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On some problems of W. Sierpifski
' by

o

A. ROTKIEWICZ (Warszawa)

Dedicated to the memory of my teacher
Professor Waclaw Sierpinski

A composite natural number = is said to be a pseudoprime if n|2"—2.

The most important theorems on pseudoprimes which answer to
questions raised by Sierpiriski are:

1. Every arithmetical progression axz+b (z = 1,2,...), where (a, ) = 1

containg an infinite number of pseudoprimes (Rotkiewicz [4] and [5]).

2. Let a,b be fixed coprime positive integers. Tf D > 0 is given and

x> xy(a, D), there exists at least one pseudoprime P satisfying:

log: ; .
P =b(moda),z< P < zexp {Eg‘;i——%—l—,—} (Halberstam and Rotkiewicz
[11).

3. There exist infinitely many squarefree pseudoprimes divisible by an
arbitrary given prime p (Rotkiewicz [3]).

4. There exist infinitely many arithmetic progressions formed of four
pseudoprimes (Rotkiewicz [10]).

5. There exist infinitely many pseudoprimes which are at the same time
triangular (Rotkiewicz [6] and [9]).

6. There exist infinitely many pseudoprimes which are at the same time

pentagonal (Rotkiewicz [8] and [9]).

In 1965 (during a seminar which the author attended) W. Sierpirski
raised the question whether there exist pseudoprimes which are ab
the same time tetrahedral. (A tetrahedral nmumber is one of the form
nn+1)}n+2)
8

Here we shall prove the following

THEOREM 1. If the numbers 8n-+1, 12n41 and 24n4-1 are primes
and the numbers 12n+1 and 24n+1 are of the form x*4-2Ty2, then the
tetrahedral number Toy,,y 18 & pseudoprime number.

). The answer to this question is in the affirmative.
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Proof. We have

(24n+1)(24n+2)(24n + 3)
T24n+1 = 8

= (24n+1)(12n+1)(8n -+ 1).

Since 8n+41 and 24n-+1 are primes = 1 (mod 8), we have

) - )
(8n+1 T\ 24n+1 )

On the other hand, since the mnumbers 12n-+1 and 24n+41 are primes
of the form 2242742 2 is a cubie residue of primes 12n +1 and 24n +1,
Hence 2 is a residue of the 2nd, 3rd and the 6th degrees of the numbers
8n+1, 120+1 and 24n+1, respectively. Thus

§n+1(2—1, 12n+1(2"—1, 24n4-1|2*"—1,
‘whence
(8n+1)(12n+1)(24n+1) |24 —1 l2(87z+1)(12n—|—1)(24n+l)—1 -1

and 7,,,., is a pseudoprime number.

For 1 < n <2000 there exist 30 values for which the numbers 8n -+ 1,
12741 and 24n+1 are simultancously primes, but only 3 which satisty
the assumptions of Theorem 1. These numbers we get for n = 1179,
1274, 1895.

For n = 1179 we have

Sn+1 = 9433, 12n-+41 = 14149 = 1072427102,
24n +1 = 28297 = 1632427-82, .
For n = 1274 we have
© 8n4+1=10193, 12041 = 15289 = 672--27-20,
24n 41 = 30577 = 972427282, |
For n = 1895 we have
8n+1 =15161, 12n-+1 = 22741 = 672427262,
24n+1 = 45481 = 1732427242,
Thus the tetrahedral numbers:

Toungr = 3T76730328549, Tygsr, = 4765143438329, Typ,sy = 15680770945781

are pseudoprimes. .

Although T cannot deduce from the hypothesis H of A. Schinzel
(Schinzel and Sierpifski [13]) concerning primes that there exist infi-
nitely many tetrahedral psendoprimes, I can prove the following theorem:
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THEOREM 2. From the hypothesis H of A. Schinzel concerning _'ﬁm'mes
it follows that there exist infinitely many pseudoprimes of the form

ﬂ _ n(n+1)(n+2)
4 %

Proof. From the hypothesis H concerning primes it follows that
there exist infinitely many natural numbers »# such that 12n-+1, 18n+1
and 36n+1 are at the same time primes. Let 12n-+1, 18n-+1 and
36n-+1 be prime numbers. Since 272" —1, we have

(1) 27 (120 +1) (181 -+1) (360 -+ 1) | 236" — 1.,
23671.___
Tet N = o7 ‘We shall prove that the number }Tm{yﬂ is a pseu-
doprime number. ‘As is easy to see, we have:
236n+1 1 23(1272—{- 1) 1 22(18n+]) —1
18N +1 =———3—t—, 24N 41 = ——Tt—, 6N +1 =~
and from (1) it follows that
2 (236%_1)
18N = —5 = 0 (mod 2-9 (12n+1) (18n+1)(36n+1)),
3(0o36n __ )
24N = —‘gﬁ(z—g-lls 0 (mod 8-3(12n+1)(18n+1)(36n +1)),
I6n __
36N = %_(_2__{&_)_ =0 (mod 4-9(12n-+1)(18n+1) (360 1)),
‘whence
' 1T nys = (18N +1)(24N +1) (36N +1) ‘
=1 (mod 2-3 (12n+1) (18n+1)(36m4-1)),
and thus ‘
1

2tTaNta—l 1,

236n+1+1 23(12n+1)+1 22(18n+1)_1
ZT”N“;'( 3 )( 9 3

and the number Ty, i8 & pseudoprime number.

Bxampre. For n =1 the numbers 12n+1 =13, 18n-1 =19,
36n-+1 = 37 are prime numbers. Then

3 : 2% 41 . 2% -1
18V 41 = 2 ;‘1, 24N 41 = ; ,  36N+1 =
and the number
1. (2¥41) (2% —1)(2¥ +-1)
Pt 81

4

is a pseudoprime number.



2b4 A. Rotkiewicz

Now we shall consider pseudoprimes which are at the same time
k-gonal numbers.
The n-th k-gonal number N is defined to be
n[(k—2)(n—1)+2]
5 .

NE
Ny =

‘We shall prove the following
THEOREM 3. From ilhe hypothesis H it follows that for k = 3,5, 6,
8,10, 14,18 there erist infinitely many k-gonal pseudoprimes which
are products of two different primes.
n(n-+1)
9 s
From the hypothesis H it follows that there exist infinitely many natural
numbers # for which each of the numbers 42+1 and 8z+1 is a prime.

Then (

Proof. 1) Let k = 3. We have N3 = Ny = (2n—1)n.

8z +1
and the number Nj,., = (8¢ +1)(4x+1) is a pseudoprime number.
n[3(n—1)+2]
24

“

2) Let k = 5. We have N5 = , Whence
(@n—1)[3(2n—2) 2]

2

Nyur = = (2n —1)(3n—2).

From the hypothesis H it follows that there exist infinitely many
natural numbers y for which each of the numbers BBy +y+9)+1
and 12(3y*+y+9)+1 is a prime. Since 2 is a quadratic residue of the
number 8(3y°+y-+9)+1, we have 8(3y -ty 9)-1|2t0 )
Since 12(3y*+y +9)+1 = (6y+1)*+27-2%, 2 is a cubic residue of the

prime 12(3y°+y+9)+1, we have 12(3y+y--9)-1|2* @ ¥+ _ 1 Thyg

Nowtrurosr = [B(39* +y+9) +11[12 (3y* +y +9) +1]|
I24(3712+1/+9) — 1| 2BEU ) H I D2y 9) +1] -1 _

and Nggi,.0,; is a pseudoprime number. ‘

3) Let k = 6. We have NS = n(2n—1) and the proof of Theorem 3
in this cage is the same as in the case 1).

4) Let k = 8. We have Nj = n(3n—2). From the hypothesis H
it follows that there exist infinitely many natural numbers y for
which each of the numbers 3y2-+2y+10 and 3(3y2+2y410)—2
= (3y+1)2427-12 is a prime. Since 2 is a cubic residue of the prime
(By+1)*4+27-1% we have 3(3y* -+ 2y +10)—2|2¥°+2+9 _ 1 Since also

8
3yt +2y + 10]23?’2““"’”*9—1, we have NP |2"’1——1]2N”L_1—1 for n = 3y*+
+2y+10. Thus N} for n = 39°+2y+10 is a pseudoprime number.

) =1, whence 8z-+1|2**—1 and (do+1)(8w+1)|2*°—1
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5) Let k =10. We have N, =n[4(n—1)+1] = n(dn—3). From
the hypothesis H it follows that there exist infinitely many values
of y for which each of the numbers 4y®+2y--17 and 4(4y*+4 2y +
+17)—3 = (4y+1)>+ 64-12is a prime. Since 2 is a residue of the 4th deg-
ree of the prime number (4y 4 1)*-+ 64, we have (4y 4+ 1)* -+ 64 |24 +2w+16_7

9 . 10 .
Since also 4y+-2y+ 17|29 FWH6_ 1 we have N1 |2N" 1

for n = 4y*+2y+ 17 and the number N is a pseudoprime for n — 497+
+2y -+ 17.
E—2

6) k=14, = 6, N =n[6(n—1)+1] = n(6n—>5). From the
hypothesis H it follows that there exist infinitely many natural
numbers y for which each of the numbers 24y*+4y-+73 and
6(24y>+4y+73)—b = (12y+1)>+27-16 is a prime. Since 2 is a residue
of 6th degree for the prime number (12y-+1)*+27-4%, we have
6n—>5(2""1—1 for n = 24y*+ 4y +73. Since also n|2" ' —1forn — 249° -

14
+4y+73, we have N¥|27 112" " _1 for n — 24y 4 dy+73. This
proves Theorem 3 for k = 14.
p—) |

7) k =18, k_2i =8, N!=n8n—1)+1] =n(8r—7). From
the hypothesis H it follows that there exist infinitely many natural
numbers y ‘for which each of the mnumbers 8y24+2y+33 and
8(8y*+2y+33)—7 = (8y-+1)24256-1% is a prime. Since 2 is a residue
of the 8th degree of the prime number (8y 4+1)*+256-1*and 8n— 72" 1 —1
for n» = 8y 2y+33. Since also 7|2"'—1 for n = 8y°+2y+33, we
have n(8n—17)|2" 1 —1|27(»=0-1_1 for n = 8y*+2y+33 and n(8n—7T)
is a pseudoprime number. ,

This completes the proof of Theorem 3.

Let P(x) denote the number of pseudoprimes < 2. K. Szymiczek [16]
has proved the following theorem:

If k is a natural number and x is sufficiently large, then

P(x)> % {logz +loglogz+...+1loglog ... logx}.

n times iterated logarithm -
I have proved (Rotkiewicz [12]) the following much stronger theorem:

P(m)>%]og2m (log,z denotes logarithm at the base 2). Here

we shall prove the following:
THEOREM 4. Let P (x) denote the number of pseudoprimes which are
= 1(mod n), <z, where n is a given natural number > 6.
log,=

Then P,(x) > o
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Proof. A factor m of 2" —1 is said to be primitive if it does not divide
any of the numbers 28 —1, 5 =1,2,...,n—1.

By Theorem 1 of the paper [12] the number 2*"—1 for n> 6
has at least one primitive composite factor of the form wnk-+1. As ig
easy to see, if k-1 is a composite divisor of 2™ —1, then nk-+1|2"—1
|27 —1 |27+ _9 and nk--1 is a pseudoprime number.

Let us calculate the number of pseudoprimes which are = 1 (mod n),
< @ = 28, Let n> 6. For every k> 1 the number 2°**—1 has a com-
posite primitive factor of the form nk-41 and to different values of %
correspond different pseudoprimes of the form nk-+1. By the above

log

, . .
argument, there are at least -50:— pseudoprimes of the form nk+1

which are € # = 210827,
THEOREM 5. Let a,b be fived coprime positive integers. Let P,(x)
denote the number of pseudoprimes which are =b (mod a), < 2.

logz
h —
Then Po(@) > a’loglogx
Proof. Let us calculate the number of pseudoprimes which are
= b (mod a), < @ = 2% Let ¢, ¢, be any two distinet odd primes sat-
isfying the conditions -
41{‘:”7 g=1 (mOd aﬁh‘f’(“!ll))

and let m be any (odd) integer such that

, where ¢ denotes an absolute constant.

m =b (moda), m=1+¢ (modg), m =1 (mod ).

By Lemma 3 of my paper [11] for every prime p = m (mod ag’e)
there- exists a pseudoprime number < 2° and to different primes
correspond different pseudoprimes << 2”. Thus the number of pseu-
doprimes < z, = b (mod a) i > the number of primes p < log,® such that
P =m (mod ag’q}), where ¢, is the least prime such that ¢+ a and ¢
is the least prime = 1 (mod ag,p(ag,)).
£ v I 22 iy o 10827
The number of primes < logyz, p =m (mod ag’z?) is g P)logloga”
Let ¢ denote the least prime =1 (mod ag,¢(ag,)). We have ag’e < o,
“where ¢ denotes an absolute constant. The number of primes p < log,z,
log, logu
a‘loglog, » a’loglogx
logx
‘a’logloga "

p =m (mod ag’q;) is thus > and the number

of pseudoprimes p,p <2, =b (mod a) is also > This com-

pletes the proof of Theorem 5.
THEOREM 6. Let aZ-+bxy +cy? be a primitive quadratic form (posi-
tive or indefinite) having a fundamental discriminant and belonging to the
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principal genus. For even b, let the quadratic Jform aZ®+ 0Ty -+ cy? satisfy
the following weaker assumptions:
a) a>0, (a,b,¢) =1,
b) d = b2—4ac is not divisible by an odd square > 1,
a e
9 (?) =1 for p;t a, p,|d; (—) =1 for p;te, pild,

(1

1

d) e =1mod4 or c=1mod4 or a--btec =1mod4 and let P(x)
denote the number of pseudoprimes of the form az?+ bz + cj* < =. Then
logz

Pla)> Tloglogz

Proof. Let d =?b'—4dac = +2°d,, 37||d,, let the numbers a,b, ¢
satisfy the above conditions, let ¢ be the least prime =1 mod me(m),
where m = 2°*737*? and let p be a prime such that p = aZ + bz + ¢,
P =2"8d,¢’s+2"3°d,+1 (¢ =2 or a=3). Then by Theorem 15
of my paper [11] there exists & pseudoprime of the form a® -+ bz7 - ¢
less than 27. From the proof of Theorem 15 it follows also that
to different primes p correspond different psendoprimes of the form
a% + b7y + o, < . _ :

The number of primes which satisfy the above conditions and which

logz
are less than & = 2°%% ig > L. Thus the number of pseudo-
loglog
rimes < #, of the form az2+bEy+cy® is also > logz
; 8 —_—
P = vy logloga

This completesy the proof of Theorem 6.

Let p, denote the mth psendoprime. In 1965 (during a seminar)
‘W. Sierpinski put forward the following problem “What can we tell about
lim (pn-;-l —pn) i
N=00

Here we shall prove the following:

TrpoREM 7. lim Pre1—Pn) _ 0.
: n=c Py
Proof. Let n denote an odd positive integer and p a prime of the
form @(n(2*""—1))k+1 greater than 2" —1. By Lemma 2 of my paper

2w —1 .

[7] the number ¥ = O is a pseudoprime. Similarly we can
. 11]7_}_1

prove that the number N, = 71 is also pseudoprime. We have

2" 1 o"y1  9°+1 (@11 o1

"1 2™l 9wyl [9n4l 2w g 1)

17 — Acta Arithmetica XXI.
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Sinece

=Y,

Iim

n=od

2r41 2%—1

(2np+1' =1

we have ‘

onp __ 1 9 41 o™ 4
— < &—

"1 9" +1 2"4+1

for every & > 0 and sufficiently large n. From this Theorem 7 follows. 4
Recently Lieuwens [2] has noted that perfect numbers come into
the picture of absolutely pseudoprime numbers. . .
We call a positive integer n an absolutely pseudoprime %umlffw if
a™ = g (mod m) for every a. These numbers are also called Carmichael
numbers. Lieuwens [2] has proved the following theorem :

If n is a perfect number and n,, Ny, ...,y are all divisors of m, then
o k‘
m = n(ni'nh—l—l)
i=1

is an absolutely pseudoprime number if p; = nmh+1 48 a prime for
i=1,2,...,k

Here we shall prove the following

THEOREM 8. If nyln and ng, #=n; for © #j, nm+1, mmye+1, ...
.-.., wh,e-+1 are primes and |, -+ny+ ...+ Ny, then the number

m = (nmx+1)(n,z+1) ... (ne+1)

ts an absolutely pseudoprime number.
Proof. Let n|n,+ny+...+n. We have

(e + 1) (nngw +1) ... (nge+1) —1
=N (N + ...+ 0g)z(mod #°x) = 0 (mod #’z).

Since npz|n'e fori =1, 2, ..., k, we have nan,x|m—1fori = 1,2, ..., k.
Thus m is an absolutely pseudoprime number.
This theorem gives us the connection between absolutely pseudo-
primes, perfect numbers, multiply perfect numbers and practical numbers.
Natural numbers » such that o(n) = mn, where m is a natural number
> 1, are called P, numbers or multiply perfect numbers. A na,turajl number n
is said to be a practical number if every natural number < n is a sum qf
different divisors of the number #. For a necessary and sufficient condi-
tion for a natural number » to be a practical number see Sierpinski [14]
and Stewart [15]. ]
In a similar way to that followed in the proof of Theorem 8 we can
_prove the following
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THEOREM 9. Ifn;|n,8in,n; +# n; for i # j and if the numbers na,x + 1 ,

. . 1, .
M@ -+1, ..., nye4-1 are primes, Sttt . g, then the number

m = (M, a-+1) (e 1) ... (nngxe+1)
is a pseudoprime number.
ExAMPLE. Tet n =24, n, = L ny =2, ny =3, n, =4, n, = 6,
ng =8, n, =12, ny = 24, Then

(24-10+1)(24-224 1) (24 32+ 1) (24 - 42— 1) (24- 65+ 1)(24 - 85-+1) x
X (24122 1) (24240 1 1)

is a pseudoprime number if each of the numbers 24-1x+1, 24-2z4 1,
24-3r+1, 244w +1, 24 60+ 1, 24-8z-4-1,24-122 11, 24-240 -+ 1 i a prime
number.
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