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ABSTRACT. The Franel numbers are given by fn = > 7 (2)3 (n=0,1,2,...).
Let p > 3 be a prime. When p =1 (mod 3) and p = x? 4 3y? with =,y € Z and
z =1 (mod 3), we show that

We also prove that if p =2 (mod 3) then

p—1 p—1
Tk T 3p 2
=2 = (mod p?).
_A\k —+1)/2
2o = P T (@

In addition, we propose several related conjectures for further research.

1. INTRODUCTION

Let p = 1 (mod 4) be a prime and write p = 2 + y* with 2 = 1 (mod 4)
and y = 0 (mod 2). A famous result of Gauss (cf. B.C. Berndt, R.J. Evans
and K.S. Williams [BEW, (9.0.1)]) states

((p— 1)/2
(p—1)/4

which was refined by S. Chowla, B. Dwork and R.J. Evans [CDE] as follows:

(Ei: Eﬁ) = &;1 <2x - %) (mod p?).
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In 2010 J. B. Cosgrave and K. Dilcher [CD] even determined (Eﬁj%i) mod p3.
The author [Sulla, Conjecture 5.5] conjectured that

2

p—1 2k\2  p—1 (2k\2 p—1 (2k
S = = () S = (5) () oo

k=0 k=0 k=0

(]

(where () denotes the Legendre symbol), and this was confirmed by the au-
thor’s twin brother Z.-H. Sun [S] with the help of Legendre polynomials. Fur-
thermore, the author [Sul2] proved that

=1 (2k\? p—1 4 2k\2
k() k() 2 p 2
=2 =(-)(=—— .
2 g (—16)F (p) (2;:; x) (mod p)
When p = 3 (mod 4) is a prime, the author [Sul3b] showed that

b1 (%)2 - p—1 (2k)2 B (_1)(p+1)/42p 9
D g =T CIef = em

k=0 k=0 (p+1)/4

For n e N=1{0,1,2,...}, we have the combinatorial identities
n 2
n 2n 2n\ (3n
= d =(=1)"
32 (1) = () 20 (2) = ()

(see, e.g., [G, (3.66) and (6.6)]). Note that ZZ:O(—l)k(Z)S = 0 for n =

1,3,5,.... A conjecture of the author [Sullb, Conjecture 5.13| states that
if p > 3 is a prime then
_ _ 2(p—1)/3 e
pi () - < >pz:1 Sk) { (((159—1))//3) (mod p*) if p=1 (mod 3),
k - .
— 24 k:O —216)% p/ (2((;?11))//33) (mod p?) if p=2 (mod 3).

It is known that for any prime p = 1 (mod 3) we can write 4p = u? + 27v? with
u,v € Z and v = 1 (mod 3), and we have

()

(cf. [CD, Theorem 6]).

In [Sul3a] the author introduced the polynomials S, (z) = > ;_, (2)490’“ (n=
0,1,2,...) and posed 13 related conjectures one of which states that for any
prime p > 2 we have

_ 422 — 2p (mod p?) if p=1 (mod 12) & p = 2% +y* (31 x),
Z Sp(12) = ¢ (%)4xy (mod p?) if p=5 (mod 12) & p = 2?4+ 4* (z,y € Z),
0 (mod p?) if p=3 (mod 4).
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In view of the above work, it is natural to investigate similar congruences
involving the Franel numbers

n

fo=>" (Z)g (n € N) (1.1)

k=0

(cf. [Sl, A000172]). These numbers were first introduced by J. Franel in 1894
who noted the recurrence relation

(n+1)72fnr=(Mnn+1)+2)f, +8n%f 1 (n=1,2,3,...).

For a combinatorial interpretation of the Franel numbers, the reader may con-
sult D. Callan [C].

It is well known that any prime p = 1 (mod 3) can be written uniquely in
the form p = 22 + 3y? with z,y € Z* = {1,2,3,...} (cf. [Co, p.7]). In this
paper we reveal somewhat surprising connections between the Franel numbers
and the representation p = x2? + 3y2.

Now we state our main result.

Theorem 1.1. Let p > 3 be a prime. When p =1 (mod 3) and p = 22 + 33>
with x,y € Z and x = 1 (mod 3), we have

p—lf p—1 f
22 Z k =2 2% (mod p?). (1.2)
k=0 k= 0

If p=2 (mod 3), then

- ~1
f _ X e _ 3p 2
E oF = -2 = ((p+1)/2) (mod p?), (1.3)
k=0 k=0 (p+1)/6

and also

— 1)k
Z Xk (1) (m = D* _ 0 (mod p) (1.4)
for any p-adic integer m # 0 (mod p).

Remark 1.1. For any prime p > 3, we are also able to show S0_1(—1)¥ fi,/k? =
0 (mod p) and determine 32— (=1)*k" f, modulo p? for r = 0,1, 2.

Next we pose five related conjectures for further research.
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Conjecture 1.1. Let p > 2 be a prime. Then

Sy (Z) =3 g—z (mod p?). (1.5)

n=0 k=0

Provided p =1 (mod 3) we have

p—1 p—

fk _ fk: 3

> o = > 1) (mod p?). (1.6)

k=0 k=0
Ifp=2%+3y* withx,y € Z and x =1 (mod 3), then

1% fi 1% e
= - 4)=" = = 2 2 1
x 4k:0(3k+ )or kazo(?,w )(_4)k (mod p?) (1.7)

and

pi_l(—n"nfj (Z>34k o

It is known that Y.;_, (})fk coincides with g, :== > p_, (Z)Q(2kk) (cf. [St]).
In view of this, Theorem 1.1 has the following consequence.

Corollary 1.1. Let p > 3 be a prime. Then

pilg_k_pil i :{Zx(modp) ifp=224+3y* (z,y€Z & 3|z —1),
L0 (modp) ifp=2 (mod 3).
(1.8)

The following conjecture is a refinement of Corollary 1.1.

Conjecture 1.2. Letp > 3 be a prime. When p =1 (mod 3) and p = 2%+ 3y?
with x,y € Z and x = 1 (mod 3), we have

p—1 p—1
9k 9k p
3= Z =L =2x — o (mod p?) (1.9)
k=0 k=0
and
= 9k = 9k
r=)Y (k+ 135 = > (k+1) ) (mod p?). (1.10)
k=0 k=0
If p=2 (mod 3), then
ST 3p
kK _ ko _ 2
2) %= -> 3 = (G (mod p?). (1.11)
k=0 k=0 ((p+1)/6>
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Conjecture 1.3. For any positive integer n,

Z (Bk+2)(-1)*fr € Z and Z (4k +1)gp9" ' "F ez, (1.12)
k=0 k=0

Moreover, for any prime p > 3 we have

i(3k +2)(=1)* fr, = 2p%(2P — 1)2 (mod p°),
k=0
p—1 2
gk _ D p »
I;)(zuc i =% (3- (5)) — p2(3P — 3) (mod p*).

Note that the sequences (f,)n>0 and (gn)n>0 are two of the five sporadic
sequences (cf. D. Zagier [Z, Section 4]) which are integral solutions of certain
Apéry-like recurrence equations and closely related to the theory of modular
forms. Concerning sequences D and E in [Z, p. 354], we have not found inter-
esting congruences similar to those in Theorem 1.1. For the sequence

wy, = er( 1)kgn—3k (3k) <2:> (3:) (n=0,1,2,...) (1.13)

k=0

(which is sequence B in [Z, p. 354]), we have the following conjecture.

Conjecture 1.4. Let p > 3 be a prime. If p=1 (mod 3) and 4p = u? + 270>
with u,v € Z and u =1 (mod 3), then

p—1 w p—1 w
k= Ye Py (mod p?). (1.14)
3 9 U
k=0 k=0
If p=2 (mod 3), then
p—1
Wi,
Z oF = 0 (mod p?).
k=0

Remark 1.2. For any prime p > 3, we are able to prove that

p—1 wi L(p=1)/3] (2}5) (3}5) , p—1 w )
k:03— =p kzzo m(modp ) and kzzo9 ];) 216 (mod p).

Motivated by Remark 1.2, we propose one more conjecture.
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Conjecture 1.5. If p = 2 + y? is an odd prime with x,y € 7Z and x =
1 (mod 4), then

p— 4/€
pz 4/<;+ : 6)4k - (;) (20— ) (mod p?). (1.15)

k= O

If p=u? +27v? is a prime with u,v € Z and u =1 (mod 3), then

p—1 3k\ (6K
pz M =ou— 2 (mod p?). (1.16)

k
£ (6k + 1)432 2

In the next section we shall provide several basic lemmas. Section 3 is
devoted to our proofs of Theorem 1.1 and Corollary 1.1.

2. SOME BASIC LEMMAS

Lemma 2.1. Let m > k > 0 be integers. Then we have
" /n m+1
= ) 2.1
> ()= () @y

Remark 2.1. The identity is well-known (cf. [G, (1.5)]) and it can be easily
proved by induction on m.

Lemma 2.2. For any n € N we have

kio (Z)Szk _ L:Z:J <n ;; k) (2:) (3:) g )

P Z”: (n ;fk:) (2:) (3:) (L, (2.3)

k=0

and

Remark 2.2. (2.2) is an identity of MacMahon [M, p. 122] (see also [G, (6.7)] and
[R, p.-41]). (2.3) can be easily proved by induction since we have the recurrence
relation

(n 4+ 1) upy1 = (Tn(n 4+ 1) + 2uy, + 8n2up,_1 (n=1,2,3,...)

by applying the Zeilberger algorithm (cf. [PWZ, pp.101-119]) via Mathematica
7, where u,, denotes the right-hand side of (2.3).

Recall that for a prime p and an integer a # 0 (mod p), the Fermat quotient
(a?~! —1)/p is denoted by g,(a).
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Lemma 2.3 ([Y]). Let p=1 (mod 3) be a prime and write p = x° + 3y* with
x =1 (mod 3). Then we have

(Eii Eg) = (296 N %) (1 - ;PCIp(Q) + qup(?))) (mod p?).  (2.4)

Lemma 2.4. For any positive integer n we have the identity

Proof. Recall that

b= [ - He

for any positive real numbers a and b. With the help of this, we have

- ”(‘Uk_n URWEIFEY lek:x_ l_wsnx
kz_o(k>3k;+1_l;0(k>( Y /0 d —/0(1 )*d
:/0 (1—y)”(y1/3)’dy=§/0 y P )
1 /(1 1 D(n+1I(1/3)
( >_§'r(n+1+1/3)
n! B = 3k
(1+1/3)---(n—|—1/3)_k 3k+1°

=1

This proves (2.5). O
Lemma 2.5. Let p > 3 be a prime and let € = (§). Then

(p=e)/3 4 3
=—— d 2.
S gy = (e o) (26)

and

(o)=L ) i

Proof. (i) It is known that for any r € Z we have

p p -1 4 L(p+1-2r)/6] 3(p—1)/2
=) = + 1)L +1-2n)/613(-1)/2 4 1
[TL (k) 3 2 <( ) s )’
k=r (mod 6)
(2.8)
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where §, takes 1 or 0 according as 3 t p + r or not. This essentially follows
from [G, (1.54)], and the present form was given in [Su02]. Note that for any
k=1,...,p—1 we have

(k) -

P(HT) =R mod i)

Clearly

and hence by (2.8) with » = 0 we have

(p—¢)/3 (p—1)/2 lp/6]

> st X i X 1
— 2k —1 — 2k —1 — 2((p+1)/2—k)—1
p o= 2k -1 P = 6k

502, @) -5 ()

or—1_1 3 (Qpl —1  g(=3)P=1/2 41 )
= —— + -1
p p 3 2
3 (=3)P-D/2 ¢ 3
=— 55 X 5 = —qu(S) (mod p).

This proves (2.6)
(ii) Now we deduce (2.7). Observe that

((p—s)/2> :(pif[)/3 (p—e)/2+1—k :(pﬁ/32k‘—2+5—p

(p—e)/3 P k Pt 2k
_(;vi_EI)/3 (1_ » )X(pﬁ/32k_2+€
P 2k —2+4¢ Pl 2k

oy )
—(1- P ) % SP (mod p?
( ; 2k—2+5>x2 (mod p7).
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where
p = (pﬁ/g (2k—1+¢)(2k—2+¢)
S 2%(2k — 1+ ¢)
_ 2(p—e)/3—1+e)/(1+e)!
_22((P—s)/3—1)(<p —)/3)((p—2)/3+ (e — 1)/2)!.
If e =1, then
(p—1)/3
1 3
> 1= 7%®) (modp)
k=1
by (2.6), and
Ep=o2-1)/3 (2(1’ - 1)/3>.
2 (p—1)/3
If e = —1, then
(Pil%/S 1 (p—z25/3 1 1
2k —3 2k — 1
k=1 k=1
3 1 3
=712 B —1=2—- - d
R PRSI 1%(3) (mod p)
by (2.6), and
Ep_ _9-2pt1)/3 (2(19 - 1)/3)/2p -1
2 (p+1)/3 3
Therefore

e N e () e O i e ey
=(2-¢) (1 - Zp qp(3)) g72pmel/3 (2((;__ 56))//33> (mod p°)

and hence (2.7) follows.
The proof of Lemma 2.5 is now complete. [J

Lemma 2.6. Let p=1 (mod 3) be a prime. Then

p+2p—1)/3\ _ (20-1)/3\ o
( (p—1)/3 >_((p—1)/3> (mod p*) (2.9)
and
(p—1)/2 1 9
> 3n 1 = 3%(2) (modp). (2.10)

k=1
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Proof. Clearly

p+2(p—1)/3 (r—1)/3 (p—1)/3
Cotns ) pH p+k+(p-1)/3 pH (1+ 3p )
2(p—1)/3 _ _
( (2971))//3) P k+(p—-1)/3 Pt p—1+3k
(p—1)/3 p—1 1
_ _ 2
=1+3p Z 3k_1—1+3p Z E(modp).
k=1 k=1
k=2 (mod 3)
It is trivial that
p—1 p—1
1 1 1
k=1 k=1
k=2 (mod 3) k=2 (mod 3)
So (2.9) holds.
By (2.8),
D 2r—1t 1
= == 2
HEE e e
Note that
(pzli/2 1 (pzli/3 1 (10215/6 1
= +
— 3k —1 — 3k—1 Pt 3(p—1)/3+k)—1
p—1 (p—1)/6
1 2
- BT 2 6k — 4
k=1 k=1
k=2 (mod 3)
AN WEE IS
P — k P 2] 3
k=2 (mod 6)

This proves (2.10). O

3. PrROOFS OF THEOREM 1.1 AND COROLLARY 1.1

Proof of Theorem 1.1. For convenience we write p = 2[4 1 and divide the proof
into three parts.

(I) Let m be any p-adic integer with m # 0 (mod p). By (2. ) we have

S )2

- (1)) (””‘Tll)kf__; (s
=

2k 3k m—1 k p—}—k:
k:)(k;)( m2 ) 3k:+1) (by Lemma 2.1).
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For each k£ =0,... ,l, clearly

(2:) (3:) (:fkikl) :plg??;jfigpx_(:!;”j) L[ w59

0<j<k

_p(_l)k p—1—k 2
ST B (mod p©),
hence when 3k + 1 # p we have
2k\ (3k\ (kY _p(=DF (~1—k\ _ p(})  p(-4)k [~1/2
k)\k)\Bk+1) 3k+1 k S 3k+1 3k+1\ k

p(—4)" (]i) (mod p?).

Therefore

Z Sro (1) (m = 1)F

W () ()

3k—|—17ép
+ (mst) =3 (pm e 0%) (mod p?) it p=1 (mod 3),
0 (mod p?) if p=2 (mod 3).

Clearly this implies (1.4) in the case p = 2 (mod 3).
When p = 2 (mod 3), (3.1) with m = 2 gives

§ 1: ! 1 k l
2 1 z : =p - bv I 94
‘ n Pt k 3]{7—|— ] JH 3k 1 ( y Lemina )

k p (p+1)/3___ P
=P H = e = DY —1-1
o B+ 1)/3 () (1))
__ P p _ 3

v Gien) (G

(II) In view of (2.3) and Lemma 2.1,
S 1 () ) R~ (n+2k B = CHCH /p+2k
4 _Z% (—4)F 7;@( 3k ) _kzzo (—4)k (3k+1)

B p(p+k+1)-(p+2k) Ho<j<k(p2—j2)
Z (3k + 1)(—4)k(k!)3

(mod p?).

n*O

p—l p+2k
L) (mod p?).

= ;;) (3k + 1)4F
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Ifl<k<p—1,thenp+k+1<2p
k=0,...,l we have

)= L2 R (et

< p + 2k and hence p | (p+2k). For

, k
0<j<k 0<j<k
Thus
—1
<« [k =p Zl: (l> (="
— (—4)k — \k)3k+1
3k+1#p
{ (pti(pl 1)/3)/4(1” /3 (mod p?) if p=1 (mod 3),
p(* ’?322_”1)}%/3)/(2}) x 42P=1/3) (mod p?) if p=2 (mod 3).
(3.2)
Combining this with (3.1) in the case m = 2, we find that

pil fk: Z < f
0 2
{ ( p+2(p 1)/3 (2(10 1)/3

) . (3.3)
(r—1)/3 (r—1)/3 5))/22?=1/3 (mod p?) if p=1 (mod 3),

(p+(§;2p1)})/3 22(2p 1)/3+1 (mod p2) if p=2 (mod 3).

By Lemma 2.6, if p =1 (mod 3) then (3.3) yields

p—1

Z f—k (mod p?).

k= 0

In the case p =2 (mod 3),

(p+ 2(2p - 1)/3) _ (2p+ (r— 2)/3)

(2p—1)/3 (2p - 1)/3
_2—p( H)/3 Ptk (QPﬁ)/g 2p+ (p+1)/3 -k
p+1)/3 14 k L -
(2p—1)/3
=6p(—1)@P—1/3=(p+1)/3 H E—(+1)/3
k=(p+4)/3 k
((p— 2)/3)' 12p )
= —6p X @r—1/3 . (2(p+1)/3) (mod p©),
sy s ¥ (p+1)/3
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hence
—1
<~ J Z e _ 12p
Y k — 2(p+1)/3
k:=0< 4) pors 2 (((15;1))//3)2(4%1)/3
12p
=— by (2.7))
1((pt+1)/2 (
§(<§+ 1373 )22(p+1)/3+(4p+1)/3
36p 9p 2
- = B (mod p?)
(p+1)/2 @i/, (Mo
((£+1)/3)22(p D+3 ((£+1)/6)
and thus

p—1 -
fe  _— Jw 9  _ 3p
Z —4)k = Z_k TS = gz (med v°).
k=0 ((p—|—1)/6) ((p—|—1)/6)

(IIT) Below we assume p = 1 (mod 3) and write p = 22 + 3y? with z,y € Z
and z = 1 (mod 3). We want to show that

p—1
3y Jo_gp 2% (mod p?). (3.4)

By (3.1) with m = 2, we have

p—1 l k 2(p—1)/3
i 1y (=1) ! (p—1)/3 ((p—l)/3) 2
L - 1) =) .
2 =P k) a1 () VT e (med )

(3.5)
Applying Lemma 2.4 and noting that

(l Tp(zi_nl/)s/g) B (<p—:>1/3> B (<pl—_11>9/3)’

—1)k L3k
1 _pI]:‘[l?)]{?—f—l

B (3k)2(3k —1) 327 (N2 pII5_,(3k — 1)
P 1;[ (3k+1)3k(3k—1) (p—Dlplp+1)---(p+1)
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Clearly

and

1)/3 k=1 k=1
(p—1)/3 1 (r—1)/3 1
=1 - =1
P kz::l pr2—k P ; % — 1

Therefore

P 1
(1 + ;pqp(i%)) (1 — gpqp(f%)) ((p _ll)/g) kljl (1 — 3kp— 1)
<( —ll /3) ( ,; > ((p _11)/3> (1 + gpqp(z)) (mod p?)

with the help of (2.10). Combining this with (3.5) and (2.7) we get

Z = (o _1ys) (17 300 = Fpa,®)  nods?),

This, together with Lemma 2.3, implies the desired (3.4).
So far we have completed the proof of Theorem 1.1. [

Pr‘oof of Corollary 1.1. Let m be 3 or —3. Then m —1 € {2, —4}. Observe that

p—1 1 n n p—1 ; p—1 n 1
z S e ()= e X ()
p—1 p—1-k . p—1 p—1—k
B Je k+j L: Sk —k—-1 1
S ()T 2. =

Il
Ny
=
=3
|

(e=]

7 N
=
|

[NEQR
|
w

~__

/|\

3=

~__
Y
I

M

[en]

=

7 N

[y
|
3|
~_
=3
;
x>

"Gl?r‘

Il
%‘;
N
3
BE
—_
N———
El
[
ke
ML
3
|5
[a—
=
B
o
o,
=

>
Il
=
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By Theorem 1.1,

p_lfk - fx _{2$ (mod p) ifp=2a?+3y? (zr,y€Z & 3|xz—1),
2 0 (mod p) if p=2 (mod 3).
So the desired (1.8) follows. [

Acknowledgment. The author would like to thank the referee for helpful
comments.
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