DIFFERENTIAL OF HOLONOMY FOR TORUS BUNDLES

PATRICK IGLESIAS-ZEMMOUR

Ref. http://math.huji.ac.il/~piz/documents/DBlog-EX-DOHFTB.pdf

We explicit the Holonomy function on a torus bundle on a diffeological space. Here the word torus denotes any quotient $T = R/\Gamma$, where Γ is a strict subgroup of **R**. Then, we explicit the differential of the holonomy in terms of the Chain-Homotopy Operator and the curvature.

In this note we will consider a principal fiber bundle $\pi : Y \to X$, with X and Y two diffeological spaces, and with structure group a torus $T = R/\Gamma$, where Γ is any strict subgroup of **R**. As we know, if $\Gamma = aZ$ then the torus T is a manifold isomorphic to the circle S^1 , and if Γ has more than 1 generator, T is said to be *irrational*, and it's not anymore a manifold. We assume that there exists on Y a connexion form λ , that is, a differential 1-from satisfying the two conditions

(1) λ is **invariant** by the action of T:

$$
\text{For all }\tau\in T,\quad \tau_Y^*(\lambda)=\lambda,
$$

where τ denotes the action of τ on Y.

(2) λ is **calibrated**:

For all
$$
y \in Y
$$
, $\hat{y}^*(\lambda) = \theta$,

where \hat{y} : T \rightarrow Y is the orbit map $\hat{y}(\tau) = \tau_{Y}(y)$, and θ is the canonical 1-form on T, pushforward of the canonical 1-form dt on **R**.

Date: March 26, 2019.

The question of the differential of the holonomy has been raised, in a larger context, by Jean-Paul Mohsen during our weekly work group.

Then, the connexion is defined by the horizontal paths in Y, and they are

$$
Hor(Y) = \{ \gamma \in Paths(Y) \mid \lambda(\gamma)_t = 0 \text{ for all } t \in \mathbb{R} \}.
$$

See [PIZ13] for the details of these constructions, in particular §8.37.

Loops Bundles

✎ Exercise (I). Show that the pushforward

$$
\pi_*: Loops(Y)\to Loops(X),\ \text{defined by}\ \pi_*(\tilde{\ell})=\pi\circ\tilde{\ell},
$$

is surjective.

C→ Solution – Consider a loop ℓ in X, that is, $\ell \in \mathcal{C}^{\infty}(\mathbf{R}, \mathbf{X})$ and $\ell(0) = \ell(1)$. The pullback of Y by ℓ is a principal bundle on **R** with a connexion, therefore it is trivial [PIZ13, §8.34]: there exists an equivariant diffeomorphism $\varphi : \mathbf{R} \times \mathbf{T} \to \ell^*(Y)$. Let $\varphi(t,\tau) = (t, f(t,\tau)), \text{ with } f(t,\tau) \in \Upsilon_{\ell(t)}.$

Then, by equivariance, $\varphi(t, \tau) = (t, \tau_Y(f(t)))$, where $f \in \text{Paths}(Y)$ and $\pi \circ f = \ell$. There exists a unique $a \in T$ such that $f(1) =$ $a_Y(f(0))$. Now, since T is connected there exists $\tau \in \text{Paths}(T)$ such that $\tau(0) = 1$ and $\tau(1) = a^{-1}$. Then, $\tilde{\ell} : t \mapsto \tau(t) \gamma(f(t))$ is a path in Y such that $\pi \circ \tilde{\ell} = \ell$, and $\tilde{\ell}(0) = \tilde{\ell}(1) = f(0)$. Therefore, $\tilde{\ell} \in$ Paths(Y) and $\pi \circ \tilde{\ell} = \ell$. $\tilde{\ell} = \ell.$

Now, there is more than π_* being surjective. Using the same ideas than in exercise I:

 \Im Exercise (II). Show that the pushforward π_* : Loops(Y) \rightarrow Loops(X) is not only surjective but even a subduction.

 $\mathbb{C}\rightarrow$ Solution — Let $r \mapsto \ell_r$ be a plot in Loops(X) defined on a small open ball B centered at 0 in some \mathbb{R}^n . Since $r \mapsto \ell_r$ is smooth, the map $Q : (r, t) \mapsto \ell_r(t)$ defined on $B \times \mathbf{R}$ is a plot of X. Since we have a connection on $\pi : Y \to X$, we have a connection, by pullback, on $pr_1: Q^*(Y) \to B \times \mathbb{R}$. And since $B \times \mathbb{R}$ is

contractible, the fibration $pr_1: Q^*(Y) \to B \times \mathbb{R}$ is trivial, that is, there exists an equivariant diffeomorphism $\varphi : B \times \mathbf{R} \times \mathbf{T} \to \mathbb{Q}^*(Y)$. By equivariance, $\varphi(r, t, \tau) = (r, t, \tau_Y(f_r(t))),$ where $(r, t) \mapsto f_r(t)$ is a plot of Y. That is equivalent to say that $r \mapsto f_r$ is a plot of Paths(Y). We have then $\pi \circ f_r(t) = \ell_r(t)$.

$$
\begin{array}{ccc} B\times\textbf{R}\times T\stackrel{\phi}{\xrightarrow{\hspace*{1cm}}} \ell^{*}(Y) \stackrel{\text{pr}_{3}}{\xrightarrow{\hspace*{1cm}}} Y \\ \text{pr}_{1,2} & \downarrow^{\hspace*{1cm}pr_{1}} & \downarrow^{\hspace*{1cm}r} \\ B\times\textbf{R} \stackrel{\hspace*{1cm}}{\xrightarrow{\hspace*{1cm}}} X \end{array}
$$

Thus, there exists $r \mapsto a_r \in T$ such that $f_r(1) = (a_r)_Y(f_r(0))$. Let $\alpha : r \mapsto f_r(0)$ and $\beta : r \mapsto f_r(1)$. Since α and β are homotopic, the pullbacks $\alpha^*(Y)$ and $\beta^*(Y)$ are equivalent (actually trivial) [PIZ13, §8.34]. Therefore, $r \mapsto a_r$ is a plot of T, as well as $r \mapsto a_r^{-1}$. Now, the projection class : $\mathbf{R} \to \mathrm{T}$ is the universal covering. The ball B being contractible, there exist a unique lifting $r \mapsto \bar{a}_r$ of $r \mapsto a_r^{-1}$ such that $\bar{a}_0 = 0$ [PIZ13, §8.25]. Consider then $(r, t) \mapsto \tau_r(t) =$ class($t\bar{a}_r$). The parametrization $r \mapsto \tau_r$ is a plot of Paths(T) such that $\bar{a}_r(0) = 1$ and $\bar{a}_r(1) = a_r^{-1}$. Then, let $\tilde{\ell}_r(t) = \tau_r(t) \gamma(f_r(t))$, it is a plot of Y such that $\tilde{\ell}_r (0) = f_r (0)$ and $\tilde{\ell}_r (1) = \tau_r (1)_Y(f_r (1)) =$ $(a_r^{-1})_Y((a_r)_Y(f_r(0)) = f_r(0)$. Thus, $r \mapsto \tilde{\ell}_r$ is a plot of Loops(Y), and a lifting of $r \mapsto \ell_r$, that is, such that $\pi \circ \tilde{\ell}_r = \ell_r$, for all $r \in B$. Hence, every plot in Loops(X) has a local smooth lifting in Loops(Y) everywhere. Therefore, π_* : Loops(Y) \rightarrow Loops(X) is a subduction. subduction.

Holonomy Function

In this section we shall explicit the holonomy H of the connection defined by λ , and compute its differential.

✎ Exercise (III). Show that there exists a smooth map

$$
H: Loops(X)\to T\quad \text{defined by}\quad H(\ell)=\text{class}\left(\int_{\tilde{\ell}}\lambda\right),
$$

for all $\tilde{\ell} \in \text{Loops}(Y)$ such that $\pi \circ \tilde{\ell} = \ell$. And where class denotes the canonical projection from **R** to T.

 $\mathbb{C}\mathbb{\Theta}$ Solution — Let $\tilde{\ell}$ and $\tilde{\ell}'$ be two loops in Y projecting on ℓ . Since $\pi : Y \to X$ is a diffeological fiber bundle, there exists a loop

τ in T such that $\tilde{l}'(t) = \tau(t)\gamma(\tilde{l}(t))$. According to [PIZ13, §8.37], we have

$$
\lambda(t \mapsto \tau(t) \gamma(\tilde{\ell}(t)))_t(1) = \tau^*(\theta)_t(1) + \lambda(\tilde{\ell})_t(1).
$$

Then,

$$
\int_{\tilde{\ell}'} \lambda = \int_0^1 \lambda(\tilde{\ell}')_t(1) dt
$$

\n
$$
= \int_0^1 \lambda(t \mapsto \tau(t) \gamma(\tilde{\ell}(t)))_t(1) dt
$$

\n
$$
= \int_0^1 \tau^*(\theta)_t(1) dt + \int_0^1 \lambda(t \mapsto \tilde{\ell}(t))_t(1) dt
$$

\n
$$
= \int_\tau \theta + \int_{\tilde{\ell}} \lambda.
$$

But since τ is a loop in T and θ is the canonical 1-form on T = **R**/Γ, $\int_{\tau} \theta \in \Gamma$. Therefore, class $(\int_{\tilde{\ell}'} \lambda) = \text{class} \left(\int_{\tilde{\ell}} \lambda \right)$. We get the map H, which is well defined: $H(\ell) = \text{class} \left(\int_{\tilde{\ell}} \lambda \right)$. Let us denote \tilde{H} the integral of λ on the loops in Y. We have the following commutative diagram:

$$
\begin{array}{ccc} \text{Loops}(Y) & \xrightarrow{\tilde{H}} & \textbf{R} \\ \pi_{*} & & \Big\downarrow \text{class} \\ \text{Loops}(X) & \xrightarrow[\text{H}]{\text{H}} & T \end{array}
$$

Now, since π_* is a subduction, according to the previous exercise, the map H is smooth. \Box

The values of H is exactly the group of holonomy of the connection defined by λ, see [PIZ13, §8.35]. It is a subgroup of T, it is either discrete or the whole T. A way to check if it is discrete is to compute its "differential". We will define it as:

$$
d_{\mathrm{T}}H = H^*(\theta).
$$

✎ Exercise (IV). Show that

$$
d_{\mathrm{T}}H+\mathcal{K}\omega=0,
$$

where K is the Chain-Homotopy Operator [PIZ13, §6.83].

 $\mathbb{C}\rightarrow$ Solution — Remark that

$$
\tilde{H} = \left[\tilde{\ell} \mapsto \int_{\tilde{\ell}} \lambda\right] = \mathcal{K} \lambda.
$$

Then, apply the fundamental property of the Chain-Homotopy Operator, restricted to the space of loops of Y. That gives

$$
d(\mathcal{K}\lambda) + \mathcal{K}(d\lambda) = [(\hat{1}^* - \hat{0}^*) \restriction \text{Loops}(Y)](\lambda) = 0.
$$

Recalling that $d\lambda = \pi^*(\omega)$, we get

$$
d\tilde{H}+\mathcal{K}(\pi^*(\omega))=0.
$$

The variance of the Chain-Homotopy Operator states that the following diagram is commutative, see [PIZ13, §6.84].

$$
\begin{aligned}\n\Omega^k(\mathbf{X}) &\xrightarrow{\mathcal{K}_{\mathbf{X}}} \Omega^{k-1}(\text{Paths}(\mathbf{X})) \\
\pi^* &\downarrow \qquad \qquad \downarrow (\pi_*)^* \\
\Omega^k(\mathbf{Y}) &\xrightarrow{\mathcal{K}_{\mathbf{Y}}} \Omega^{k-1}(\text{Paths}(\mathbf{Y}))\n\end{aligned}
$$

Thus (forgetting the indices on K),

$$
d\tilde{H}+(\pi_*)^*(\mathfrak{K}\omega)=0.
$$

But $d\tilde{H} = \tilde{H}^*(dt)$, and $dt = class^*(\theta)$, thus $d\tilde{H} = \tilde{H}^*(class^*(\theta)) =$ $(\text{class} \circ \tilde{H})^*(\theta) = (H \circ \pi_*)^*(\theta) = (\pi_*)^*(d_T H)$. Hence,

$$
(\pi_*)^*(d_{\mathrm{T}}H) + (\pi_*)^*(\mathfrak{K}\omega) = (\pi_*)^*(d_{\mathrm{T}}H + \mathfrak{K}\omega) = 0.
$$

Now, since $π_*$ is a subduction, according to the previous exercise, and thanks to [PIZ13, §6.39],

$$
d_{\mathrm{T}}H + \mathcal{K}\omega = 0.
$$

And that is the expression of the differential of the holonomy. We get from this identity that if the curvature ω vanishes, then the holonomy is discrete and the fiber bundle reduces to a covering. \Box

By definition [PIZ13, §6.83], the Chain-Homotopy Operator is defined by

$$
\mathcal{K}\omega=i_{\tau}\circ\Phi(\omega),
$$

where $\tau \in \mathrm{Hom}^\infty(\mathbf{R}, \mathrm{Diff}(\mathrm{Loops}(X)))$ is the action of reparametrization of paths:

$$
\tau(\varepsilon)(\gamma)=[t\mapsto \gamma(t+\varepsilon)],
$$

and $\Phi(\omega)$ is the mean value of the "time-pullbacks":

$$
\Phi(\omega) = \int_0^1 \hat{t}^*(\omega) dt,
$$

with $\hat{t}(\gamma) = \gamma(t)$. That way, the differential of the holonomy writes:

$$
d_{\mathrm{T}}H + i_{\mathrm{T}}F = 0 \quad \text{with} \quad F = \Phi(\omega).
$$

That is the (infinitesimal) equivariant cohomology way of expressing this differential: H is the moment map associated with the reparametrization group action on Loops(X), with respect to the 2-form F.

References

[PIZ13] Patrick Iglesias-Zemmour. Diffeology, Mathematical Surveys and Monographs, vol. 185. Am. Math. Soc., Providence R.I. 2013. http://www.ams.org/bookstore-getitem/item=SURV-185

URL: http://math.huji.ac.il/~piz/