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Abstract

We investigate number theoretic aspects of the integer sequence seq1 1(n) with
identification number A000522 in Sloane’s On-Line Encyclopedia of Integer
Sequences: seq1 1(n) counts the number of sequences without repetition one
can build with n distinct objects. By introducing the the notion of the
“shadow” of an integer function, we examine divisibility properties of the
combinatorial function seq1 1(n): We show that seq1 1(n) has the reduction
property and its shadow d therefore is multiplicative. As a consequence, the
shadow d of seq1 1(n) is determined by its values at powers of primes. It
turns out that there is a simple characterization of regular prime numbers,
i.e. prime numbers p for which the shadow d of seq1 1 has the socket property
d(pk) = d(p) for all integers k. Although a stochastic argument supports the
conjecture that infinitely many irregular primes exist, there density is so thin
that there is only one irregular prime number less than 2.5 · 106, namely 383.

1 Introduction

The sequence we are interested in has the ID number A000522 in Sloane’s On-Line
Encyclopedia of Integer Sequences (http://www.research.att.com/̃ njas/sequences).
Former identification numbers of this sequence were M1497 in [SP] and N0589 in [Sl].

The sequence A000522 has many faces (see, e.g., [Ga], [Si] or [Ri]). The most
accessible one is its combinatorial interpretation:

Definition 1 For n ∈ N = {0, 1, 2, . . . } let seq1 1(n) denote the number of one-to-
one sequences – these are sequences without repetitions – we can build with n distinct
objects.
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Notice that for l 6 n, each one-to-one function from {0, . . . , l− 1} to {0, . . . , n− 1}
corresponds in a unique way to a sequence without repetitions of {0, . . . , n− 1} of
length l. For example, for two objects, say a1 and a2, we can build the following
sequences:

〈 〉 (= the empty sequence), 〈a1〉, 〈a2〉, 〈a1, a2〉, 〈a2, a1〉.

Hence, seq1 1(2) = 5. Of course, it is easy to find a general expression for seq1 1(n).
Since there are

(
k
n

)
possible ways to choose k objects from a set of n (distinct) objects,

and since k (distinct) objects give rise to k! permutations, we get the following

Lemma 2 seq1 1(n) =
n∑

k=0

(
n

k

)
k! =

n∑
j=0

n!

j!
. �

Also the next representation for seq1 1(n) is elementary.

Lemma 3 For all positive n ∈ N we have

seq1 1(n) = be n!c.

Remark: For n = 0 the formula does not hold, since seq1 1(0) = 1 < 2 = be 0!c.

Proof of Lemma 3. According to Lemma 2 we have

en! = seq1 1(n) +
∞∑

j=n+1

n!

j!

= seq1 1(n) +

+
1

n + 1

(
1 +

1

n + 2
+

1

(n + 2)(n + 3)
+

1

(n + 2)(n + 3)(n + 4)
+ . . .

)
︸ ︷︷ ︸

6 1
n+1

(e− 1) < 1 for n > 1

.

�

The following recursive relation for seq1 1(n) is an immediate consequence of the
second formula in Lemma 2.

Lemma 4 For all positive n ∈ N we have seq1 1(n) = n seq1 1(n− 1) + 1. �

Using this formula, we finally get the following integral representation of seq1 1(n).
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Lemma 5 For all n ∈ N we have

seq1 1(n) = e

∫ ∞

1

tne−tdt .

Proof. The formula is correct for n = 0. Moreover, by integration by parts, we
have inductively

seq1 1(n) = e

∫ ∞

1

tn︸︷︷︸
↓

e−t︸︷︷︸
↑

dt = e (−tne−t)
∣∣∣∞
1

+ e

∫ ∞

1

ntn−1e−tdt

= 1 + n seq1 1(n− 1) �

Just for the sake of completeness we like to mention that the exponential generating
function g(z) of seq1 1(n) is given by g(z) = ez

1−z
. This is easily checked directly, or

deduced, e.g. by Oberschelp’s technique (see [Ob]).

In the sequel, to keep the formulas short, let n? := seq1 1(n).

Notation: Throughout this text we adopt the standard notation a|b to express that
a divides b for a, b ∈ N. Moreover, if b > 1 then Mod(a, b) := a− bba

b
c denotes the

reminder of the division of a by b; and (a, b) denotes the greatest common divisor
of a and b.

2 The divisibility of n?

We start our investigation on divisibility properties of n? with a simple fact which
has first been proved in [HS].

Lemma 6 For natural numbers n, k ∈ N, the following implication holds: If 2k|n?,
then 2k|(n + 2k)? and 2k - (n + t)? for any t with 0 < t < 2k.

Proof. The implication 2k|n? =⇒ 2k|(n + 2k)? follows easily from the reduction
property of the sequence seq1 1(n) (see Lemma 9 below). So, we only have to prove
here that if 2k|n?, then 2k - (n + t)? for any t with 0 < t < 2k.

For k 6 4, an easy calculation modulo 2k shows that for each n we have: If 2k | n?,
then 2k - (n + t)? for 0 < t < 2k (cf. also Lemma 9).

Assume there is a smallest k (k > 4) such that 2k+1|n? and 2k+1 | (n + t)? for some
t with 0 < t < 2k+1. Then, because 2k|2k+1, we have 2k|n? and 2k|(n + t)?. Since k
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is by definition the smallest such number, we know that t must be 2k.

(n + 2k)? =
n+2k∑
i=0

(n+2k)!
i!

= 1 · 2· . . . ·2k· (2k + 1) · . . . ·(2k + n) (1)

+ 2· . . . ·2k· . . . ·(2k + n) (2)

. . .
...

+ 2k· . . . ·(2k + n) (2k)

. . .
...

+ (2k + n) (2k + n)

+ 1 (2k + n + 1)

It is easy to see that 2k+1 divides lines (1)− (2k) since k > 2 and n > 2.

If we expand the products in the lines (2k + 1)− (2k + n + 1), we can collect all terms
which are obviously divisible by 2k+1. So, for a suitable natural number m we get

(n + 2k)
?

= 2k ·
( n−1∑

j=0

n∑
i>j

n!

i · j!

)
+ n? + 2k+1 ·m . (1)

Remember that we have assumed 2k+1|n?, where n > 3 and k > 4. Thus, n? is even
and hence n has to be odd. If j is n − 1, n − 2 or n − 3, then

∑n
i>j

n!
i·j! is odd.

Moreover, if 0 6 j 6 (n− 4), then
∑n

i>j
n!
i·j! is even and therefore,

∑n−1
j=0

∑n
i>j

n!
i·j! is

odd. Hence, by (1) and 2k+1|n? we get 2k+1 - (n + 2k)?, which is a contradiction.
�

Remark. The Lemma 6 is the crucial point in the proof – which does not make use
of the axiom of choice – of the following fact (cf. [HS, Theorem 4]): For any infinite
set M , there exists no bijection between the power-set of M and the set of all finite
one-to-one sequences of M .

A natural question that arises in connection with Lemma 6 is whether for every
k ∈ N there exists an n ∈ N such that 2k | n?. To answer this and related questions
involving divisibility properties of integer sequences in general and of the sequence
seq1 1(n) in particular, we introduce the notion of the “shadow” of a sequence.

Definition 7 If {f(n)}n∈N is a sequence of natural numbers, we define its shadow
to be the sequence {d(h)}h∈N given by

d(h) := |D(h)|,

where D(h) :=
{
n ∈ N : (n < h) ∧ (h | f(n))

}
are the shadow sets of the sequence

f .
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The shadow d(h) counts the sequence entries f(0), f(1), . . . , f(h − 1) which are
divisible by h. So, the shadow measures (to a certain extent) how “divisible” the
entries of the sequence f(n) are: For example, if only prime numbers occur in the
sequence, then its shadow will reflect this fact by being small. If the entries of f(n)
have many divisors, the shadow will typically be large.

Remark. Lemma 6 implies that the shadow of f(n) = seq1 1(n) has the following
property: For all k ∈ N, there holds d(2k) 6 1. Actually, as a consequence of
Lemma 15, it will turn out that d(2k) = 1 for all k.

Examples. If f(n) = c ∈ N is a constant function, then the shadow of f is

d(h) =

{
h if h|c and h > 1,

0 otherwise.

If f(n) is an arithmetic sequence of first order, then its shadow is periodic, and for
the shadow of Euler’s ϕ-function we have d(h) = 1 for all h > 1. ©

The shadow gives a certain amount of information on the divisibility of the entries
of a sequence. Nevertheless, two different sequences can “cast” the same shadow as
the following example shows.

Example. If for a function f there exists an n0 ∈ N such that for all h > n0 we
have d(h) = 0, then for all h > n0 we have f(h) 6 h. Vice versa, if f(h) 6 h for all
h ∈ N, then d(h) equals the number of zeros in (f(0), f(1), . . . , f(h− 1)). Hence, it
is easy to construct different functions which have the same shadow:

n 0 1 2 3 4 5 6 7 . . .

f1(n) 0 1 2 3 4 5 6 7 . . .

f2(n) 0 1 1 2 3 4 5 6 . . .

f3(n) 0 1 1 1 2 3 4 5 . . .

shadow 0 1 1 1 1 1 1 1 . . . ©

Now, we want to investigate the shadow of seq1 1(n). First, we show that this
particular shadow is multiplicative and it turns out that the reason for this is the
fact that seq1 1 has the reduction property:

Definition 8 A sequence {f(n)}n∈N is said to have the reduction property, if for
all n, q ∈ N, q > 1, we have

Mod(f(n), q) = Mod(f(Mod(n, q)), q).

Lemma 9 The sequence {seq1 1(n)}n∈N has the reduction property.
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Proof. For q = 1 or q > n, the statement is trivial. So, we may assume 1 < q 6 n.

First we consider the case when Mod(n, q) = 0. By Lemma 4 we have seq1 1(n) =
n · seq1 1(n− 1) + 1 and hence by Mod(n, q) = 0 we get seq1 1(n) ≡ 1 mod q, which
implies Mod(seq1 1(n), q) = Mod(seq1 1(Mod(n, q)), q), because seq1 1(0) = 1.

Now assume that Mod(n + 1, q) 6= 0 and that the statement holds for n. Again by
Lemma 4 we have seq1 1(n+1) = (n+1) · seq1 1(n)+1 and by the assumption we get

seq1 1(n + 1) ≡ Mod((n + 1), q) · seq1 1(Mod(n, q)) + 1 mod q

≡ seq1 1(Mod(n + 1, q)) mod q.

Therefore, Mod(seq1 1(n + 1), q) = Mod(seq1 1(Mod(n + 1, q)), q) is validated. �

Lemma 10 The shadow d of a sequence f(n) which has the reduction property is
multiplicative, i.e. if (a, b) = 1, then d(ab) = d(a)d(b).

Proof. Suppose (a, b) = 1, then we have by the reduction property

D(ab) = {n ∈ N : n < ab ∧ ab|f(n)}
= {n ∈ N : n < ab ∧ a|f(n) ∧ b|f(n)}
= {n ∈ N : n < ab ∧ a|f(Mod(n, a)) ∧ b|f(Mod(n, b))}.

This means that a natural number n is an element of the shadow set D(ab) if and
only if it lies in the intersection of the two sets

A := {i + ax : i ∈ D(a) ∧ x ∈ {0, 1, . . . , b− 1}}

and
B := {j + by : j ∈ D(b) ∧ y ∈ {0, 1, . . . , a− 1}}.

In other words D(ab) = A ∩B.

Observe that since (a, b) = 1, we have that for all 〈i, j〉 ∈ {0, 1, . . . , a − 1} ×
{0, 1, . . . , b − 1} there exists a unique 〈x, y〉 ∈ {0, 1, . . . , b − 1} × {0, 1, . . . , a − 1}
such that i + ax = j + by. This implies that |A ∩B| = |D(a)| |D(b)| and hence,

d(ab) = |D(ab)| = |A ∩B| = |D(a)| |D(b)| = d(a) d(b). �

As an immediate consequence we get the following
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Corollary 11 If d is the shadow of seq1 1 and if n =
∏k

i=1 pki
i is the prime decom-

position of n, then

d(n) =
k∏

i=1

d(pki
i ). �

Therefore, the shadow d of seq1 1 is fully determined by its values on the powers of
prime numbers. But what can we say about d(pk) for p prime? Let us start our
discussion of this question by the following observation.

By the reduction property, all elements m ∈ D(pk+1) must be of the form m = n+l pk

for some n ∈ D(pk) and some l ∈ {0, 1, . . . , p− 1}. Hence, we get inductively that
if d(p) = 0, then d(pk) = 0 for all positive k ∈ N.

Definition 12 A prime number p with d(p) = 0 is called annihilating.

Example. The sequence of annihilating primes is 3, 7, 11, 17, 47, 53, 61, 67, 73,
79, 89, 101, 139, 151, 157, 191, 199, . . . . ©

From the observation above and the multiplicativity property, we have

Proposition 13 If n ∈ N is divisible by an annihilating prime, then d(n) = 0. �
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What can we say about primes that are not annihilating? For positive numbers
p, k, l, n ∈ N we have the following:

(n + l pk)? =

l pk+n∑
j=0

(l pk + n)!

j!

=
(l pk + n)!

0!
+ . . . +

(l pk + n)!

(l pk − 1)!
+

(l pk + n)!

(l pk)!
+ . . . +

(l pk + n)!

(l pk + n)!

=
(l pk + n))!

(l pk − 1)!
(l pk − 1)? +

l pk+n∑
j=l pk

(l pk + n)!

j!

=
(
(l pk) (l pk + 1) . . . (l pk + n)

)
(l pk − 1)? +

l pk+n∑
j=l pk

(l pk + n)!

j!

≡ l pk n! (l pk − 1)? +

l pk+n∑
j=l pk

(l pk + n)!

j!
mod pk+1

≡ l pk n! (l pk − 1)? + l pk

n−1∑
j=0

n∑
i>j

n!

j! i
+ n? mod pk+1

≡ l pk

(
n! (l pk − 1)? +

n∑
i=1

i−1∑
j=0

n!

j! i

)
+ n? mod pk+1

≡ l pk

(
n! (l pk − 1)? +

n−1∑
j=0

n!

(j + 1)!
j?

)
+ n? mod pk+1

≡ n? + l pk

(
n! (p− 1)? +

n−1∑
j=0

n!

(j + 1)!
j?

)
︸ ︷︷ ︸

=:sp,n

mod pk+1 (2)

From this calculation it is clear that the numbers sp,n defined in the previous line
are crucial for a further investigation of the shadow of seq1 1.

Definition 14 The number

X(p) :=
∏

n∈D(p)

Mod(sp,n, p)

is called the excess of the prime p. A prime number p with X(p) 6= 0 is called
regular and otherwise irregular.

8



Example. Since the empty product is by definition equal to 1, all annihilating
primes are regular. The smallest irregular prime number is 383, all other primes less
than 2.5 · 106 are regular.

Lemma 15 If p is a regular prime number, then the shadow d of seq1 1 has the
socket property at powers of p, i.e. d(pk) = d(p) holds for all positive k ∈ N.

Before we prove Lemma 15, we state the following consequence.

Proposition 16 If d is the shadow of seq1 1 and if n =
∏k

i=1 pki
i is the prime de-

composition of n, then

d(n) =
k∏

i=1

d(pi)

provided each prime pi is regular or one of the primes is annihilating. �

To prepare the proof of Lemma 15, we need a property of sp,n, which is given in the
following

Lemma 17 If p and n are natural numbers, then

sp,n ≡ sp,n+p mod p.

Proof. Let r := Mod(n, p), then n = ap + r for some a ∈ N. We first consider
the case n > p, thus a 6= 0. Because n > p we have n! ≡ 0 mod p and therefore

sp,n ≡
n−1∑
j=0

n!
(j+1)!

j? mod p. Further we get

n−1∑
j=0

n!

(j + 1)!
j? =

ap−2∑
j=0

n!

(j + 1)!
j? +

n−1∑
j=ap−1

n!

(j + 1)!
j?

≡
n−1∑

j=ap−1

n!

(j + 1)!
j? mod p

≡
r−1∑

j=−1

r!

(j + 1)!
(p + j)? mod p

≡ r!(p− 1)? +
r−1∑
j=0

r!

(j + 1)!
j? mod p .
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If n < p, then Mod(n, p) = n and we get r = n. Hence, we have for all p, n ∈ N that

sp,n ≡ r!(p− 1)? +
r−1∑
j=0

r!

(j + 1)!
j? mod p ,

where r := Mod(n, p). �

Proof of Lemma 15. Let p be a regular prime number. We proceed inductively:
For k = 1 there is nothing to show. For exponents larger than 1 we recall that all
elements m ∈ D(pk+1) must be of the form m = n + l pk for some n ∈ D(pk) and
some l ∈ {0, 1, . . . , p− 1}. By the calculation (2) above, we have

(n + l pk)? ≡ n? + l pksp,n mod pk+1.

Hence, it suffices to show, that

n ∈ D(pk) =⇒ sp,n 6≡ 0 mod p (3)

In fact, since p is prime, if the conclusion of (3) holds, the congruence n?+lpksp,n ≡ 0
mod pk+1 has a unique solution l ∈ {0, 1, . . . , p − 1} and therefore, the sets D(pk)
and D(pk+1) have the same cardinality, which implies d(pk) = d(pk+1).

On the other hand, by Lemma 17, (3) holds for all k if it is true for k = 1. But this,
by definition, is exactly the case for regular primes p. �

3 How peculiar are irregular primes?

In this section we investigate the value of d(pk) for irregular primes p and k > 1,
but first we recall some facts concerning regular primes.

For a regular prime p we have d(pk) = d(p) for any positive k ∈ N. Further, by
definition, a prime number p is annihilating if and only if d(p) = 0. Remember that
all annihilating prime numbers are regular. Now, fix an irregular prime number p.
What can we say for k > 1 about d(pk)?

Example. If we consider the smallest irregular prime number p = 383, it turns
out that d(383) = 3, but d(383k) = 2 for all k > 2. The reason for this shall be
explained below. ©

First note that – because p is not annihilating – d(p) > 0. Because p is assumed
to be irregular, there exists at least one n ∈ D(p) such that Mod(sp,n, p) = 0 and
therefore, by Lemma 17, we have Mod(sp,n+lp, p) = 0 for all l ∈ N.
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For k > 1 and any n ∈ D(pk) with Mod(sp,n, p) = 0 we have either the case pk+1 - n?

or the case pk+1 | n?.

If n ∈ D(pk) with Mod(sp,n, p) = 0 – depending in which case we are – we have
either pk+1 - (n + l p)? (for all l ∈ N) or pk+1 | (n + l p)? (for all l ∈ N). To see this,
remember that by (2), for any n, l ∈ N we have

(n + l pk)? ≡ n? + l pk · sp,n mod pk+1 .

Therefore, if pk+1 | n? (or pk+1 - n?) and p | sp,n, then we get pk+1 | (n + l pk)? (or
pk+1 - (n + l pk)?, respectively) for any l ∈ N.

Now let
δ(p) := |{n ∈ D(p) : Mod(sp,n, p) 6= 0}| ,

and for k > 2 let

ε(pk) := |{n ∈ D(pk−1) : Mod(sp,n, p) = 0 ∧ pk | n?}| .

Notice that if ε(pk0) = 0 for some k0 > 2, then ε(pk) = 0 for any k > k0. By the
facts given above, it is not hard to verify that for k > 2 we have

d(pk) = δ(p) + p · ε(pk) .

Example. If we consider again the smallest irregular prime number p = 383, where
D(383) = {296, 340, 353} and therefore d(383) = 3, it turns out that δ(383) = 2
and ε(3832) = 0. This we get because Mod(s383, 296, 383) = 0 and 3832 - 296?. Thus,
d(383k) = δ(383) = 2 for all k > 2. ©

4 How rare are irregular primes?

We recall that a prime number p is irregular, if there exists an n ∈ D(p) with
Mod(sp,n, p) = 0. The function n 7→ Mod(sp,n, p) shows (for different primes p)
a rather random-like behavior. The idea is now, to replace n 7→ Mod(sp,n, p) by
equidistributed independent random variables Xp,n which take values in {0, 1, . . . , p−
1}, i.e. the probability that Xp,n = i is 1

p
for each i ∈ {0, 1, . . . , p − 1}. From Xp,n

we construct a new random variable Yp which takes, for each prime number p, the
value 1 if Xp,n = 0 for some n ∈ D(p) and zero otherwise. In other words, instead
of looking whether Mod(sp,n, p) = 0 for n ∈ D(p), we throw a dice with p faces
{0, 1, . . . , p − 1} for each n ∈ D(p). Therefore, the values p for which Yp = 1 are
now called randomly irregular primes. The idea is, that randomly irregular primes
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should have approximately the same distribution as the ordinary irregular prime
numbers. The probability that p is randomly regular is

P (p is randomly regular) =

(
1− 1

p

)d(p)

.

Thus, we have

P (p1, p2, . . . , pk are all randomly regular) =
k∏

i=1

(
1− 1

pi

)d(pi)

= exp
k∑

i=1

d(pi) log

(
1− 1

pi

)
.

Observe, that log(1− x) 6 −x for x > 0 (and | log(1− x) + x| = O(x2) for x → 0).
Thus, we can estimate

P (p1, p2, . . . , pk are all randomly regular) . exp

(
−

k∑
i=1

d(pi)

pi

)
.

If we suppose for the moment – and experiments support this to some extent – that
in average d(p) ≈ c > 0 is approximately constant (with a numerical value of
c ≈ 0.9), then we have

P (p1, p2, . . . , pk are all randomly regular) . exp

(
− c

k∑
i=1

1

pi

)
. (4)

Now, the sum of inverse primes is divergent, and hence,

P (p1, p2, . . . , pk are all randomly regular) → 0 for k →∞.

In other words, the probability that after a certain prime number no other randomly
irregular prime number occurs is – under the made hypothesis on d(p) – zero. So,
we should expect that infinitely many irregular prime numbers exist.

On the other hand, what can we say about the frequency of occurrence of (randomly)
irregular primes? In order to answer this question, we close this discussion by
calculating the distribution function of randomly irregular prime numbers. In other
words we ask: How many randomly irregular primes may we expect in the set
{p1, p2, . . . , pk}. This is simply

E

[ k∑
i=1

Ỹpi

]
=

k∑
i=1

E[Ỹpi
] =

k∑
i=1

d(pi)

pi

.
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Example. The expected number of randomly irregular prime numbers in the range
{2, . . . , 103} is 1.99703 . . . (the actual number of irregular primes in this interval
is 1). Further, the expected number of randomly irregular primes in the interval
{2, . . . , 106} is about 2.67758, so still far below 3, and the expected number of
randomaly irregular primes in the interval {385, . . . , 2.5 · 106} is about 0.874123
(the actual number of irregular primes in this interval is 0). ©

Again, under the assumption that d(p) is in average a positive constant c, we can
now state the following conjecture:

Conjecture 18 There exist infinitely many irregular primes. Furthermore the dis-
tribution function of the irregular primes is asymptotically∣∣{p 6 n : p is an irregular prime number}

∣∣ ∼ c
∑
p6n

p prime

1

p

for a positive constant c.

Remark. If we consider the random variable Z which takes the value p where p
is the smallest randomly irregular prime, then a similar calculation as above shows
that the expected value of Z is E[Z] = ∞.

As a final remark we should mention that similar arguments as above support the
conjecture that there are infinitely many prime numbers p, such that

2p−1 ≡ 1 mod p2 (5)

This conjecture is related to generalized Carmichael numbers (see [HH]). The prime
numbers satisfying (5) seem to have a similar distribution as irregular primes, which
makes them equally hard to find. In fact, at the moment, the only known prime
numbers which satisfy (5) are 1093 and 3511.

Acknowledgment. We wish to thank Stephanie Halbeisen for writing all the
C-programs, which built the touchstones for our conjectures.
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