получаем $K = O(\ln P)$ и

$$K^2 P^{\frac{2\varkappa+1}{4\varkappa+3}} \gg K^{\frac{4\varkappa+2}{4\varkappa+3}} K^2 g^{\frac{2\varkappa+1}{2\varkappa+2}K}, \qquad K^2 g^{\frac{2\varkappa+1}{2\varkappa+2}K} \ll K^{\frac{4\varkappa+4}{4\varkappa+3}} P^{\frac{2\varkappa+1}{4\varkappa+3}},$$

T.e.

$$N_{\gamma}(P) = \gamma P + O\left(P^{\frac{2\varkappa+1}{4\varkappa+3}}(\ln P)^{\frac{4\varkappa+4}{4\varkappa+3}}\right) = \gamma P + O\left(P^{\frac{1}{2} - \frac{1}{8\varkappa+6}}(\ln P)^{i}\right),$$

что и требуется доказать.

Литература

- [1] З. И. Боревич, И. Р. Шафаревич, Теория чисел, Москва 1964.
- [2] E. Borel, Leçons sur la théorie des fonctions, Paris 1914.
- [3] И. М. Виноградов, Основы теории чисел, Москва 1965.
- [4] Н. М. Коробов, О некоторых вопросах разномерного распределения, Изв. АН СССР, серия матем. 14 (1950), стр. 215-238.
- [5] Числа с ограниченным отношением и их приложения к вопросу диофантовых приближений, Изв. АН СССР, серия матем. 19 (1955), стр. 361—380.
- [6] О распределении дробных долей показательной функции, Вестник МГУ, серия матем. мех. 4 (1966), стр. 42-46.
- [7] М. Ф. Купикова, Построение числа а, для которого дробные доли {ag^x} быстро равномерно распределяются, ДАН СССР, 143, №4 (1962), стр. 782—784.
- [8] R. von Mises, Zahlenfolgen mit kollektiv-ähnlichen Verhalten, Math. Annalen 108 (1933), crp. 757-772.
- [9] А. Г. Постников, Арифметическое моделирование случайных процессов, Труды Матем. Ин-та АН СССР, вып. 57 (1960).
- [10] О комичестве попаданий дробных долей показательной функции на данный интервал, Успехи Матем. Наук, 16, вып. 3, (99), стр. 201-205.
- [11] Л. П. Постникова, Конструктивная задача о дробных долях показательной функции, Сборник Исспедования по теории чисел, вып. 4, Саратов 1972.
- [12] D. Rees, Note on the paper by I. J. Good, J. London Math. Soc. 21 (3) (1946), crp. 169-173.
- [13] D. C. Champernowne, The construction of the scale of ten, J. London Math. Soc. 8 (1933), crp. 254-260.

ACTA ARITHMETICA XXI (1972)

On some problems of W. Sierpiński

by

A. Rotkiewicz (Warszawa)

Dedicated to the memory of my teacher Professor Wacław Sierpiński

A composite natural number n is said to be a *pseudoprime* if $n \mid 2^n - 2$. The most important theorems on pseudoprimes which answer to questions raised by Sierpiński are:

- 1. Every arithmetical progression ax + b (x = 1, 2, ...), where (a, b) = 1 contains an infinite number of pseudoprimes (Rotkiewicz [4] and [5]).
- 2. Let a, b be fixed coprime positive integers. If D > 0 is given and $x > x_0(a, D)$, there exists at least one pseudoprime P satisfying: $P \equiv b \pmod{a}, x < P < x \exp\left\{\frac{\log x}{(\log \log x)^D}\right\}$ (Halberstam and Rotkiewicz [1]).
- 3. There exist infinitely many squarefree pseudoprimes divisible by an arbitrary given prime p (Rotkiewicz [3]).
- 4. There exist infinitely many arithmetic progressions formed of four pseudoprimes (Rotkiewicz [10]).
- 5. There exist infinitely many pseudoprimes which are at the same time triangular (Rotkiewicz [6] and [9]).
- 6. There exist infinitely many pseudoprimes which are at the same time pentagonal (Rotkiewicz [8] and [9]).

In 1965 (during a seminar which the author attended) W. Sierpiński raised the question whether there exist pseudoprimes which are at the same time tetrahedral. (A tetrahedral number is one of the form $\frac{n(n+1)(n+2)}{6}$). The answer to this question is in the affirmative.

Here we shall prove the following

THEOREM 1. If the numbers 8n+1, 12n+1 and 24n+1 are primes and the numbers 12n+1 and 24n+1 are of the form x^2+27y^2 , then the tetrahedral number T_{24n+1} is a pseudoprime number.

Proof. We have

$$T_{24n+1} = \frac{(24n+1)(24n+2)(24n+3)}{6} = (24n+1)(12n+1)(8n+1).$$

Since 8n+1 and 24n+1 are primes $\equiv 1 \pmod{8}$, we have

$$\left(\frac{2}{8n+1}\right) = \left(\frac{2}{24n+1}\right) = 1.$$

On the other hand, since the numbers 12n+1 and 24n+1 are primes of the form x^2+27y^2 , 2 is a cubic residue of primes 12n+1 and 24n+1. Hence 2 is a residue of the 2nd, 3rd and the 6th degrees of the numbers 8n+1, 12n+1 and 24n+1, respectively. Thus

$$8n+1|2^{4n}-1$$
, $12n+1|2^{4n}-1$, $24n+1|2^{4n}-1$,

whence

$$(8n+1)(12n+1)(24n+1)|2^{4n}-1|2^{(8n+1)(12n+1)(24n+1)-1}-1$$

and T_{24n+1} is a pseudoprime number.

For $1 \le n \le 2000$ there exist 30 values for which the numbers 8n+1, 12n+1 and 24n+1 are simultaneously primes, but only 3 which satisfy the assumptions of Theorem 1. These numbers we get for n = 1179, 1274, 1895.

For n = 1179 we have

$$8n+1 = 9433$$
, $12n+1 = 14149 = 107^2 + 27 \cdot 10^2$,
 $24n+1 = 28297 = 163^2 + 27 \cdot 8^2$.

For n = 1274 we have

$$8n+1 = 10193$$
, $12n+1 = 15289 = 67^2 + 27 \cdot 20^2$, $24n+1 = 30577 = 97^2 + 27 \cdot 28^2$.

For n = 1895 we have

$$8n+1 = 15161$$
, $12n+1 = 22741 = 67^2 + 27 \cdot 26^2$, $24n+1 = 45481 = 173^2 + 27 \cdot 24^2$.

Thus the tetrahedral numbers:

 $T_{\rm 28297} = 3776730328549, T_{\rm 30577} = 4765143438329, T_{\rm 45481} = 15680770945781$ are pseudoprimes.

Although I cannot deduce from the hypothesis H of A. Schinzel (Schinzel and Sierpiński [13]) concerning primes that there exist infinitely many tetrahedral pseudoprimes, I can prove the following theorem:

THEOREM 2. From the hypothesis H of A. Schinzel concerning primes it follows that there exist infinitely many pseudoprimes of the form

$$\frac{T_n}{4} = \frac{n(n+1)(n+2)}{24}.$$

Proof. From the hypothesis H concerning primes it follows that there exist infinitely many natural numbers n such that 12n+1, 18n+1 and 36n+1 are at the same time primes. Let 12n+1, 18n+1 and 36n+1 be prime numbers. Since $27|2^{18}-1$, we have

(1)
$$27(12n+1)(18n+1)(36n+1)|2^{36n}-1$$
.

Let $N = \frac{2^{36n} - 1}{27}$. We shall prove that the number $\frac{1}{4}T_{72N+2}$ is a pseudoprime number. As is easy to see, we have:

$$18N+1=\frac{2^{36n+1}+1}{3}$$
, $24N+1=\frac{2^{3(12n+1)}+1}{9}$, $36N+1=\frac{2^{2(18n+1)}-1}{3}$

and from (1) it follows that

$$18N = \frac{2(2^{36n} - 1)}{3} \equiv 0 \pmod{2 \cdot 9 (12n + 1)(18n + 1)(36n + 1)},$$

$$24N = \frac{2^3(2^{36n} - 1)}{9} \equiv 0 \pmod{8 \cdot 3(12n + 1)(18n + 1)(36n + 1)},$$

$$36N = \frac{4(2^{36n}-1)}{3} \equiv 0 \pmod{4 \cdot 9(12n+1)(18n+1)(36n+1)},$$

whence

$$\frac{1}{4}T_{72N+2} = (18N+1)(24N+1)(36N+1)
\equiv 1 \pmod{2 \cdot 3}(12n+1)(18n+1)(36n+1),$$

and thus

$$\frac{1}{4} |T_{72N+2}| = \left(\frac{2^{86n+1}+1}{3}\right) \left(\frac{2^{3(12n+1)}+1}{9}\right) \left(\frac{2^{2(18n+1)}-1}{3}\right) \left|2^{\frac{1}{4}T_{72N+2}-1}-1,\right|$$

and the number $\frac{1}{4}T_{72N+2}$ is a pseudoprime number.

EXAMPLE. For n=1 the numbers 12n+1=13, 18n+1=19, 36n+1=37 are prime numbers. Then

$$18N+1 = \frac{2^{37}+1}{3}, \quad 24N+1 = \frac{2^{39}+1}{9}, \quad 36N+1 = \frac{2^{38}-1}{3}$$

and the number

$$\frac{1}{4} T_{\frac{2^{39}-2}{3}} = \frac{(2^{37}+1)(2^{38}-1)(2^{39}+1)}{81}$$

is a pseudoprime number.

Now we shall consider pseudoprimes which are at the same time k-gonal numbers.

The *n-th k-gonal number* N_n^k is defined to be

$$N_n^k = \frac{n[(k-2)(n-1)+2]}{2}.$$

We shall prove the following

THEOREM 3. From the hypothesis H it follows that for k = 3, 5, 6, 8, 10, 14, 18 there exist infinitely many k-gonal pseudoprimes which are products of two different primes.

Proof. 1) Let
$$k = 3$$
. We have $N_n^3 = \frac{n(n+1)}{2}$, $N_{2n-1}^3 = (2n-1)n$.

From the hypothesis H it follows that there exist infinitely many natural numbers x for which each of the numbers 4x+1 and 8x+1 is a prime.

Then
$$\left(\frac{2}{8x+1}\right) = 1$$
, whence $8x+1|2^{4x}-1$ and $(4x+1)(8x+1)|2^{4x}-1$ and the number $N_{8x+1}^3 = (8x+1)(4x+1)$ is a pseudoprime number.

2) Let k = 5. We have $N_n^5 = \frac{n[3(n-1)+2]}{2}$, whence

Det
$$k = 5$$
. We have $N_n^3 = \frac{1}{2}$, whence

$$N_{2n-1}^5 = \frac{(2n-1)[3(2n-2)+2]}{2} = (2n-1)(3n-2).$$

From the hypothesis H it follows that there exist infinitely many natural numbers y for which each of the numbers $8(3y^2+y+9)+1$ and $12(3y^2+y+9)+1$ is a prime. Since 2 is a quadratic residue of the number $8(3y^2+y+9)+1$, we have $8(3y^2+y+9)+1 \mid 2^{4(3y^2+y+9)}-1$. Since $12(3y^2+y+9)+1=(6y+1)^2+27\cdot 2^2$, 2 is a cubic residue of the prime $12(3y^2+y+9)+1$, we have $12(3y^2+y+9)+1 \mid 2^{4(3y^2+y+9)}-1$. Thus

$$\begin{split} N^5_{8(3y^2+y+9)+1} &= [8(3y^2+y+9)+1][12(3y^2+y+9)+1]| \\ & + [2^{4(3y^2+y+9)}-1]2^{[8(3y^2+y+9)+1][12(3y^2+y+9)+1]-1}-1 \end{split}$$

and $N_{8(3\nu^2+\nu+9)+1}^5$ is a pseudoprime number.

3) Let k=6. We have $N_n^6=n(2n-1)$ and the proof of Theorem 3 in this case is the same as in the case 1).

4) Let k=8. We have $N_n^3=n(3n-2)$. From the hypothesis H it follows that there exist infinitely many natural numbers y for which each of the numbers $3y^2+2y+10$ and $3(3y^2+2y+10)-2=(3y+1)^2+27\cdot 1^2$ is a prime. Since 2 is a cubic residue of the prime $(3y+1)^2+27\cdot 1^2$, we have $3(3y^2+2y+10)-2|2^{3y^2+2y+9}-1$. Since also $3y^2+2y+10|2^{3y^2+2y+9}-1$, we have $N_n^3|2^{n-1}-1|2^{N_n^8-1}-1$ for $n=3y^2+2y+10$. Thus N_n^8 for $n=3y^2+2y+10$ is a pseudoprime number.

5) Let k=10. We have $N_n^{10}=n[4(n-1)+1]=n(4n-3)$. From the hypothesis H it follows that there exist infinitely many values of y for which each of the numbers $4y^2+2y+17$ and $4(4y^2+2y+17)-3=(4y+1)^2+64\cdot 1^2$ is a prime. Since 2 is a residue of the 4th degree of the prime number $(4y+1)^2+64$, we have $(4y+1)^2+64 | 2^{4y^2+2y+16}-1$. Since also $4y^2+2y+17|2^{4y^2+2y+16}-1$, we have $N_n^{10}|2^{n-1}-1|2^{N_n^{10}-1}-1$ for $n=4y^2+2y+17$ and the number N_n^{10} is a pseudoprime for $n=4y^2+2y+17$.

6) k=14, $\frac{k-2}{2}=6$, $N_n^{14}=n[6(n-1)+1]=n(6n-5)$. From the hypothesis H it follows that there exist infinitely many natural numbers y for which each of the numbers $24y^2+4y+73$ and $6(24y^2+4y+73)-5=(12y+1)^2+27\cdot 16$ is a prime. Since 2 is a residue of 6th degree for the prime number $(12y+1)^2+27\cdot 4^2$, we have $6n-5|2^{n-1}-1|$ for $n=24y^2+4y+73$. Since also $n|2^{n-1}-1|$ for $n=24y^2+4y+73$, we have $N_n^{14}|2^{n-1}-1|2^{N_n^{14}-1}-1|$ for $n=24y^2+4y+73$. This proves Theorem 3 for k=14.

7)
$$k=18$$
, $\frac{k-2}{2}=8$, $N_n^{18}=n[8(n-1)+1]=n(8n-7)$. From the hypothesis H it follows that there exist infinitely many natural numbers y for which each of the numbers $8y^2+2y+33$ and $8(8y^2+2y+33)-7=(8y+1)^2+256\cdot 1^2$ is a prime. Since 2 is a residue of the 8th degree of the prime number $(8y+1)^2+256\cdot 1^2$ and $8n-7|2^{n-1}-1$ for $n=8y^2+2y+33$. Since also $n|2^{n-1}-1$ for $n=8y^2+2y+33$, we have $n(8n-7)|2^{n-1}-1|2^{n(8n-7)-1}-1$ for $n=8y^2+2y+33$ and $n(8n-7)$ is a pseudoprime number.

This completes the proof of Theorem 3.

Let P(x) denote the number of pseudoprimes $\leq x$. K. Szymiczek [16] has proved the following theorem:

If k is a natural number and x is sufficiently large, then

$$P(x) > \frac{1}{4} \{ \log x + \log \log x + \ldots + \log \log \ldots \log x \}.$$

I have proved (Rotkiewicz [12]) the following much stronger theorem:

 $P(x) > \frac{5}{8} \log_2 x$ ($\log_2 x$ denotes logarithm at the base 2). Here we shall prove the following:

THEOREM 4. Let $P_1(x)$ denote the number of pseudoprimes which are $\equiv 1 \pmod{n}$, $\leqslant x$, where n is a given natural number > 6.

Then
$$P_1(x) \geqslant \frac{\log_2 x}{2n}$$
.

Proof. A factor m of 2^n-1 is said to be *primitive* if it does not divide any of the numbers 2^k-1 , k=1, 2, ..., n-1.

By Theorem 1 of the paper [12] the number $2^{2n}-1$ for n>6 has at least one primitive composite factor of the form nk+1. As is easy to see, if nk+1 is a composite divisor of 2^n-1 , then $nk+1|2^n-1|2^{nk}-1|2^{nk+1}-2$ and nk+1 is a pseudoprime number.

Let us calculate the number of pseudoprimes which are $\equiv 1 \pmod{n}$, $\leqslant x = 2^{\log_2 x}$. Let n > 6. For every $k \geqslant 1$ the number $2^{2nk} - 1$ has a composite primitive factor of the form nk+1 and to different values of k correspond different pseudoprimes of the form nk+1. By the above argument, there are at least $\frac{\log_2 x}{2n}$ pseudoprimes of the form nk+1 which are $\leqslant x = 2^{\log_2 x}$.

THEOREM 5. Let a, b be fixed coprime positive integers. Let $P_a(x)$ denote the number of pseudoprimes which are $\equiv b \pmod{a}, \leqslant x$.

Then
$$P_a(x) \gg \frac{\log x}{a^c \log \log x}$$
, where c denotes an absolute constant.

Proof. Let us calculate the number of pseudoprimes which are $\equiv b \pmod{a}, \leqslant x = 2^{\log_2 x}$. Let q, q_1 be any two distinct odd primes satisfying the conditions

$$q_1 \nmid a, q \equiv 1 \pmod{aq_1\varphi(aq_1)}$$

and let m be any (odd) integer such that

$$m \equiv b \pmod{a}, \quad m \equiv 1 + q_1 \pmod{q_1^2}, \quad m \equiv 1 \pmod{q^2}.$$

By Lemma 3 of my paper [11] for every prime $p \equiv m \pmod{aq^2q_1^2}$ there exists a pseudoprime number $< 2^p$ and to different primes correspond different pseudoprimes $< 2^p$. Thus the number of pseudoprimes $\leqslant x$, $\equiv b \pmod{a}$ is \geqslant the number of primes $p \leqslant \log_2 x$ such that $p \equiv m \pmod{aq^2q_1^2}$, where q_1 is the least prime such that $q_1 \nmid a$ and q is the least prime $\equiv 1 \pmod{aq_1q(aq_1)}$.

The number of primes $\leqslant \log_2 x$, $p \equiv m \pmod{aq^2q_1^2}$ is $\sim \frac{\log_2 x}{\varphi(aq^2q_1^2)\log\log_2 x}$. Let q denote the least prime $\equiv 1 \pmod{aq_1\varphi(aq_1)}$. We have $aq^2q_1^2 < a^c$, where c denotes an absolute constant. The number of primes $p \leqslant \log_2 x$, $p \equiv m \pmod{aq^2q_1^2}$ is thus $\gg \frac{\log_2 x}{a^c\log\log_2 x} \gg \frac{\log x}{a^c\log\log x}$ and the number of pseudoprimes p, $p \leqslant x$, $\equiv b \pmod{a}$ is also $\gg \frac{\log x}{a^c\log\log x}$. This completes the proof of Theorem 5.

THEOREM 6. Let $a\vec{x}^2 + b\overline{x}y + c\overline{y}^2$ be a primitive quadratic form (positive or indefinite) having a fundamental discriminant and belonging to the

principal genus. For even b, let the quadratic form $a\overline{x}^2 + b\overline{x}\overline{y} + c\overline{y}^2$ satisfy the following weaker assumptions:

- a) a > 0, (a, b, c) = 1,
- b) $d = b^2 4ac$ is not divisible by an odd square > 1,

c)
$$\left(\frac{a}{p_i}\right) = 1$$
 for $p_i \nmid a$, $p_i \mid d$; $\left(\frac{c}{p_i}\right) = 1$ for $p_i \nmid c$, $p_i \mid d$,

d) $a \equiv 1 \mod 4$ or $c \equiv 1 \mod 4$ or $a+b+c \equiv 1 \mod 4$ and let $\overline{P(x)}$ denote the number of pseudoprimes of the form $a\overline{x}^2 + b\overline{x}\overline{y} + c\overline{y}^2, \leq x$. Then

$$\overline{P(x)} \gg \frac{\log x}{\log \log x}.$$

Proof. Let $d=b^2-4ac=\pm 2^\beta d_1$, $3^\gamma \| d_1$, let the numbers a,b,c satisfy the above conditions, let q be the least prime $\equiv 1 \mod m\varphi(m)$, where $m=2^{3+\beta}3^{\gamma+2}$ and let p be a prime such that $p=a\overline{x}^2+b\overline{x}\overline{y}+c\overline{y}^2$, $p=2^{a+1}3^3d_1q^2z+2^a3^2d_1+1$ (a=2 or a=3). Then by Theorem 15 of my paper [11] there exists a pseudoprime of the form $a\overline{x}^2+b\overline{x}\overline{y}+c\overline{y}^2$ less than 2^p . From the proof of Theorem 15 it follows also that to different primes p correspond different pseudoprimes of the form $a\overline{x}^2+b\overline{x}\overline{y}+c\overline{y}^2,\leqslant x$.

The number of primes which satisfy the above conditions and which are less than $x = 2^{\log_2 x}$ is $\gg \frac{\log x}{\log \log x}$. Thus the number of pseudo-

primes
$$\leqslant x$$
, of the form $a\overline{x}^2 + b\overline{x}\overline{y} + c\overline{y}^2$ is also $\gg \frac{\log x}{\log\log x}$.

This completes the proof of Theorem 6.

Let p_n denote the nth pseudoprime. In 1965 (during a seminar) W. Sierpiński put forward the following problem "What can we tell about $\lim_{n\to\infty} (p_{n+1}-p_n)$?"

Here we shall prove the following:

THEOREM 7.
$$\lim_{n=\infty} \frac{(p_{n+1}-p_n)}{p_n} = 0$$
.

Proof. Let n denote an odd positive integer and p a prime of the form $\varphi(n(2^{2n}-1))k+1$ greater than $2^{2n}-1$. By Lemma 2 of my paper [7] the number $N=\frac{2^{np}-1}{2^n-1}$ is a pseudoprime. Similarly we can prove that the number $N_1=\frac{2^{np}+1}{2^n+1}$ is also pseudoprime. We have

$$\frac{2^{np}-1}{2^n-1} - \frac{2^{np}+1}{2^n+1} = \frac{2^{np}+1}{2^n+1} \left(\frac{2^n+1}{2^{np}+1} \cdot \frac{2^{np}-1}{2^n-1} - 1 \right).$$

Since

$$\lim_{n=\infty} \left(\frac{2^n + 1}{2^{np} + 1} \cdot \frac{2^{np} - 1}{2^n - 1} - 1 \right) = 0,$$

we have

$$\frac{2^{np}-1}{2^n-1} - \frac{2^{np}+1}{2^n+1} < \varepsilon \frac{2^{np}+1}{2^n+1}$$

for every $\varepsilon > 0$ and sufficiently large n. From this Theorem 7 follows.

Recently Lieuwens [2] has noted that perfect numbers come into the picture of absolutely pseudoprime numbers.

We call a positive integer n an absolutely pseudoprime number if $a^m \equiv a \pmod{m}$ for every a. These numbers are also called Carmichael numbers. Lieuwens [2] has proved the following theorem:

If n is a perfect number and n_1, n_2, \ldots, n_k are all divisors of n, then

$$m = \prod_{i=1}^k (n_i nh + 1)$$

is an absolutely pseudoprime number if $p_i = n_i nh + 1$ is a prime for i = 1, 2, ..., k.

Here we shall prove the following

THEOREM 8. If $n_i | n$ and $n_i \neq n_j$ for $i \neq j$, $nn_1 + 1$, $nn_2x + 1$, ... $nn_kx + 1$ are primes and $n | n_1 + n_2 + ... + n_k$, then the number

$$m = (nn_1x+1)(nn_2x+1)\dots(nn_kx+1)$$

is an absolutely pseudoprime number.

Proof. Let $n \mid n_1 + n_2 + \ldots + n_k$. We have

$$(nn_1x+1)(nn_2x+1)\dots(nn_kx+1)-1$$

 $\equiv n(n_1+\dots+n_k)x \pmod{n^2x} \equiv 0 \pmod{n^2x}.$

Since $nn_ix \mid n^2x$ for $i=1,2,\ldots,k$, we have $nn_ix \mid m-1$ for $i=1,2,\ldots,k$. Thus m is an absolutely pseudoprime number.

This theorem gives us the connection between absolutely pseudoprimes, perfect numbers, multiply perfect numbers and practical numbers.

Natural numbers n such that $\sigma(n)=mn$, where m is a natural number >1, are called P_m numbers or multiply perfect numbers. A natural number n is said to be a practical number if every natural number $\leqslant n$ is a sum of different divisors of the number n. For a necessary and sufficient condition for a natural number n to be a practical number see Sierpiński [14] and Stewart [15].

In a similar way to that followed in the proof of Theorem 8 we can prove the following

THEOREM 9. If $n_i \mid n, 8 \mid n, n_i \neq n_j$ for $i \neq j$ and if the numbers nn_1x+1 , nn_2x+1, \ldots, nn_kx+1 are primes, $\frac{n}{2} \mid n_1+n_2+\ldots+n_k$, then the number

$$m = (nn_1x+1)(nn_2x+1)\dots(nn_kx+1)$$

is a pseudoprime number.

Example. Let $n=24,\ n_1=1,\ n_2=2,\ n_3=3,\ n_4=4,\ n_5=6,\ n_6=8,\ n_7=12,\ n_8=24.$ Then

$$\begin{array}{l} (24 \cdot 1x + 1)(24 \cdot 2x + 1)(24 \cdot 3x + 1)(24 \cdot 4x + 1)(24 \cdot 6x + 1)(24 \cdot 8x + 1) \times \\ \times (24 \cdot 12x + 1)(24 \cdot 24x + 1) \end{array}$$

is a pseudoprime number if each of the numbers $24 \cdot 1x + 1$, $24 \cdot 2x + 1$, $24 \cdot 3x + 1$, $24 \cdot 4x + 1$, $24 \cdot 6x + 1$, $24 \cdot 8x + 1$, $24 \cdot 12x + 1$, $24 \cdot 24x + 1$ is a prime number.

References

- [1] H. Halberstam and A. Rotkiewicz, A gap theorem for pseudoprimes in arithmetic progressions, Acta Arith. 13 (1968), pp. 395-404.
- [2] E. Lieuwens, Fermat pseudoprimes, Doctor thesis, Delft 1971.
- [3] A. Rotkiewicz, Sur les nombres premiers p et q tels que pq | 2^{pq} 2, Rend. Circ. Mat. Palermo 11 (1962), pp. 280-282.
- [4] Sur les nombres pseudopremiers de la forme ax + b, C. R. Acad. Sci. Paris 257 (1963), pp. 2601-2604.
- [5] On the pseudoprimes of the form ax + b, Proc. Cambridge Phil. Soc. 63 (1963), pp. 389-392.
- [6] Sur les nombres pseudopremiers triangulaires, Elem. Math. 19 (1964), pp. 82-83.
- [7] Sur les polynômes en x qui pour infinité des nombres naturels x donnent des nombres pseudopremiers, Atti Acad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 36 (1964), pp. 136-140.
- [8] Sur les nombres pseudopremiers pentagonaux, Bull. Soc. Roy. Sci. Liège 33 (1964), pp. 261-263.
- [9] On pseudoprime numbers, Publ. Math. Debrecen 14 (1967), pp. 69-74.
- [10] The solution of W. Sierpiński's problem, Journal of Number Theory (in press).
- [11] Pseudoprime numbers and their generalizations, University of Novi Sad, Faculty of Sciences, 1972, pp. 1-169.
- [12] On the number of pseudoprimes $\leq x$, Univ. Beograd. Publ. Elektrotehn. Fak. (in press).
- [13] A. Schinzel et W. Sierpiński, Sur certaines hypothéses concernant les nombres premiers, Acta Arith. 4 (1958), pp. 185-208.
- [14] W. Sierpiński, Sur une propriété des nombres naturels, Ann. Mat. Pura Appl.
 (4) 39 (1955), pp. 69-74.
- [15] B. M. Stewart, Sums of distinct divisors, Amer. J. Math. 76 (1954), pp. 779-785.
- [16] K. Szymiczek, On pseudoprimes which are products of distinct primes, Amer. Math. Monthly 74 (1967), pp. 35-37.