows an example of the

complex mass spectrum detected for a single, compound on

a sensitive high-resolution mass spectrometer.

The wide variety of different ion types detected can be

applied advantageously if appropriate methods are used,

but can provide great difficulties and significant errors if

ignored. The complexity of ESI data can lead to a large

number of false positive identifications, especially when

derivative ions are falsely identified. For example, in

Fig. 4, a range of metabolic features, relating to different

ion types of tyrosine are shown. If the [M ? Na ? Na]?

adduct of tyrosine is labeled as a protonated ion then

accurate metabolite identification will fail as an incorrect

molecular formula will be calculated.

The automated matching of metabolic features deriving

from the same metabolite (including the automated

determination of the ion type) has only recently been

applied in metabolite identification. Metabolic features

derived from the same metabolite are identified, anno-

tated, and grouped together using accurate m/z, m/z dif-

ferences, RT similarity, pairwise correlation between

measured responses, known adduct lists and chromato-

graphic peak shape similarity. Metabolite identification

for one of the metabolic features can then be linked to all

other derived metabolic features for that metabolite. The

freely available software platforms developed for this

purpose include PUTMEDID-LCMS (Brown et al. 2011),

CAMERA (Kuhl et al. 2011), PeakML/mzMatch (Schel-

tema et al. 2011) and IDEOM (Creek et al. 2012). These

software platforms can be applied, in most cases, to data

acquired on different analytical systems and pre-processed

by different software packages. The applicability to

diverse datasets can be enhanced by developing sample-

specific reference files containing molecular formula and

metabolites for specific sample types. These reference

files can be organism-specific to allow an appropriate

reduction of the chemical search space before identifica-

tion processes are performed.

Fig. 3 The advantage of high mass resolution for the differentiation

of metabolic features with similar m/z. The data were acquired on a

ThermoFisher LTQ-Orbitrap XL hybrid mass spectrometer operating

at mass resolutions (FWHM) of 7,500, 30,000 and 100,000. The

sample analysed is human serum, typical of metabolomics

experiments
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The limitations of matching and integration of metabolic

features should be investigated before routine application

because errors can occur. The m/z difference between dif-

ferent metabolic features deriving from the same metabolite

(peak-pair m/z differences) is routinely used and its applica-

bility has recently been investigated. A method was reported

to calculate m/z differences across a mass spectrum using

commonly occurring peak-pair differences (Weber and Viant

2010). The resulting m/z difference error surface, representing

the error associated with m/z differences between peak pairs

(e.g. [M ? Na]?–[M ? H]?) of the same metabolite as a

function of both the mass difference and the average m/z of the

peak-pair, revealed large relative errors ([100 ppm) for clo-

sely mass spaced peaks (Weber and Viant 2010). Hence large

error tolerances may be required when analyzing peak dif-

ferences to avoid false negative assignments, though these are

expected to be instrument-dependent.

Following the identification of single or multiple

molecular formula, the matching of these molecular for-

mulas to known metabolites is performed, typically by

searching an array of online or laboratory-specific resour-

ces [including HMDB (Wishart et al. 2009), KEGG (Ogata

et al. 1999), LipidMaps (Sud et al. 2007), PubChem (http://

pubchem.ncbi.nlm.nih.gov/), and ChemSpider (http://

www.chemspider.com/)]. It is important to define a valid

molecular formula first and then match a molecular for-

mula to a metabolite. In cases where a match to a metab-

olite is not possible, the molecular formula can then be

applied in subsequent identification processes.

4.2 Application of chemical, biological and other

experimentally derived MS data

As discussed above, the majority of m/z measurements in a

single complex biological mass spectrum cannot be

assigned to a single molecular formula based on accurate

measurements of m/z only (Kind and Fiehn 2006; Kind and

Fiehn 2007; Matsuda et al. 2009). A range of bioinfor-

matics approaches have been developed in the past few

years to exploit relationships between signals in high-mass

resolution mass spectra. These include peak-pair m/z dif-

ferences (for example, peak m/z patterns and prior bio-

logical knowledge) and peak-pair intensity ratios (for

example, isotope abundance ratios and peak area correla-

tions) as tools to reduce the number of putative molecular

formulas or metabolite assignments for a single metabolic

feature and thus aid in its identification. Other tools

developed include ionization behavior rules, applying

chemical knowledge of metabolites, which can be used to

determine the probability of the formation of specific

Fig. 4 Full-scan mass spectrum related to the detection of tyrosine on

a UPLC–MS system (Waters Acquity UPLC system coupled to a

ThermoFisher LTQ-Orbitrap XL hybrid mass spectrometer). The

complex array of ion types detected includes loss of formate and

ammonia (fragmentation in the ion source), 13C isotopologues and

complex salts. FT artifact peaks observed for the [M ? H]?

metabolic feature of tyrosine are also present but at such a low

intensity so as not to be visible in this figure
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derivative ions for a metabolite and to eliminate metabo-

lites with chemically infeasible ion types (Draper et al.

2009).

Prior biological knowledge can be applied to constrain

the metabolite search space and aid metabolite identifica-

tion, e.g. using reference lists of expected metabolites for

specific sample types or a specific study organism.

Although strict search parameters have been shown to

improve the accuracy of molecular formula annotation (e.g.

narrowly constraining the mass error tolerance, elements

allowed, numbers of each element allowed, ion types etc.),

additional bioinformatics approaches are necessary to fur-

ther increase identification accuracy (Kind and Fiehn 2006,

2007). Biological samples are not composed of random

metabolite mixtures, but instead comprise of thousands of

biochemically related compounds resulting from the loss

and/or gain of atoms between substrate–product pairs

(Breitling et al. 2006a, b). Integrating prior biological

knowledge in the form of such enzymatic transformations

into metabolite identification has proven successful at

reducing the number of false structural and non-structural

assignments (Gipson et al. 2008; Rogers et al. 2009; Weber

and Viant 2010). For example, the mass error surface,

based on detected m/z differences, together with the

inclusion of prior biological knowledge from the KEGG

database (Kanehisa et al. 2010) has been shown to decrease

the false positive rate of metabolite identification by more

than fourfold (Weber and Viant 2010). A similar method

that incorporated LC RT measurements has likewise

demonstrated an increased confidence in metabolite iden-

tification (Gipson et al. 2008). These methods are depen-

dent on prior biological knowledge, for example the

metabolic network of the study organism. This is not

always available, especially when studying obscure bio-

logical systems or diverse areas of biology distant from

central metabolism. An example of how to apply biological

knowledge in the form of putative enzymatic transforma-

tions is shown in Fig. 5.

RIA measurements can be applied to reduce the chem-

ical search space even further, and are applied routinely

with data acquired on instruments where accurate isotope

abundance measurements are possible, providing an esti-

mate of the numbers of specific atoms present in a partic-

ular parent peak (Xu et al. 2010; Weber et al. 2011). This is

highlighted in Fig. 2. Several theoretical and experimental

studies have shown the benefit of using RIA measurements

to remove incorrect empirical formula assignments (Kind

and Fiehn 2006; Kaufmann 2010; Miura et al. 2010).

Furthermore, several studies have characterized the accu-

racy and precision of RIA measurements on different MS

platforms (Stoll et al. 2006; Koch et al. 2007; Erve et al.

2009; Xu et al. 2010). The higher the accuracy and preci-

sion of RIA measurements the more incorrect empirical

Fig. 5 The principle of using biological knowledge in the form of

putative enzymatic transformations to improve the confidence in

metabolite identifications. (a) Three metabolic feature have been

observed in this example; for two of them, m2 and m3, the

identification is unambiguous, based on the mass alone. For the third

one, m1, two possible formulas match the peak, both being initially

equally probable. (b) Observing that one of the possible formulas,

C6H10O7, is linked to an unambiguously identified metabolite via a

putative dephosphorylation, increases the posterior belief in this

identification, as indicated by the increased p-value (the exact p-value

will depend on the relative weighting of the two sources of evidence,

m/z and m/z differences). (c) Once a second putative enzymatic

relationship, a dehydrogenation, is detected, the preference for the

identification as C6H10O7 becomes a near certainty. The Bayesian

algorithm described in Rogers et al. (2009) performs this analysis

simultaneously for the entire set of observed metabolites, and

identifies the most plausible set of identifications, as well as possible

alternative interpretations of the dataset
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formulas assignments can be discarded; however, even

with relatively inaccurate and imprecise RIA measure-

ments the annotation of metabolic features can be

improved significantly (Weber et al. 2011).

Stable 13C isotope labeling (as described above for GC–

MS) is another technique for which the principle of peak-

pair m/z differences has been exploited successfully to

distinguish background ions from ions of true biological

origin; the proof of principle study applying GC–MS

identified over 1,000 formulas of biological origin and

reduced the number of false positive molecular formula

assignments (Giavalisco et al. 2008). Subsequently, this

method has been improved using UPLC–MS to increase

the accuracy of identification, i.e. to achieve structural

identification and accurate relative quantification (Giaval-

isco et al. 2009). Furthermore, an extension of this

approach using dual stable isotope labeling (i.e. 13C12Cn-1

and 15N14Nm-1) of metabolites, instead of single labeling,

has been shown to be a valuable tool for discovering novel

chemical structures (Feldberg et al. 2009).

Signal intensities can also be used to improve metabolite

identification using, for example, the linear correlations

between signals of specific peak-pairs measured across

multiple mass spectra. This is applied to the annotation of

molecular and derivative ions as described in the previous

section (Iijima et al. 2008; Draper et al. 2009; Brown et al.

2011; Weber et al. 2011). Specifically, high correlation

coefficients (e.g. arbitrary threshold of R [ 0.9) for these

intensity relationships have been used previously to

increase the confidence of assigning frequently detected

m/z differences (Iijima et al. 2008; Brown et al. 2009,

2011; Fuhrer et al. 2011). Such strongly correlated rela-

tionships occur in particular for isotopologues (e.g. 12Cn

and 13C12Cn-1), as their intensity relates directly to their

natural abundance.

The majority of bioinformatics approaches and methods

described in the previous section and in this section are

focused primarily on the two principal variables measured

in a typical MS experiment, m/z and signal intensity. In

many metabolomics studies, chromatographic or electro-

phoretic separation of the complex biological mixtures

prior to MS analysis is routine (De Vos et al. 2007; Lu et al.

2008; Kenny et al. 2010). The RT or migration time is

predictive of metabolite structure, primarily hydrophobic-

ity, hydrophilicity and/or charge for LC–MS, and charge

and cross-sectional diameter for CE–MS. For example, in

reversed phase LC, hydrophilic metabolites elute at earlier

RTs compared to hydrophobic metabolites. In GC–MS,

RTs or indices are routinely applied across different plat-

forms to aid identification by comparison of MS and RI

data to mass spectral libraries (Kopka et al. 2005), but in

LC–MS retention behaviors are far less reproducible and

their use for identification much more restricted; changes in

LC column phase (for example, reversed phase compared

to HILIC), the manufacturer (or sometimes the batch) of

columns of the same stationary phase, solvents and gradi-

ent elution conditions influence the RT, in many cases

significantly. Therefore, although LC–MS focused mass

spectral libraries or databases are available [for example,

METLIN (Sana et al. 2008) and MassBank (Horai et al.

2010)], comparison of RT data is only applicable for data

acquired with the same analytical method on the same

equipment and columns. Mass spectral libraries applying

RT data are not as readily transferable as is observed for

GC–MS applications. Therefore, as most researchers apply

different methods and equipment, the ability to apply mass

spectral libraries across the research field in many different

research groups is low. To improve the usefulness of spe-

cific LC–MS libraries, common, standardized analytical

methods and instruments would need to be applied. How-

ever, as for GC–MS, the ability to predict RTs or migration

times is an important recent research area to further reduce

the number of potential metabolite identifications. Reten-

tion time or migration time prediction has been shown to be

achievable for HILIC–MS (Creek et al. 2011) and CE–MS

(Sugimoto et al. 2005), respectively.

4.3 Application of experimentally derived MS/MS

and MSn data

The previous two sections describe processes applied to

reduce what can be an exceptionally large search space of

molecular formulas down to a single or small set of

metabolites (or molecular formulas). These processes

operate well in reducing the search space size but do not

necessarily lead to unambiguous (level 1) identifications. In

many cases, multiple possible metabolites are reported for

a single metabolic feature, in particular for stereoisomers.

This is a significant issue for carbohydrate research and the

metabolomics study of complex lipid samples, where each

lipid can be composed of different combinations of fatty

acids which correspond to the same molecular formula. For

example, a diacylglyceride (DG) with a molecular formula

of C43H78O5 will contain two fatty acid side chains with a

total of 40 carbon atoms and three unsaturated bonds, but

these can be distributed in many different structural

arrangements, such as DG(20:1/20:2) and DG(18:0/22:3),

and many of these are actually found in biological samples.

Also, the structural position of each fatty acid or unsatu-

rated bond, as well as its stereochemistry (cis/trans) can be

biologically important, and defining these small structural

differences is a necessity. To provide further data for

structural elucidation or to aid in de novo structure eluci-

dation (where no matches to known metabolites were

observed applying the techniques described above), frag-

mentation of molecular ions is applied, with detected mass
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spectra being dependent on the structure of metabolites.

This process has different levels of efficiency depending on

the metabolite class. Classes of lipids are composed of

similar building blocks with only minor differences in, e.g.,

fatty acid chain length and double bond number and

position. MS/MS fragmentation can lead to characteristic

fragment ions for each unit to aid identification. For

example, glycerophosphocholines can lead to fragment

ions characteristic of the phosphocholine head group and

the two fatty acid moieties and even the position of a

double bond (Castro-Perez et al. 2011). For this reason

systematic identification of lipids can be simpler than for

other metabolites. Gas phase fragmentation has been dis-

cussed previously (for example, see de Hoffmann and

Stroobant 2007 and Kind and Fiehn 2011) and will only be

briefly described here.

Commonly, three different gas-phase ion activation

strategies are applied with LC–MS or CE–MS metabolo-

mic platforms. These are (i) collision induced dissociation

(CID) in an ion trap (IT) platform, (ii) CID in a quadru-

pole-time of flight (Q-TOF) or triple quadrupole (QQQ)

platform, and (iii) higher energy collision dissociation

(HCD) in Orbitrap instruments. Ion activation applying

CID in a Q-TOF or QQQ instrument operates by acceler-

ation of ions through a collision cell separating two other

mass analysers and containing a higher pressure of a gas

(typically nitrogen or argon). Ion–gas molecule collisions

occur in the collision cell imparting internal energy to the

molecular ion. CID in an ion trap instrument operates by

acceleration of orbiting ions resulting in ion-gas molecule

collisions and increases in molecular energy. HCD operates

in a similar manner to CID in a QQQ instrument by

acceleration of ions into an octopole containing an elevated

gas pressure.

All of these processes lead to an activation of ions by

increasing their internal energy and the subsequent loss of

internal energy through the fission of covalent (and when

adduct or cluster ions are studied, non-covalent) bonds.

Weaker bonds are more likely to break; thus, the type and

strength of different covalent bonds in a metabolite will

lead to a specific structure-defined fragmentation pattern.

The resulting fragments can either retain the ion charge

(and therefore be detected by mass spectrometers) or be

neutral species (not directly detectable). The different ion

activation mechanisms can provide different ion fragmen-

tation mechanisms and different fragmentation mass

spectra. An example is shown in Fig. 6 where fragmenta-

tion mass spectra have been acquired for decanoic acid

applying CID in a linear ion trap and HCD in an Orbitrap

instrument.

Tandem mass spectrometry is applied in these processes.

For most experiments the process is two-stage and provides

a fragmentation mass spectrum for a chosen ion (defined as

the precursor or parent ion). This is known as MS/MS or

MS2. In certain cases, when ion trap systems are used,

additional levels of fragmentation can be applied, defined

as multi-stage mass spectrometry or MSn, where n is the

number of successive fragmentation experiments. Here a

precursor ion (or, in classical terminology, a parent ion)

can be fragmented in an MS2 (or MS/MS) experiment,

followed by fragmentation of one or more fragments ions

(in classical terminology defined as daughter ions) in an

MS3 experiment, followed by fragmentation of one or more

granddaughter ions in an MS4 experiment and so on. Fig-

ure 7 shows an example of MS3.

The processes of MS/MS and MSn can be important

when attempting to discriminate metabolites of the same

molecular formula and similar chemical structure where,

for example, the type or position of a fatty acid is the only

difference between two different metabolites. This process

has been described by a number of researchers and has

shown great potential in plant and mammalian applica-

tions. Different methods to acquire appropriate MS/MS or

MSn data have been developed and applied. MSE was

introduced on Waters instruments in 2006 to acquire

extensive MS/MS data during accurate mass full-scan data

acquisition (Plumb et al. 2006). Here, alternate full-scan,

low collision energy and high collision energy MS/MS

scans are acquired to maximize MS/MS data acquisition.

Data independent MS/MS data are acquired, all precursor

ions present are selected for the MS/MS experiment in

comparison to data-dependent experiments where only

specific precursor ions are selected for MS/MS experi-

ments. The lack of precursor ion selection can complicate

spectral interpretation in complex metabolomics samples.

MSn has been applied to provide greater specificity in the

identification process (Sheldon et al. 2009). For example,

for MS3, a precursor ion is fragmented to produce a number

of product ions (graphically described in a mass spectrum)

followed by fragmentation of each of the product ions

which are also represented in a mass spectrum for each

product ion fragmentation experiment. The set of frag-

mentation mass spectra can be represented in a mass

spectral tree. MSn has been applied in the structural elu-

cidation and identifications of polyphenols in plants (van

der Hooft et al. 2010). A two-stage CID system integrated

with ion mobility mass spectrometry has been applied to

define the location of fatty acyl components and the posi-

tion of double bonds in these components (Castro-Perez

et al. 2011) in lipids from mammalian plasma. The appli-

cation of HCD has been shown to be appropriate for the

characterization of mammalian lipidomes (Bird et al.

2011).

MS/MS or MSn data can be acquired in the same ana-

lytical run as accurate m/z full scan profiling (on-line MS/

MS), by signal-dependent precursor ion selection (MS/MS)
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(b) 

Decanoic acid CID 25_pos #2-44 RT: 0.01-0.49 AV: 43 NL: 1.71E4
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Fig. 6 MS/MS mass spectral differences can be observed depending

on the ion activation mechanism applied. MS/MS mass spectra

acquired for decanoic acid in (a) an LTQ-Orbitrap mass spectrometer

with HCD and (b) a linear ion trap with CID. The mass spectra for

CID and HCD ion activation differ significantly
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or non-selective fragmentation of all ions (MSE) or a two-

stage CID system integrated with ion mobility mass

spectrometry. These approaches apply the same mass

spectrometer parameters to all metabolites where MS/MS

data are acquired, which is usually not optimal. The opti-

mal MS/MS parameters for one metabolite will not be

consistent for all metabolites. The application of different

MS/MS parameters across an analytical batch containing

up to 100 samples, where one set of unique MS/MS

parameters is applied for each sample injection appears to

be more optimal (Warwick Dunn, unpublished data). When

off-line optimization of collision or activation energies is

not possible, as would be performed for single component

mixtures where an authentic chemical standard is available,

the application of alternating collision or activation ener-

gies can be appropriate to maximize the probability of

acquiring an information rich tandem mass spectrum. This

has been described for HCD experiments performed on

mammalian lipidomes (Bird et al. 2011). The acquisition of

MSn data (where n [ 2) in-line during metabolic profiling

can be challenging, particularly in relation to the time

needed to acquire MSn data (typically seconds). An alter-

native is to perform fraction collection followed by direct

infusion of fractions into a nano-electrospray system which

can provide minutes of MSn data acquisition time with

sample volumes of less than 10 ll (van der Hooft et al.

2010). Another solution is the replicate analysis of a single

sample and the construction of appropriate inclusion and

exclusion lists to provide MS/MS data for a larger fraction

of the detected metabolome than is possible applying on-

line MS/MS with full scan profiling. This has been shown

to be successful in proteomic applications (Hoopmann

et al. 2009) and is being trialed for metabolomic applica-

tions (Neumann et al. 2012).

MS/MS and MSn data can be compared to data available

in mass spectral libraries. Currently, this is less frequently

applied in LC–MS than in GC–MS applications, for a

number of reasons, as will be described in Sect. 6. MSn

experiments can also be applied to deduce valid molecular

formulas. The accurate m/z measurement of molecular and

fragment species (neutral and charged) can provide

improved reductions in the chemical search space and

increased confidence in molecular formula determination

of molecular ions (Konishi et al. 2007). Several appropriate

tools have recently been developed (for example, Rojas-

Chertó et al. 2011).

4.4 The use of in silico fragmentation tools to aid

metabolite identification

The lack of comprehensive metabolite data in GC–MS and

LC–MS mass spectral libraries limits the ability to identify
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Fig. 7 An example of MS3 applied to the analysis of taurodeoxy-

cholic acid applying CID ion activation in a linear ion trap and

detection in an LTQ-Orbitrap XL mass spectrometer. The top panel is

a full-scan mass spectrum, the middle panel is a MS2 mass spectrum

of the molecular ion (m/z 371.1) and the bottom panel is a MS3 mass

spectrum from the CID fragmentation of a single product ion (at m/z
355) produced in the MS2 experiment
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metabolites through mass spectral library searches. How-

ever, in many cases fragmentation mass spectra are (or can

be) experimentally acquired for these unidentified metab-

olites, as described in the previous section. These data are

available to aid the identification process, and in GC–MS

applications this has been applied for sub-structure

searching (Hummel et al. 2010). In LC–MS, in silico

fragmentation software tools are available to enable the

matching of in silico derived mass spectra (instead of mass

spectra derived from authentic chemical standards) to the

experimentally derived mass spectra. Typically, a reduc-

tion in the search space is performed applying accurate m/z

and other measurements followed by in silico fragmenta-

tion of the proposed metabolites. This strategy has been

applied successfully in protein studies to construct dat-

abases containing data on trypsin-associated cleavage and

MS/MS mass spectra of peptides [for example, MASCOT

(http://www.matrixscience.com/home) and SEQUEST

(http://fields.scripps.edu/sequest/)]. However, the predic-

tion of fragmentation mechanisms for proteins and peptides

is significantly simpler than for metabolites, due to the

repetitive structure of the linear backbone.

In silico fragmentation tools attempt to construct a

fragmentation pattern and associated mass spectrum with

regard to a known molecular structure. The in silico

derived mass spectrum can be compared against an

experimentally derived mass spectrum to ascertain whether

the metabolite identification is correct. This comparison is

based on m/z only and not intensity differences. This pro-

cess can be straightforward for simple compounds, but

fragmentation reactions in a tandem MS (or multi-stage

MSn) experiment can exploit the full known (and

unknown) complexity of gas phase chemistry. The early

approaches towards computer-aided structure elucidation

(CASE) were published over 20 years ago. The ASES/MS

system was designed for low-resolution GC/MS spectra

and combined a library search, association between peaks

and substructures, molecular structure generation from

building blocks and spectra prediction (Zhudamo et al.

1988). The result was a ranked list of candidates, and

thanks to the structure generation step the list was not

limited to already known compounds. Each of the modules

of the ASES/MS system was rather limited, but the general

architecture is still valid. MASSPEC was a system to aid

the human expert in interpreting a spectrum with a putative

structure in mind (Siegel and Gill 1990), where expert

knowledge in the form of ‘‘superatoms’’ of unfragmentable

substructures was required. Later systems such as EPIC

(elucidation of product ion connectivity (Hill and Morti-

shire-Smith 2005) did not require such explicit knowledge.

However, a common problem is that often, many sub-

structures are able to explain a fragment mass. The Frag-

ment Identification program (FiD) attempts to select the

correct structure by removing those bonds with high bond

dissociation energies (Heinonen et al. 2008).

Several commercial tools exist for the interpretation of

tandem mass spectra or in silico fragmentation of metab-

olites. Both the ACD Fragmenter (http://www.acdlabs.

com/products/adh/ms/ms_frag/) and MassFrontier (http://

www.highchem.com/massfrontier/mass-frontier) can cre-

ate a (putative) interpretation of a mass spectrum, and use

much more sophisticated fragmentation rules than ASES/

MS. For MassFrontier fragmentation mechanisms are

based on curated literature data.

Two approaches, developed in academia and freely

available, have been published to search general-purpose

compound libraries, based on the results of in silico frag-

mentation tools to provide candidate lists of putative

metabolite annotations. Hill and colleagues used scripting

on top of MassFrontier to produce a ranked list of Pub-

Chem compounds applied for metabolite identification

(Hill et al. 2008). MetFrag is an open source system con-

sisting of a Java library, command line tools and a web

front-end to search KEGG, PubChem or ChemSpider and

provide putative candidate lists of metabolites (Wolf et al.

2010). If such systems are to be used on compound

libraries as large as PubChem (as of 20th March 2012,

PubChem contained more than 32 million entries), the

runtime per candidate becomes important. While Hill et al.

report 2.5 s per compound, MetFrag requires only 0.2 s per

candidate. Together with an even faster (albeit less accu-

rate) candidate pre-selection, (Hildebrandt et al. 2011), that

creates peak-to-structure associations in a training step and

performs a preliminary ranking directly in a relational

database, large numbers of candidates can be evaluated. In

addition to databases of known metabolites, the identifi-

cation can also be performed for purely hypothetical

structures obtained through structure generation programs

(Schymanski et al. 2011, 2012). These tools require further

assessment and validation on different instrument and

sample types to define their capabilities and aid in further

development. Further advances in the development of

in silico mass spectral libraries will undoubtedly fill gaps

in mass spectral libraries constructed with authentic

chemical standards.

5 Metabolomic databases and mass spectral libraries

The available metabolome-focused databases are increas-

ing in both number and size and aid the matching of

accurate m/z measurements and molecular formulas to

metabolite identities. However, it should always be

remembered that our current level of knowledge of

metabolites present in sample-specific metabolomes is not

complete and many features can relate to both previously
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unknown endogenous metabolites, and exogenous metab-

olites from many sources and deriving from diet (Lloyd

et al. 2011), lifestyle (Pechlivanis et al. 2010), pharma-

ceuticals (Loo et al. 2012) and gut microflora (Wikoff et al.

2009). Without the presence of all these metabolites in

organism-, tissue- or cell-specific databases, or mass

spectral libraries, the inclusion of false positive and false

negative identifications is inevitable. Only a small per-

centage of all known metabolites are available commer-

cially to be incorporated in mass spectral libraries (Brown

et al. 2009; Wishart 2011). Therefore mass spectral

libraries containing data for all metabolites are unlikely to

be ever constructed.

For these reasons care should always be taken when

building biological conclusions on putatively annotated

metabolites. The putative annotation of multiple metabo-

lites shown to be of biological importance and related by

metabolite class (e.g., sugars or glycerophosphopholipids)

or metabolite pathway (e.g., glycolysis) provides improved

confidence that these metabolite classes or pathways are

indeed involved in the biological process under study.

For some aspects of metabolite identification, applying

accurate m/z measurements for example, databases are

required which contain purely chemical information. In

addition to the general chemical databases, like PubChem

(http://pubchem.ncbi.nlm.nih.gov/) or ChemSpider (http://

chemspider.com/), others limit their scope to known

metabolites either being species-specific or species non-

specific [including KEGG (Ogata et al. 1999), MetaCyc

(Caspi et al. 2008), MMD (Brown et al. 2009), METLIN

(Sana et al. 2008), MZedDB (Draper et al. 2009) and

HMDB (Wishart et al. 2009)]. Some databases provide

additional information about known metabolic reactions or

physiological concentrations (e.g., KEGG and HMDB).

For other identification processes, experimental refer-

ence spectra (derived from authentic chemical standards)

are required. These are provided by only a limited number

of metabolite databases, but are also present in a number of

mass spectral libraries. These are observed more frequently

in relation to GC–MS for which a number of mass spec-

tral libraries are available, including non-specific (e.g.,

NIST08; http://chemdata.nist.gov/mass-spc/ms-search/) and

metabolite-specific libraries (e.g., GMD; Kopka et al.

2005) and FiehnLib (Kind et al. 2009) and are at present

some of the most widely applied mass spectral libraries

because of their metabolite coverage. However, a greater

number of mass spectral libraries are being constructed. It

is important for these libraries that a clear metabolite

ontology (Sansone et al. 2007) is used so that valid rec-

ognizable identifications are made that are exchangeable

between different laboratories.

A number of publicly available databases also contain

MS/MS mass spectra. HMDB contains extensive

information, mostly about human metabolites, in 8,552 so

called MetaboCards. 840 of the compounds have been

measured on (mostly low mass resolution) mass spectrom-

eters, and for 916 compounds 1H-NMR spectra are available

(Wishart et al. 2009). Unlike other compound databases, the

HMDB also contains information about the typical abun-

dance of metabolites in different biofluids and tissues. The

METLIN database maintained at the SCRIPPS Institute

contains 44,766 compounds, 4,527 of them with high reso-

lution MS/MS spectra (Sana et al. 2008). Recently, many

search functions have been added to METLIN, such as an

automated batch search: once an mzXML file with MS/MS

spectra is uploaded, each MS/MS spectrum can be identified

against the METLIN reference spectra. To spread the

workload of constructing reference mass spectra in libraries

and databases, a consortium approach can be applied. One

such example is MassBank (Horai et al. 2010), which

operates a number of federated MassBank servers, where a

search on one of the nodes will query all other servers in the

background, and present the consolidated results. In contrast

to the HMDB and METLIN, MassBank has more than 20

different research groups contributing spectra obtained with

multiple fragmentation methods, and many of the spectra are

licensed under a Creative Commons license (Horai et al.

2010).

6 Current limitations and future outlook

In traditional analytical chemistry, structural elucidation and

identification of chemicals is successfully performed for a

pure chemical or a simple mixture of chemicals. Mass

spectrometry is one of a number of instruments applied in the

process of structure elucidation and offers many traditional

tools to apply including accurate measurements of m/z and

acquisition of fragmentation data. The application of MS

platforms in untargeted metabolomic studies enables the

detection of hundreds or thousands of unique metabolites in

a single sample. Applying the traditional MS tools to

metabolite identification in simple chemical mixtures is

routine. However, their application to the significantly more

complex samples studied in untargeted metabolomics is not

routine and several limitations and sources for errors are

present. Surprisingly, limited assessment of the applicability

of these traditional tools to derive metabolite identities in

complex samples and their associated accuracy has been

performed. The assessment and validation of traditional

tools and the development of new tools is an essential

requirement for untargeted metabolomic studies to be suc-

cessful by providing metabolite identification and the ability

to derive biological knowledge from metabolomic datasets.

This review has highlighted (i) experimental and com-

putational tools which are currently available and routinely

Mass appeal

123

http://pubchem.ncbi.nlm.nih.gov/
http://chemspider.com/
http://chemspider.com/
http://chemdata.nist.gov/mass-spc/ms-search/


applied to identify metabolites in mass spectrometry-

focused untargeted metabolomic studies, and (ii) new

methods that are being developed to increase the accuracy

and efficiency of metabolite identification. Over the pre-

vious decade significant innovations and developments

have been observed. However, we are still at a stage where

metabolite identification is a significant bottleneck. Last

century it was typical that the identification of ca. 50 % of

metabolites was possible in a GC–EI–MS run. Today the

number of metabolite features has increased due to

enhanced mass spectrometry (shift from quadrupole to ToF

separations) and increased mass resolution, but the pro-

portion of identified metabolites has unfortunately stayed

the same.

The comparison of experimental data (accurate m/z, RT/

index, fragmentation mass spectrum) for each metabolite to

mass spectral libraries constructed with authentic chemical

standards is the ideal process to provide definitive (level 1)

identification. This is currently more successfully achieved

for data acquired on GC–MS platforms compared to LC–

MS or CE–MS platforms. However, mass spectral libraries

are limited by the fact that they do not contain all metab-

olites, and changes in analytical methods or instruments

(especially for LC–MS platforms) can render them

inaccurate.

Other tools allow reduction of the metabolite search

space to a single or small number of metabolites to achieve

putative (level 2 or 3) annotation. Further targeted studies

can then be performed to confirm identities. These include

the collation of data for unidentified metabolites (e.g.,

MSTs), accurate measurements of m/z, acquisition of

fragmentation mass spectra related to chemical structure,

the application of chemical and biological knowledge (for

example, knowledge of experimentally feasible ion for-

mation), experimental isotope-based studies and the

development of in silico tools to predict mass spectral,

chromatographic and electrophoretic properties. This

review has documented the high level of innovation in the

metabolomics community directed towards developing

novel and user-friendly tools for this purpose.

However, further developments and integration of tools

are required. Many of the tools have been developed in

different research groups (sometimes very similar tools

have been developed in multiple laboratories). There have

been limited discussions, so far, on the integration of dif-

ferent tools and many laboratories operate a set of separate

computational tools rather than an integrated single tool.

Limited systematic comparative evaluation of the alterna-

tives is observed in the metabolomics community. The

proteomics community has been more pro-active in that

respect (e.g. Hoekman et al. 2012). One further improve-

ment required to increase the efficiency of metabolite

identification is the integration of different tools, either

those focusing on mass spectrometry alone or even aiming

at the integration of data from different analytical platforms

[e.g., MS and NMR spectroscopy (Crockford et al. 2008)].

One limitation is the lack of metabolites present in mass

spectral libraries applied for matching to experimentally

derived chromatographic and mass spectral data. It is

unrealistic for all metabolites to be purchased or synthe-

sized to allow data to be acquired on authentic and

chemically pure metabolites and incorporated into mass

spectral libraries. Even when these data are available, the

transferability of libraries between instruments can be

limited and the development of laboratory-specific mass

spectral libraries is costly, ineffective and improbable.

However, the development of in silico tools to predict mass

fragmentation patterns and RTs/indices will provide

increasing volumes of data to be incorporated into mass

spectral libraries to reduce the number of potential

metabolite identifications. However, even if all metabolites

were present in mass spectral libraries our current mass

spectrometry platforms do not allow the on-line acquisition

of MS/MS or MSn data for all metabolites present in

complex metabolomes. Advances in the number of

metabolites for which these data are acquired is essential,

either applying MS/MS data acquisition on-line with full-

scan profiling data or by applying off-line or in-line sys-

tems. For any specific analytical method on a single plat-

form, once a metabolite is identified and catalogued (for

example, in the form of a MST) it does not need to be

identified again as its identity is already known. The

identified metabolite can then be applied in mass spectral

library searches.

From a biological perspective, one limitation is the size

and complexity of specific metabolomes. The plant me-

tabolome (in total across all plants) is estimated to contain

more than 200,000 metabolites (Fiehn 2001), of which

most are endogenous (although the complexity for a single

plant sample will be much lower). Human-derived meta-

bolomes are also complex, as they contain endogenous

metabolites in addition to exogenous metabolites acquired

from the external environment. The accurate cataloguing of

organism-, tissue- or cell-specific metabolites is not yet

complete, and significant experimental and informatics

resources are required to pursue this cataloguing further.

This includes appropriate use of unique identifiers (e.g.,

InCHI key, SMILES, ChEBI identifier) to allow integration

of data from different functional levels in an automated

manner in pathway analysis software. Great advances have

been made in this direction (for example, within the

HMDB project). However, further detailed information is

still required. For example, information on drug metabo-

lism is available as text in DrugBank (Wishart et al. 2006),

but having these data available as chemical entity identi-

fiers and easily searchable electronically (as is possible in
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HMDB for each Metabocard) would be highly advanta-

geous. Not until all metabolites are catalogued electroni-

cally, and their physicochemical properties are searchable,

can accurate and robust metabolite identification be per-

formed. A metabolite can only be confidently assigned to a

metabolic feature if its identity and potential presence is

known and reported in databases or mass spectral libraries.

Currently this is not possible, and this requires more effi-

cient methods for the de novo structure elucidation of

metabolites which are not present in databases.

We are on an important journey to develop the multitude

of tools necessary to provide automated and accurate

identification of metabolites in complex metabolomic

samples. Without the identification of metabolites it is

impossible to base biological reasoning on the datasets. We

have progressed significantly in recent years, but further

developments are essential. In our view, tools to automat-

ically provide definitive (level 1) identification of all

metabolites in a single sample will not be developed in the

near future, but workflows to provide increasingly narrow

sets of putative (level 2 or 3) annotations will be improved

and combined with subsequent targeted methods for

definitive identification. The slow cataloguing of mass

spectral data and providing availability to all will increase

our knowledge of sample-specific metabolomes. However,

the complexity and diversity of metabolomes currently

investigated are too limiting in allowing true and complete

identification of all metabolites in an automated manner. A

community effort is required, hopefully through efforts

focused from The Metabolomics Society, to develop the

tools and databases and provide integration of these dif-

ferent tools and databases.
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