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ABSTRACT

With the help of some new results about weight enumerators of self-dual codes over Z4
we investigate a class of double circulant codes over Z4, one of which leads to an extremal
even unimodular 40-dimensional lattice. It is conjectured that there should be “Nine more

constructions of the Leech lattice”.
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1. Introduction

The inspiration for this work was the discovery made in [3] that the Leech lattice can be
obtained by lifting the binary Golay code of length 24 to a self-dual code over Z4 and applying
Construction A4 (cf. Section 4). We were interested in seeing if other binary codes could be
lifted to Z4 codes so as to produce unimodular lattices.

In Section 3 we investigate a class of double circulant codes over Z4 that lie above the
binary double circulant codes B studied in Chap. 16, §7 of [14]. These are self-dual codes over
Z4 in which the norm of every vector is divisible by 8, and in Section 2 we establish some
new results about the weight enumerators of such codes. In Section 4 we show that the code
of length 40 leads to an extremal even unimodular 40-dimensional lattice. In the last section
we reconsider the Leech lattice, give another construction for it based on a different double
circulant code, and suggest that there may be seven more constructions awaiting discovery!

(But see the Postscript.)
2. Weight enumerators of codes over 7,

In this section we use invariant theory to establish some new results about weight enu-
merators of codes over Z4. For background information about this technique, see [17] or [14],
Chap. 19.

Asin [10], [12] we use the following terminology. The elements of Z4 = Z /47 are denoted by
{0,1,2,3}, and their Lee weights (denoted by wt) are respectively 0,1,2,1. The Lee distance

n
between vectors u,v € Z} is dist(u,v) = Y. wt(u; — v;). In the present paper we also consider

=1
the Euclidean norms (denoted by norm) of the elements of Z4, which are respectively 0,1,4,1,

so that norm(u;) = wt(u;)?. The Euclidean norm between vectors u,v € Z} is norm(u,v) =
T
>~ norm(u; — v;). A linear code C' of length n over Z4 is a subset of Z} which is closed under
=1
addition. Duality is defined with respect to the standard inner product u-v = uiv1+- - -+ 1, vy,.

As in [6] we say that C has type 1%12%2 if by a suitable permutation of coordinates the generator

matrix can be put into the form

I, X Y
0 2, 2Z

for appropriate matrices X,Y, Z. If C' is a linear code of length n over Z4 there are two binary



codes of length n associated with it:

C; = {e(mod 2): ceC}, (2.1)
Cy = {%C:CE C, ¢ = 0(mod 2)} . (2.2)

Lemma 1. If C is of type 1% then Cy = C,.

We omit the elementary proof.
The complete weight enumerator (or c.w.e.) of a linear code C' is
cwec(a,b,c,d) = Z a0y () gna(w) gra(v) ,
ueC
where n;(u) is the number of components of u that are equal to ¢ (i = 0,1,2,3). Following

Klemm [13] we also use the variables

To = (at+e)/V2, T = (b+d)/V2,
T, = (a—c)/V3, Ty = (b—d)/V3 .

A disadvantage of the c.w.e. is that it contains too much information. For most purposes
there is no need to distinguish between coordinates that are 1 and coordinates that are 3. We

therefore define the symmetrized weight enumerator (or s.w.e.) of C to be
swec(a,b, c) = cwec(a,b,c,b) .

We will use upper case letters for c.w.e.’s and lower case letters for s.w.e.’s. The subscript
gives the degree.
o0
The Molien series of a polynomial ring R is the series ®(\) = 3. aygA?, where aq is the

d=0
dimension of the subspace of R consisting of the homogeneous polynomials of degree d (see [1],

[14], [17], [18], [19]).

The first theorem is due to Klemm.

Theorem 2 (Klemm [13]) Let C be a self-dual code of length n over Z4 that contains 1™.

Then the c.w.e. of C is an element of the ring

Ro® AsRo & AFRo @ BisRo ® AsB16Ro ® A3B16Ro

= (16 As & AZ)(1® Bis)Ro

with Molien series
(14 2%+ A19)(1 + \16)
(1= (T~ AS)(1 - A2)(1 - A1)
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where R is the ring of symmetric functions of Ty, T, Ty, T3, and

Ay = TiT3+ 10Ty

Big = (ToTToT3)X(TyTy + TyTs =TTy — TS .

Proof. We sketch the proof, since this will be the basis for the following proofs. The c.w.e.

of C' is invariant under the following linear transformations of the variables Ty, 17, T5, T5:

1 1 1 1
(2.5)

and hence is also invariant under the group Gy that they generate, which has order 1024. The
Molien series of Gy can be calculated directly, for example using Magma [5], and is equal to
(2.4). It is easily checked that Ag, Big and the elements of Rg are invariant under Gy, and
that the Molien series (2.4) describes the structure of the direct sum in (2.3). The result then
follows. .

The next result, which follows from Theorem 2, was given in [10].

Corollary 3. Let C' be a self-dual code of length n over Z4 that contains a vector £1™. Then

the s.w.e. of C' is an element of the ring
Ro @ agRo @ azRo , (2.6)

with Molien series

S

=T+ A 4+ 30 AN 76 L9020 13 4. 2.
0= (1 = (1 = A9 + AP 3N+ F TN ON 13Nt 4 (2.7)

where Ry is the ring Cldq, Ps, P12 and

o4 = a* + 6a%c® + 8b* + 4 ,
bs = (a%c? = b){(a? + )P — 4%} |
¢12 — b4(a2 _ C2)4 ,

ag = bYa—c)t.

Proof. When we set d = b the ring Ry collapses to Ry and (2.3) collapses to (2.6). The

structure of the latter ring is described by the Molien series (2.7). n



Codes whose weight enumerators yield all the polynomials needed to obtain the rings (2.3)
and (2.6) were given in [10].
The codes used in the present paper have an additional property, described in the following

theorem, which we believe to be new.

Theorem 4. Let C be a self-dual code of length n over Z4 that contains 1™ and has all norms

divisible by 8. Then the c.w.e. of C is an element of the ring
(1@ Hs® HF ® H)(1 @ Hig)(1@ Hzg)Ry (2.8)

with Molien series
(1= )1 = )1~ A1 — 32) |

where Ry is the ring of symmetric polynomials in TS, TF, TS, TS, and

Hy = ToTy + TpT5 + T3T + TV T = Ty Ty =TTy
Hig = (ToTT3Ts)"

Hsy = (ToThWToT3)X(Ty + Ty )(T3 + Ta )(T5 + TH)(T7 + To \(Ty — Ts)(T7 = Ty) .

Proof. The c.w.e. is now invariant under the group (7 generated by G and the additional

transformation

n
where 7 = (1+1i)/v/2, n® = 1. Using Magma we find that GGy has order 6144 and Molien series

given by (2.9). We then check that Hg, His, H3z and the elements of Ry are invariant under
(1, and that there are syzggies expressing Hg (but not HZ or HJ), H and H2, as elements

of the ring (2.8). The result follows. .

Corollary 5. Let C be a self-dual code of length n over Z4 that contains a vector £1" and

has all norms divisible by 8. Then the s.w.e. of C' is an element of the ring
Ry @ hgRy @ h3R, ® haRy , (2.10)

with Molien series

1+A8_|_A16_|_A24
(1= A%)(1 = A16)(1 — A%4)

= 12X AN L 7N  10M32 4 14010 4 19N 124050 1 3005 . . -
(2.11)



where Ry is the ring Clfs, 016,024 and

bs = a®+ 28a%¢* + 70a*c* + 28a?c® + & + 128065,
016 = {a*c*(a®+ *) — 4b°}H{(a* + 6ac* + b*)? — 64b°},
024 — b8(a2 _ 62)8,

hs = {ac(a® + c*) —20*}% .

Proof. Parallel to the proof of Corollary 3. Rq collapses to R when we set d = b. "
It is possible, although as we shall see not necessarily desirable, to impose a further condi-

tion on the code.

Theorem 6. Let C' be a self-dual code of length n over Z4 that contains 1™ and has all norms
divisible by 8 and all Lee weights divisible by 4. Then the c.w.e. of C is an element of the free
polynomial ring Ry generated by Hyg and all symmetric polynomials in TS, TS, TS, TS. This

ring has Molien series
1

(1= X8)(1 — AL6)2(1 — \24)

(2.12)

Proof. The c.w.e. is invariant under the group G2 generated by 7 and

1

1
Again using Magma we find that G2 has order 49152 and Molien series (2.12). (G5 is a unitary
reflection group (cf. [16]), and consists of all monomial matrices whose elements are powers of
1 such that the product of all the entries in each matrix is an even power of 7. It is then easily

seen that the ring of invariants is equal to R,. .

Corollary 7. Let C be a self-dual code of length n over Z4 that contains a vector £1™ and has
all norms divisible by 8 and all Lee weights divisible by 4. Then the s.w.e. of C is an element

of the ring R1 with Molien series

1

= AR NI LA N2 50 7B g6 10N (2.1
o) - o1z = AT AT AT SAT10A - (2:13)




Remarks

1. The group Gy is half of the full group G5 of all monomial matrices whose elements are

powers of 1. G'3 has order 84! = 98304 and Molien series

1
(1= A8)(1 — A16)(1 — A20)(1 — A%2)

However, there does not seem to be any additional condition arising naturally from coding
theory that can be imposed on C' which will force its c.w.e. to be invariant under Gs.

2. The s.w.e.’s of the Klemm codes Kg, K16, K24 (which are generated by 1™ and all vectors
of shape 220772, cf. [13], [10, Eq. (43)]) span the ring R;. By adjoining the s.w.e. of the
octacode (see [10], [11], [12]) we generate the ring (2.10).

3. The next result shows why the additional property of the codes mentioned in Theorem 6
and Corollary 7 may not be a good thing. For as we saw in [12], it is quite unusual for a
Zylinear code to have a binary image that is also linear. Most interesting Z4 codes do not

have this property.

Theorem 8. IfC is a self-dual code over Z 4 with all Lee weights divisible by 4, then the binary

image of C under the Gray map (cf. [12]) is linear.

Proof. Let u,v be codewords in C' and let 7, T denote their binary images. By a fundamental
property of the Gray map, dist(u,v) = dist(w, ), the latter distance of course being Hamming
distance. Since dist(u,v) = dist(u) = dist(v) = 0(mod 4), wt(a N b) is even. If C denotes the
binary image of C', and D is the linear span of C, we have 2" = [C| < |D| < |D*| (where n is
the length of '), and so C' = D. .

3. Double circulant codes over 74

In this section we consider codes over Z4 which when read modulo 2 are the double circulant

codes B described for example in Eq. (57), p. 507 of [14].

Definition. Let n = 2p + 2 where p is a prime congruent to 3 (mod 8). The code D,, has

generator matrix

11 1|11 1
1 0
M= . . (3.1)
: I | b(I+ R)
1 0



if p=11(mod 16), or

111 --.. 1‘1‘1 1
1 0
M= . . (3.2)
: I T +3R+ 2N
1 0

if p = 3(mod 16), where R = (R;;), R;; = 1if j — ¢ is a nonzero square mod p, or 0 otherwise;
N = (N;;), Nij = 1if j — ¢ is not a square mod p, or 0 otherwise; and b can be either 41 or

—1.

Theorem 9. D, is a self-dual code over Z4 in which all norms are divisible by 8.

Proof. The two cases are similar, and we give details only for p = 3(mod 16). The rows of
the matrix M are indexed by the elements of the projective line c0,0,1,...,p — 1.

The norm of row M, is 2p + 2 = 8(mod 16) and the norm of row M;, i # ocois 1 + 1 +
1+ (p—-1)/2+4p—-1)/2=(5p+1)/2 = 0(mod 8). Hence the norm of every row of M is
divisible by 8.

Next we check that D, is self-orthogonal mod 4. Let

0 MME

T _
MM =1y gyt A )

and observe that, for: =0,1,...,p— 1,
(MMEI), =1+ 1+4143(p—1)/2+2(p—1)/2=(p+5)/2 = 0(mod 8) .
The matrix A is given by
A=J+T+(T+3R+2N)I+3R+2N)T =274+ I+ RRT + 2(RNT + NRT) |

where J is the p x p matrix with every entry equal to 1. Now we use Perron’s Theorem (cf.

Chap. 16, Theorem 24 of [14]) to write

RRT = <1%1—1)(J—I)+<p%1)

I,
1 1 1
RNT = (%_1)1”(]%) w=<]%)(J—I)—R.



It follows that A = 0(mod 4) and that D,, is a self-dual code over Zj4.
Since D, is generated by codewords with norms divisible by 8 and is self-orthogonal modulo

4, it follows by induction that the norm of every codeword is divisible by 8. "

Remarks. (1) The generalization to block lengths n of the form 2¢ 4+ 2 where ¢ is a prime
power congruent to 3 (mod 8) is straightforward.

(2) This section began by mentioning a certain binary double circulant code B of length
n. B is invariant under a permutation group G, that is isomorphic to PG Lz(p). Indeed, we
could have started with this permutation representation, and constructed B in terms of the
irreducible G,,-submodules.

There are several interesting linear codes over Z4 that reduce to B when read modulo 2.

For example, when p = 11(mod 16) the matrix

111 «vve-. 11111 «-ovn 17

b(1 +3R)
I : +2N

M’

L 3 2 1

where b is +1 or —1, generates a self-dual code over Z4 with all norms divisible by 8.
However, the codes D,, are distinguished by reducing to B modulo 2 and by being invariant

under a group G, of monomial matrices that reduces to G, when read modulo 2. Recall that

extended quadratic residue codes over Z,4 are related to extended binary quadratic residue

codes in this same way (cf. [3]).

Theorem 10. The automorphism group G, of D, is a central extension of PG Ly(p); the
center Z(G,) = {£1} and G, /Z(G,) ~ PG Ly(p). The group G, is generated by the following

automorphisms:

T! . . . : .
(1) T; = [ i 0 ], where T is the permutation matriz corresponding to z — z + 1,

0 1
, P! . . .
(2) P, = 0“ ](3), , where a is a nonzero square modulo p, and P} is the matriz corre-
a

sponding to the permutation z — az,

, P’ . . . .
(3) S = [ PO 61 ], where P’ is the matriz corresponding to the permutation z — —z,
-1



(4) A = [ /})1 )(\) ], where (using O to indicate a nonzero square mod p, and [[I for a
2

nonsquare mod p)

1, if i=00,7=0,
3, if 1=0,5 =00,
(M)ij = 3, if i=0 and j=—-1/i,
1, if ¢=0 and j= -1/,
0, otherwise,
3, if 1=00,j=0,
1, if 1=0,7=o00,
and (Ag);; = 3, if i=0 and j=—-1/1,
1, if ¢=0 and j=-1/i,
0, otherwise.

Proof. Again we give details only for p = 3(mod 16). It is clear that the transformations
T,,:=0,1,....,p— 2 and P,, a = O, are automorphisms of D,.

Next we consider

0
MMS)T = | | :

where

B= (P, 4+3RP ,+2NP )T +3P , + RP', +2NP, .

Since P'; NP, — R, it follows that M (M S)T = 0(mod 4). Hence the rows of MS generate
D,, and S is an automorphism of D,, as required.

Since the rows of MS generate D,, we may prove that A is an automorphism by showing
that (M SA)MT = 0(mod 4). There are several different cases: we shall only present a typical
calculation to show the general method. We consider the inner product of M_15A with M,

where @ = [l and a4+ 1 = [ (the same argument applies to (M SA, M,) where b is an arbitrary

nonsquare).
My = (10 0110 3 3 2 )
o 0 a+1=0 a+1#0
M_4S = (03 -« - - | 3 030 0 )
oo 0 1 -1
M_1Sx = (1 0 0 10 0 1)
%) 1 —1

10



Next we take the inner product with M,; note that (M,)o = (My)-1 = 3 since ¢ = [l and
a+1=0.

M, = (1 0 --010--01]03 - -+ 3)
00 a 0 -1

We need to calculate (M_;.5)),, where the subscript L indicates the left half. We know

L
1 41
a:zzﬁ and a—l—l:%:ﬁ.

If (M_15X),, =1 then (M_15X, M,) = 0(mod 4), as required. Since £ =1, (M_15)),, =1
if and only if (M_15)_,, = 3. Finally (M_;5)_, = 3 if and only if (M_1),, = 3, and this

follows from the assumption {4+ 1 =[1. =
4. The case n = 40 and a 40-dimensional even unimodular lattice

Theorem 11. In the case p = 19, the code Dy defined by (3.1) is a self-dual code of length

40 over Z 4 with norms divisible by 8 and with minimal norm 16.

Proof. In view of the results of the previous section it is only necessary to show that the
minimal norm is not 8. In this proof we denote the code by C'. We show by computer that the
binary image Cy (see (2.1)) is [40,20,8] code, in which there are 285 words of weight 8. By
Lemma 1, this also holds for Cs.

Let w € C, u # 0 have minimal norm. If all coordinates of u are even, norm(u) > 32,
by the previous paragraph. Otherwise u has exactly eight £1 coordinates and some unknown
number of 2 coordinates. The vectors in C of shape £182*0* fall into 285 sets according to
their binary image. The following argument shows that the group of C' acts transitively on
these 285 sets.

It is easy to verify that the vector ¢ given by

0 0
6 7 8 9 10 11 12 13 14 15 16 17

0 2
© -+ 2 3 14 - oo 0 1 2 3 4 5
is a codeword in C'. The permutation group G obtained from the automorphism group of C
by reduction modulo 2 is isomorphic to PG L9(19) and has order 20.19.18 = 285.24. This
permutation group is in fact the automorphism group of the binary code obtained from C
by reduction modulo 2. Let S = {ocor,21,31,147,0R,10R, 135, 155} be the set of coordinate

positions indexing entries +1 in the codeword ¢ (the subscripts L and R correspond to Left

11



and Right coordinate positions). It is sufficient to prove that the subgroup Stabg(.9) of G that
fixes S setwise has order exactly 24. We observe that this subgroup contains a group of order

24 generated by the following automorphisms:

1) a symmetry g7 corresponding to z — 1/z which interchanges the left and right halves

because the underlying permutation is not in PSL3(19),

2) a symmetry g, corresponding to z — 7z which acts as the 3-cycle (2,13, 14) on the left
and as the 3-cycle (10,13, 15) on the right,

3) asymmetry gs corresponding to z — 2 (jf—Q) which acts on the left as (0,15)(10,13) and

on the right as (00,2)(3,14).

The subgroup generated by g, and g3 has order 12 and is isomorphic to the alternating group
Ay (this is clear from the action on either half). If |Stabs(S)| > 24 then there must exist
g4 € Stabg(9), fixing the left and right halves, such that (g2, g3, ¢4) is isomorphic to the full
symmetric group S4. However, this provides a contradiction since it is not possible to realize
(00)(2)(3 14) as a permutation in PSLy(19).

We now chose one vector u € C of shape £182*0*, and examine the set {u +2c: ¢ € C}
by computer. It is found that the minimal Lee weight is 20, achieved by 512 vectors of shape
+1826019. These vectors have norm 32, which is therefore the smallest norm in the set. This
completes the proof. "

We had hoped to use Corollary 5 to determine the s.w.e. of Dyg. As we see from (2.11),
there are 14 degrees of freedom in the s.w.e. Unfortunately, even using everything we know
about this code (minimal Lee weight, the projections onto the binary codes C; and Cj, complete
information about the words of shape +£182*0*, the theta series of the corresponding lattice —
see below), there still remains one undetermined coefficient. Any further piece of information,
such as knowledge of the words of shape +£1'22*0*, would be enough to pin down the s.w.e.

We now use this code to obtain a lattice, by using the following version of Construction
Ay (cf. [9], [3]). Suppose C' is a self-dual code of length n over Z4 of type 1"/? with generator

matrix [[ A]. Suppose also that all norms in C are divisible by 8 and that the minimal norm

1fr a
2|0 41

generates an even unimodular n-dimensional lattice with minimal norm min{4, N/4}.

in C'is N. Then the matrix

12



When applied to the code Dy this construction produces an extremal even unimodular
40-dimensional lattice. We do not know if this is the same as any of the known lattices of this
class (cf. [9], p. 194). (But see the Postscript.) It would be a worthwhile project for someone
to investigate the known extremal even unimodular lattices in dimensions 32 and 40 and to

determine which ones are distinct.
5. Further constructions for the Leech lattice

There are nine doubly-even self-dual binary codes of length 24 [15]: the Golay code and
eight codes of minimal distance 4. The latter are best described by specifying the subcodes
spanned by the weight 4 words, which are dq4, diges, d3y, dige, €3, d3, di and df (see Table E
of [7]).

We conjecture that each of these nine codes can be lifted to a self-dual code over Z, such that
applying Construction A4 yields the Leech lattice. This would give “Nine more constructions
for the Leech lattice” (compare [8]).

As already remarked, the Golay code can certainly be lifted in this way [3]. We now
show that the da4 code can also be lifted. The other seven cases are still open! (But see the
Postscript.)

Consider the self-dual code C over Z4 with generator matrix [/ A], where [ is a 12 x 12
identity matrix and A is a 12 x 12 bordered circulant matrix with first row and column 2 111,
Let B be the 11 x 11 circulant part of A. Then B;; = 2, B;; = 1if ¢ — j is a square mod 11
or 3 if 2 — 7 is not a square. When read mod 2, this does indeed become the self-dual code of

type do4. Using the Bell Labs Cray Y-MP we calculated the s.w.e. of this code, which in the

terminology of Corollary 5 is
O3 — 8403016 — 720024 + 2064hgb16 — 1032h305 + 10304A5 .

Inspection of this weight enumerator shows that the minimal Lee weight is 8, the minimal
norm is 16, and all norms are divisible by 8. Applying Construction A4 we obtain an even
unimodular lattice of minimal norm 4, which (see Chap. 12 of [9]) is necessarily the Leech
lattice.

Note that C' is a double circulant self-dual code over Z4 with minimal norm 16 for which the
corresponding binary code 'y has minimal distance 4. This is interesting in view of Bachoc’s

conjecture (quoted in [2]) that the minimal norm of an extended cyclic self-dual code over Z4

13



is twice the minimal Hamming distance of the corresponding binary code.

Postscript

(1)

After this paper was written we became aware of the dissertation by Bonnecaze [2] and a
preprint by Bonnecaze, Solé and Mourrain [4] which also prove Theorem 4 and Corollary 5

(in a different but equivalent form). We thank Patrick Solé for pointing this out.

Gabriele Nebe and Bernd Souvignier have determined the automorphism groups of the
40-dimensional lattice constructed in Section 4 and the McKay lattice ([9], p. 221). These
groups are respectively 2.PG L3(19) and 22°. PG L2(19), showing that the lattices are not
equivalent. Professor Nebe observes that this can also be deduced from the fact that our
lattice is generated by its minimal vectors, whereas in the McKay lattice the minimal
vectors span only a sublattice of index 2. Professor Nebe also found that McKay lattice

can be obtained from a different code over Z,4.

The remaining seven constructions of the Leech lattice have been found by Jessica Millar

Young and N.J.A.S. These will be described elsewhere.
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