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Abstract. The Franel numbers are given by fn =
∑n

k=0

(n
k

)3
(n = 0, 1, 2, . . . ).

Let p > 3 be a prime. When p ≡ 1 (mod 3) and p = x2 + 3y2 with x, y ∈ Z and

x ≡ 1 (mod 3), we show that

p−1∑
k=0

fk

2k
≡

p−1∑
k=0

fk

(−4)k
≡ 2x−

p

2x
(mod p2).

We also prove that if p ≡ 2 (mod 3) then

p−1∑
k=0

fk

2k
≡ −2

p−1∑
k=0

fk

(−4)k
≡

3p((p+1)/2
(p+1)/6

) (mod p2).

In addition, we propose several related conjectures for further research.

1. Introduction

Let p ≡ 1 (mod 4) be a prime and write p = x2 + y2 with x ≡ 1 (mod 4)
and y ≡ 0 (mod 2). A famous result of Gauss (cf. B.C. Berndt, R.J. Evans
and K.S. Williams [BEW, (9.0.1)]) states(

(p− 1)/2

(p− 1)/4

)
≡ 2x (mod p),

which was refined by S. Chowla, B. Dwork and R.J. Evans [CDE] as follows:(
(p− 1)/2

(p− 1)/4

)
≡ 2p−1 + 1

2

(
2x− p

2x

)
(mod p2).
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In 2010 J. B. Cosgrave and K. Dilcher [CD] even determined
(
(p−1)/2
(p−1)/4

)
mod p3.

The author [Su11a, Conjecture 5.5] conjectured that

p−1∑
k=0

(
2k
k

)2
8k
≡

p−1∑
k=0

(
2k
k

)2
(−16)k

≡
(

2

p

) p−1∑
k=0

(
2k
k

)2
32k

≡
(

2

p

)(
2x− p

2x

)
(mod p2)

(where ( ·p ) denotes the Legendre symbol), and this was confirmed by the au-

thor’s twin brother Z.-H. Sun [S] with the help of Legendre polynomials. Fur-
thermore, the author [Su12] proved that

p−1∑
k=0

k
(
2k
k

)2
8k

≡ 2

p−1∑
k=0

k
(
2k
k

)2
(−16)k

≡
(

2

p

)( p
2x
− x
)

(mod p2).

When p ≡ 3 (mod 4) is a prime, the author [Su13b] showed that

p−1∑
k=0

(
2k
k

)2
8k
≡ −

p−1∑
k=0

(
2k
k

)2
(−16)k

≡ (−1)(p+1)/4 2p(
(p+1)/2
(p+1)/4

) (mod p2).

For n ∈ N = {0, 1, 2, . . . }, we have the combinatorial identities

n∑
k=0

(
n

k

)2

=

(
2n

n

)
and

2n∑
k=0

(−1)k
(

2n

k

)3

= (−1)n
(

2n

n

)(
3n

n

)
(see, e.g., [G, (3.66) and (6.6)]). Note that

∑n
k=0(−1)k

(
n
k

)3
= 0 for n =

1, 3, 5, . . . . A conjecture of the author [Su11b, Conjecture 5.13] states that
if p > 3 is a prime then

p−1∑
k=0

(
2k
k

)(
3k
k

)
24k

≡
(p

3

) p−1∑
k=0

(
2k
k

)(
3k
k

)
(−216)k

≡

{ (2(p−1)/3
(p−1)/3

)
(mod p2) if p ≡ 1 (mod 3),

p/
(
2(p+1)/3
(p+1)/3

)
(mod p2) if p ≡ 2 (mod 3).

It is known that for any prime p ≡ 1 (mod 3) we can write 4p = u2 + 27v2 with
u, v ∈ Z and u ≡ 1 (mod 3), and we have(

2(p− 1)/3

(p− 1)/3

)
≡ p

u
− u (mod p2)

(cf. [CD, Theorem 6]).

In [Su13a] the author introduced the polynomials Sn(x) =
∑n

k=0

(
n
k

)4
xk (n =

0, 1, 2, . . . ) and posed 13 related conjectures one of which states that for any
prime p > 2 we have

p−1∑
n=0

Sn(12) ≡


4x2 − 2p (mod p2) if p ≡ 1 (mod 12) & p = x2 + y2 (3 - x),

(xy
3 )4xy (mod p2) if p ≡ 5 (mod 12) & p = x2 + y2 (x, y ∈ Z),

0 (mod p2) if p ≡ 3 (mod 4).
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In view of the above work, it is natural to investigate similar congruences
involving the Franel numbers

fn =
n∑

k=0

(
n

k

)3

(n ∈ N) (1.1)

(cf. [Sl, A000172]). These numbers were first introduced by J. Franel in 1894
who noted the recurrence relation

(n+ 1)2fn+1 = (7n(n+ 1) + 2)fn + 8n2fn−1 (n = 1, 2, 3, . . . ).

For a combinatorial interpretation of the Franel numbers, the reader may con-
sult D. Callan [C].

It is well known that any prime p ≡ 1 (mod 3) can be written uniquely in
the form p = x2 + 3y2 with x, y ∈ Z+ = {1, 2, 3, . . . } (cf. [Co, p. 7]). In this
paper we reveal somewhat surprising connections between the Franel numbers
and the representation p = x2 + 3y2.

Now we state our main result.

Theorem 1.1. Let p > 3 be a prime. When p ≡ 1 (mod 3) and p = x2 + 3y2

with x, y ∈ Z and x ≡ 1 (mod 3), we have

p−1∑
k=0

fk
2k
≡

p−1∑
k=0

fk
(−4)k

≡ 2x− p

2x
(mod p2). (1.2)

If p ≡ 2 (mod 3), then

p−1∑
k=0

fk
2k
≡ −2

p−1∑
k=0

fk
(−4)k

≡ 3p(
(p+1)/2
(p+1)/6

) (mod p2), (1.3)

and also
p−1∑
n=0

∑n
k=0

(
n
k

)3
(m− 1)k

mn
≡ 0 (mod p) (1.4)

for any p-adic integer m 6≡ 0 (mod p).

Remark 1.1. For any prime p > 3, we are also able to show
∑p−1

k=1(−1)kfk/k
2 ≡

0 (mod p) and determine
∑p−1

k=1(−1)kkrfk modulo p2 for r = 0,±1, 2.

Next we pose five related conjectures for further research.
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Conjecture 1.1. Let p > 2 be a prime. Then

p−1∑
n=0

(−1)n
n∑

k=0

(
n

k

)3

4k ≡
p−1∑
n=0

fn
2n

(mod p2). (1.5)

Provided p ≡ 1 (mod 3) we have

p−1∑
k=0

fk
2k
≡

p−1∑
k=0

fk
(−4)k

(mod p3). (1.6)

If p = x2 + 3y2 with x, y ∈ Z and x ≡ 1 (mod 3), then

x ≡ 1

4

p−1∑
k=0

(3k + 4)
fk
2k
≡ 1

2

p−1∑
k=0

(3k + 2)
fk

(−4)k
(mod p2) (1.7)

and
p−1∑
n=0

(−1)nn
n∑

k=0

(
n

k

)3

4k ≡ −5

3
x (mod p).

It is known that
∑n

k=0

(
n
k

)
fk coincides with gn :=

∑n
k=0

(
n
k

)2(2k
k

)
(cf. [St]).

In view of this, Theorem 1.1 has the following consequence.

Corollary 1.1. Let p > 3 be a prime. Then

p−1∑
k=0

gk
3k
≡

p−1∑
k=0

gk
(−3)k

≡
{

2x (mod p) if p = x2 + 3y2 (x, y ∈ Z & 3 | x− 1),

0 (mod p) if p ≡ 2 (mod 3).

(1.8)

The following conjecture is a refinement of Corollary 1.1.

Conjecture 1.2. Let p > 3 be a prime. When p ≡ 1 (mod 3) and p = x2+3y2

with x, y ∈ Z and x ≡ 1 (mod 3), we have

p−1∑
k=0

gk
3k
≡

p−1∑
k=0

gk
(−3)k

≡ 2x− p

2x
(mod p2) (1.9)

and

x ≡
p−1∑
k=0

(k + 1)
gk
3k
≡

p−1∑
k=0

(k + 1)
gk

(−3)k
(mod p2). (1.10)

If p ≡ 2 (mod 3), then

2

p−1∑
k=0

gk
3k
≡ −

p−1∑
k=0

gk
(−3)k

≡ 3p(
(p+1)/2
(p+1)/6

) (mod p2). (1.11)
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Conjecture 1.3. For any positive integer n,

1

2n2

n−1∑
k=0

(3k + 2)(−1)kfk ∈ Z and
1

n2

n−1∑
k=0

(4k + 1)gk9n−1−k ∈ Z. (1.12)

Moreover, for any prime p > 3 we have

p−1∑
k=0

(3k + 2)(−1)kfk ≡ 2p2(2p − 1)2 (mod p5),

p−1∑
k=0

(4k + 1)
gk
9k
≡ p2

2

(
3−

(p
3

))
− p2(3p − 3) (mod p4).

Note that the sequences (fn)n>0 and (gn)n>0 are two of the five sporadic
sequences (cf. D. Zagier [Z, Section 4]) which are integral solutions of certain
Apéry-like recurrence equations and closely related to the theory of modular
forms. Concerning sequences D and E in [Z, p. 354], we have not found inter-
esting congruences similar to those in Theorem 1.1. For the sequence

wn =

bn/3c∑
k=0

(−1)k3n−3k
(
n

3k

)(
2k

k

)(
3k

k

)
(n = 0, 1, 2, . . . ) (1.13)

(which is sequence B in [Z, p. 354]), we have the following conjecture.

Conjecture 1.4. Let p > 3 be a prime. If p ≡ 1 (mod 3) and 4p = u2 + 27v2

with u, v ∈ Z and u ≡ 1 (mod 3), then

p−1∑
k=0

wk

3k
≡

p−1∑
k=0

wk

9k
≡ p

u
− u (mod p2). (1.14)

If p ≡ 2 (mod 3), then
p−1∑
k=0

wk

9k
≡ 0 (mod p2).

Remark 1.2. For any prime p > 3, we are able to prove that

p−1∑
k=0

wk

3k
≡ p

b(p−1)/3c∑
k=0

(
2k
k

)(
3k
k

)
(3k + 1)27k

(mod p2) and

p−1∑
k=0

wk

9k
≡

p−1∑
k=0

(
2k
k

)(
3k
k

)
(−216)k

(mod p).

Motivated by Remark 1.2, we propose one more conjecture.
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Conjecture 1.5. If p = x2 + y2 is an odd prime with x, y ∈ Z and x ≡
1 (mod 4), then

p

p−1∑
k=0

(
2k
k

)(
4k
2k

)
(4k + 1)64k

≡
(

2

p

)(
2x− p

2x

)
(mod p2). (1.15)

If p = u2 + 27v2 is a prime with u, v ∈ Z and u ≡ 1 (mod 3), then

p

p−1∑
k=0

(
3k
k

)(
6k
3k

)
(6k + 1)432k

≡ 2u− p

2u
(mod p2). (1.16)

In the next section we shall provide several basic lemmas. Section 3 is
devoted to our proofs of Theorem 1.1 and Corollary 1.1.

2. Some basic lemmas

Lemma 2.1. Let m > k > 0 be integers. Then we have

m∑
n=k

(
n

k

)
=

(
m+ 1

k + 1

)
. (2.1)

Remark 2.1. The identity is well-known (cf. [G, (1.5)]) and it can be easily
proved by induction on m.

Lemma 2.2. For any n ∈ N we have

n∑
k=0

(
n

k

)3

zk =

bn/2c∑
k=0

(
n+ k

3k

)(
2k

k

)(
3k

k

)
zk(1 + z)n−2k (2.2)

and

fn =

n∑
k=0

(
n+ 2k

3k

)(
2k

k

)(
3k

k

)
(−4)n−k. (2.3)

Remark 2.2. (2.2) is an identity of MacMahon [M, p. 122] (see also [G, (6.7)] and
[R, p. 41]). (2.3) can be easily proved by induction since we have the recurrence
relation

(n+ 1)2un+1 = (7n(n+ 1) + 2)un + 8n2un−1 (n = 1, 2, 3, . . . )

by applying the Zeilberger algorithm (cf. [PWZ, pp. 101–119]) via Mathematica

7, where un denotes the right-hand side of (2.3).

Recall that for a prime p and an integer a 6≡ 0 (mod p), the Fermat quotient
(ap−1 − 1)/p is denoted by qp(a).
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Lemma 2.3 ([Y]). Let p ≡ 1 (mod 3) be a prime and write p = x2 + 3y2 with
x ≡ 1 (mod 3). Then we have(

(p− 1)/2

(p− 1)/3

)
≡
(

2x− p

2x

)(
1− 2

3
p qp(2) +

3

4
p qp(3)

)
(mod p2). (2.4)

Lemma 2.4. For any positive integer n we have the identity

n∑
k=0

(
n

k

)
(−1)k

3k + 1
=

n∏
k=1

3k

3k + 1
. (2.5)

Proof. Recall that

B(a, b) :=

∫ 1

0

ta−1(1− t)b−1dt =
Γ(a)Γ(b)

Γ(a+ b)

for any positive real numbers a and b. With the help of this, we have

n∑
k=0

(
n

k

)
(−1)k

3k + 1
=

n∑
k=0

(
n

k

)
(−1)k

∫ 1

0

x3kdx =

∫ 1

0

(1− x3)ndx

=

∫ 1

0

(1− y)n(y1/3)′dy =
1

3

∫ 1

0

y1/3−1(1− y)(n+1)−1

=
1

3
B

(
1

3
, n+ 1

)
=

1

3
· Γ(n+ 1)Γ(1/3)

Γ(n+ 1 + 1/3)

=
n!

(1 + 1/3) · · · (n+ 1/3)
=

n∏
k=1

3k

3k + 1
.

This proves (2.5). �

Lemma 2.5. Let p > 3 be a prime and let ε = (p
3 ). Then

(p−ε)/3∑
k=1

1

2k − 1
≡ −3

4
qp(3) (mod p) (2.6)

and(
2(p− ε)/3
(p− ε)/3

)
2−2(p−ε)/3 ≡ 1

2− ε

(
(p− ε)/2
(p− ε)/3

)(
1− 3

4
p qp(3)

)
(mod p2).

(2.7)

Proof. (i) It is known that for any r ∈ Z we have[
p

r

]
6

:=
∑

k≡r (mod 6)

(
p

k

)
=

2p−1 − 1

3
+
δr
2

(
(−1)b(p+1−2r)/6c3(p−1)/2 + 1

)
,

(2.8)



8 ZHI-WEI SUN

where δr takes 1 or 0 according as 3 - p + r or not. This essentially follows
from [G, (1.54)], and the present form was given in [Su02]. Note that for any
k = 1, . . . , p− 1 we have(

p

k

)
=
p

k

(
p− 1

k − 1

)
≡ p

k
(−1)k−1 (mod p2).

Clearly

qp(3) =
(−3)(p−1)/2 − (−3p )

p

(
(−3)(p−1)/2 +

(
−3

p

))
≡2ε

p

(
(−3)(p−1)/2 − ε

)
(mod p)

and hence by (2.8) with r = 0 we have

(p−ε)/3∑
k=1

1

2k − 1
=

(p−1)/2∑
k=1

1

2k − 1
−
bp/6c∑
k=1

1

2((p+ 1)/2− k)− 1

≡1

p

(p−1)/2∑
k=1

(
p

2k − 1

)
− 3

p

bp/6c∑
k=1

(
p

6k

)
=

1

p

( ∑
k≡1 (mod 2)

(
p

k

)
− 1

)
− 3

p

([
p

0

]
6

− 1

)

=
2p−1 − 1

p
− 3

p

(
2p−1 − 1

3
+
ε(−3)(p−1)/2 + 1

2
− 1

)
=− 3

p
ε× (−3)(p−1)/2 − ε

2
≡ −3

4
qp(3) (mod p).

This proves (2.6)

(ii) Now we deduce (2.7). Observe that

(
(p− ε)/2
(p− ε)/3

)
=

(p−ε)/3∏
k=1

(p− ε)/2 + 1− k
k

=

(p−ε)/3∏
k=1

2k − 2 + ε− p
2k

=

(p−ε)/3∏
k=1

(
1− p

2k − 2 + ε

)
×

(p−ε)/3∏
k=1

2k − 2 + ε

2k

≡
(

1−
(p−ε)/3∑
k=1

p

2k − 2 + ε

)
× ε

2
P (mod p2),
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where

P :=

(p−ε)/3∏
k=2

(2k − 1 + ε)(2k − 2 + ε)

2k(2k − 1 + ε)

=
(2(p− ε)/3− 1 + ε)!/(1 + ε)!

22((p−ε)/3−1)((p− ε)/3)!((p− ε)/3 + (ε− 1)/2)!
.

If ε = 1, then
(p−1)/3∑

k=1

1

2k − 1
≡ −3

4
qp(3) (mod p)

by (2.6), and
ε

2
P = 2−2(p−1)/3

(
2(p− 1)/3

(p− 1)/3

)
.

If ε = −1, then

(p+1)/3∑
k=1

1

2k − 3
=

(p−2)/3∑
k=1

1

2k − 1
− 1

≡− 3

4
qp(3)− 1

2(p+ 1)/3− 1
− 1 ≡ 2− 3

4
qp(3) (mod p)

by (2.6), and
ε

2
P = −2−2(p+1)/3

(
2(p+ 1)/3

(p+ 1)/3

)/
2p− 1

3
.

Therefore(
(p− ε)/2
(p− ε)/3

)
≡
(

1 + p

(
3

4
qp(3) + ε− 1

))
2−2(p−ε)/3

(
2(p− ε)/3
(p− ε)/3

)
2− ε

1 + p(ε− 1)

≡(2− ε)
(

1 +
3

4
p qp(3)

)
2−2(p−ε)/3

(
2(p− ε)/3
(p− ε)/3

)
(mod p2)

and hence (2.7) follows.
The proof of Lemma 2.5 is now complete. �

Lemma 2.6. Let p ≡ 1 (mod 3) be a prime. Then(
p+ 2(p− 1)/3

(p− 1)/3

)
≡
(

2(p− 1)/3

(p− 1)/3

)
(mod p2) (2.9)

and
(p−1)/2∑

k=1

1

3k − 1
≡ −2

3
qp(2) (mod p). (2.10)
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Proof. Clearly(
p+2(p−1)/3

(p−1)/3
)(

2(p−1)/3
(p−1)/3

) =

(p−1)/3∏
k=1

p+ k + (p− 1)/3

k + (p− 1)/3
=

(p−1)/3∏
k=1

(
1 +

3p

p− 1 + 3k

)

≡1 + 3p

(p−1)/3∑
k=1

1

3k − 1
= 1 + 3p

p−1∑
k=1

k≡2 (mod 3)

1

k
(mod p2).

It is trivial that

2

p−1∑
k=1

k≡2 (mod 3)

1

k
=

p−1∑
k=1

k≡2 (mod 3)

(
1

k
+

1

p− k

)
≡ 0 (mod p).

So (2.9) holds.
By (2.8), [

p

2

]
6

=
2p−1 − 1

3
=
p

3
qp(2).

Note that
(p−1)/2∑

k=1

1

3k − 1
=

(p−1)/3∑
k=1

1

3k − 1
+

(p−1)/6∑
k=1

1

3((p− 1)/3 + k)− 1

≡
p−1∑
k=1

k≡2 (mod 3)

1

k
+

(p−1)/6∑
k=1

2

6k − 4

≡− 2

p

p−1∑
k=1

k≡2 (mod 6)

(
p

k

)
= −2

p

[
p

2

]
6

= −2

3
qp(2) (mod p).

This proves (2.10). �

3. Proofs of Theorem 1.1 and Corollary 1.1

Proof of Theorem 1.1. For convenience we write p = 2l+1 and divide the proof
into three parts.

(I) Let m be any p-adic integer with m 6≡ 0 (mod p). By (2.2) we have

p−1∑
n=0

∑n
k=0

(
n
k

)3
(m− 1)k

mn
=

p−1∑
n=0

bn/2c∑
k=0

(
n+ k

3k

)(
2k

k

)(
3k

k

)
(m− 1)k

m2k

=
l∑

k=0

(
2k

k

)(
3k

k

)(
m− 1

m2

)k p−1∑
n=2k

(
n+ k

3k

)

=
l∑

k=0

(
2k

k

)(
3k

k

)(
m− 1

m2

)k (
p+ k

3k + 1

)
(by Lemma 2.1).
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For each k = 0, . . . , l, clearly(
2k

k

)(
3k

k

)(
p+ k

3k + 1

)
=
p
∏

0<j6k(p− k − j)
(3k + 1)× (k!)3

∏
0<j6k

(p2 − j2)

≡p(−1)k

3k + 1

(
p− 1− k

k

)
(mod p2),

hence when 3k + 1 6= p we have(
2k

k

)(
3k

k

)(
p+ k

3k + 1

)
≡p(−1)k

3k + 1

(
−1− k
k

)
=

p
(
2k
k

)
3k + 1

=
p(−4)k

3k + 1

(
−1/2

k

)
≡p(−4)k

3k + 1

(
l

k

)
(mod p2).

Therefore
p−1∑
n=0

∑n
k=0

(
n
k

)3
(m− 1)k

mn

≡p
l∑

k=0
3k+1 6=p

(
4(m− 1)

m2

)k (
l

k

)
(−1)k

3k + 1

+

{
(m−1

m2 )(p−1)/3
(
p−1−(p−1)/3

(p−1)/3
)

(mod p2) if p ≡ 1 (mod 3),

0 (mod p2) if p ≡ 2 (mod 3).

(3.1)

Clearly this implies (1.4) in the case p ≡ 2 (mod 3).
When p ≡ 2 (mod 3), (3.1) with m = 2 gives

p−1∑
n=0

fn
2n
≡p

l∑
k=0

(
l

k

)
(−1)k

3k + 1
= p

l∏
k=1

3k

3k + 1
(by Lemma 2.4)

≡p
l∏

k=1

k

k + (p+ 1)/3
=

p(
l+(p+1)/3
(p+1)/3

) = (−1)(p+1)/3 p( −l−1
(p+1)/3

)
≡ p(

l
(p+1)/3

) =
p(

(p+1)/2−1
(p+1)/6−1

) =
3p(

(p+1)/2
(p+1)/6

) (mod p2).

(II) In view of (2.3) and Lemma 2.1,

p−1∑
n=0

fn
(−4)n

=

p−1∑
k=0

(
2k
k

)(
3k
k

)
(−4)k

p−1∑
n=k

(
n+ 2k

3k

)
=

p−1∑
k=0

(
2k
k

)(
3k
k

)
(−4)k

(
p+ 2k

3k + 1

)

=

p−1∑
k=0

p(p+ k + 1) · · · (p+ 2k)
∏

0<j6k(p2 − j2)

(3k + 1)(−4)k(k!)3

≡
p−1∑
k=0

p
(
p+2k

k

)
(3k + 1)4k

(mod p2).
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If l < k 6 p − 1, then p + k + 1 6 2p 6 p + 2k and hence p |
(
p+2k

k

)
. For

k = 0, . . . , l we have(
p+ 2k

k

)
=

∏
0<j6k

p+ k + j

j
≡

∏
0<j6k

k + j

j
≡
(
l

k

)
(−4)k (mod p).

Thus

p−1∑
k=0

fk
(−4)k

≡p
l∑

k=0
3k+16=p

(
l

k

)
(−1)k

3k + 1

+

{ (p+2(p−1)/3
(p−1)/3

)
/4(p−1)/3 (mod p2) if p ≡ 1 (mod 3),

p
(
p+2(2p−1)/3

(2p−1)/3
)
/(2p× 4(2p−1)/3) (mod p2) if p ≡ 2 (mod 3).

(3.2)
Combining this with (3.1) in the case m = 2, we find that

p−1∑
k=0

fk
(−4)k

−
p−1∑
k=0

fk
2k

≡

{
(
(
p+2(p−1)/3

(p−1)/3
)
−
(
2(p−1)/3
(p−1)/3

)
)/22(p−1)/3 (mod p2) if p ≡ 1 (mod 3),(

p+2(2p−1)/3
(2p−1)/3

)
/22(2p−1)/3+1 (mod p2) if p ≡ 2 (mod 3).

(3.3)

By Lemma 2.6, if p ≡ 1 (mod 3) then (3.3) yields

p−1∑
k=0

fk
(−4)k

≡
p−1∑
k=0

fk
2k

(mod p2).

In the case p ≡ 2 (mod 3),(
p+ 2(2p− 1)/3

(2p− 1)/3

)
=

(
2p+ (p− 2)/3

(2p− 1)/3

)

=
2p

(p+ 1)/3

(p−2)/3∏
k=1

2p+ (p+ 1)/3− k
k

×
(2p−1)/3∏
k=(p+4)/3

2p+ (p+ 1)/3− k
k

≡6p(−1)(2p−1)/3−(p+1)/3

(2p−1)/3∏
k=(p+4)/3

k − (p+ 1)/3

k

=− 6p× ((p− 2)/3)!∏(2p−1)/3
k=(p+4)/3 k

= − 12p(
2(p+1)/3
(p+1)/3

) (mod p2),
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hence
p−1∑
k=0

fk
(−4)k

−
p−1∑
k=0

fk
2k
≡− 12p(

2(p+1)/3
(p+1)/3

)
2(4p+1)/3

≡− 12p
1
3

(
(p+1)/2
(p+1)/3

)
22(p+1)/3+(4p+1)/3

(by (2.7))

=− 36p(
(p+1)/2
(p+1)/3

)
22(p−1)+3

≡ − 9p

2
(
(p+1)/2
(p+1)/6

) (mod p2)

and thus
p−1∑
k=0

fk
(−4)k

≡
p−1∑
k=0

fk
2k
− 9p

2
(
(p+1)/2
(p+1)/6

) ≡ − 3p

2
(
(p+1)/2
(p+1)/6

) (mod p2).

(III) Below we assume p ≡ 1 (mod 3) and write p = x2 + 3y2 with x, y ∈ Z
and x ≡ 1 (mod 3). We want to show that

p−1∑
k=0

fk
2k
≡ 2x− p

2x
(mod p2). (3.4)

By (3.1) with m = 2, we have

p−1∑
k=0

fk
2k
≡ p

l∑
k=0

(
l

k

)
(−1)k

3k + 1
−
(

l

(p− 1)/3

)
(−1)(p−1)/3 +

(
2(p−1)/3
(p−1)/3

)
22(p−1)/3

(mod p2).

(3.5)
Applying Lemma 2.4 and noting that(

l + (p− 1)/3

(p− 1)/3

)
=

(
−l − 1

(p− 1)/3

)
=

(
l − p

(p− 1)/3

)
,

we get

p
l∑

k=0

(
l

k

)
(−1)k

3k + 1
= p

l∏
k=1

3k

3k + 1

=p

l∏
k=1

(3k)2(3k − 1)

(3k + 1)3k(3k − 1)
=

3p−1(l!)2p
∏l

k=1(3k − 1)

(p− 1)!p(p+ 1) · · · (p+ l)

=
l!33l∏l

k=1(p2 − k2)

l∏
k=1

(
k − 1

3

)

≡(−3)3l
(
l − 1/3

l

)
= (−3)3l

(
l + (p− 1)/3

l

)/ l∏
k=1

k + (p− 1)/3

k − 1/3

=(−3)3l
(

l − p
(p− 1)/3

)/ l∏
k=1

(
1 +

p

3k − 1

)
(mod p2).
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Clearly

(−3)3l − 1 =((−3)l − 1)((−3)2l + (−3)l + 1)

≡3

2
((−3)l − 1)((−3)l + 1) =

3

2
p qp(3) (mod p2)

and (
l−p

(p−1)/3
)(

l
(p−1)/3

) =

(p−1)/3∏
k=1

l + 1− p− k
l + 1− k

=

(p−1)/3∏
k=1

(
1− p

l + 1− k

)

≡1− p
(p−1)/3∑

k=1

1

(p+ 1)/2− k
≡ 1 + 2p

(p−1)/3∑
k=1

1

2k − 1

≡1− 3

2
p qp(3) (mod p2) (by Lemma 2.5).

Therefore

p
l∑

k=0

(
l

k

)
(−1)k

3k + 1

≡
(

1 +
3

2
p qp(3)

)(
1− 3

2
p qp(3)

)(
l

(p− 1)/3

) l∏
k=1

(
1− p

3k − 1

)

≡
(

l

(p− 1)/3

)(
1−

l∑
k=1

p

3k − 1

)
≡
(

l

(p− 1)/3

)(
1 +

2

3
p qp(2)

)
(mod p2)

with the help of (2.10). Combining this with (3.5) and (2.7) we get

p−1∑
k=0

fk
2k
≡
(

l

(p− 1)/3

)(
1 +

2

3
p qp(2)− 3

4
p qp(3)

)
(mod p2).

This, together with Lemma 2.3, implies the desired (3.4).
So far we have completed the proof of Theorem 1.1. �

Proof of Corollary 1.1. Let m be 3 or −3. Then m−1 ∈ {2,−4}. Observe that

p−1∑
n=0

gn
mn

=

p−1∑
n=0

1

mn

n∑
k=0

(
n

k

)
fk =

p−1∑
k=0

fk
mk

p−1∑
n=k

(
n

k

)
1

mn−k

=

p−1∑
k=0

fk
mk

p−1−k∑
j=0

(
k + j

j

)
1

mj
=

p−1∑
k=0

fk
mk

p−1−k∑
j=0

(
−k − 1

j

)
1

(−m)j

≡
p−1∑
k=0

fk
mk

p−1−k∑
j=0

(
p− 1− k

j

)(
− 1

m

)j

=

p−1∑
k=0

fk
mk

(
1− 1

m

)p−1−k

≡
p−1∑
k=0

fk
mk

(
m

m− 1

)k

=

p−1∑
k=0

fk
(m− 1)k

(mod p).
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By Theorem 1.1,

p−1∑
k=0

fk
2k
≡

p−1∑
k=0

fk
(−4)k

≡
{

2x (mod p) if p = x2 + 3y2 (x, y ∈ Z & 3 | x− 1),

0 (mod p) if p ≡ 2 (mod 3).

So the desired (1.8) follows. �
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