The Binary Self-Dual Codes of Length Up To 32: A Revised Enumeration*

J. H. Conway

Mathematics Department Princeton University Princeton, New Jersey 08540

V. Pless**

Mathematics Department University of Illinois at Chicago Chicago, Illinois 60680

N. J. A. Sloane

Mathematical Sciences Research Center AT&T Bell Laboratories Murray Hill, New Jersey 07974

February 28, 1990

^{*} This paper appeared in J. Combinatorial Theory, Series A, 60 (1992), 183-195.

^{**} Research supported in part by Air Force Office of Scientific Research Grant 88027.

1. The 85 doubly-even codes of length 32

In the course of preparing Ref. [4] we discovered certain errors in [10], and this led us to recheck the list of 85 doubly-even self-dual codes of length 32 given in [2]. The actual enumeration of these 85 codes in [2] was subject to many computer checks and was correct, but unfortunately several errors and obscurities have crept into their descriptions as printed in [2]. There are also serious errors in the numbers of children of length 30 (found by hand) for many of these codes. We therefore give (in Table A, at the end of the paper) an amended version of Table III of [2], omitting the glue vectors. The remainder of this section contains comments on this table and further errata to [2].

Names. The 85 codes are given in the same order as in Table III of [2]. We label them C1, ..., C85 (in the first column of Table A). A star indicates that the code is mentioned in Table C below.

Components. The second column gives the components. Although the component codes d_n , e_n , ... are described in [2], some additional remarks are appropriate.

The code g_{24-m} (m = 0, 2, 3, 4, 6, 8) is obtained by taking the words of the extended binary Golay code g_{24} (see [3],[7]) that vanish on m digits (and then deleting those digits). For the [16,5,8] first order Reed-Muller code g_{16} (wrongly called a second order code in [2]) the 8 digits must be a special octad, while for g_{18} they must be an umbral hexad (see [3] or [5] for terminology). For $0 \le m \le 6$, g_{24-m} is a [24-m, 12-m, 8] code.

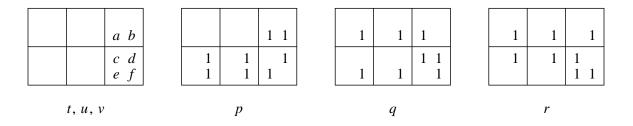
The [24,11,8] half Golay code h_{24} consists of the Golay codewords that intersect a given tetrad evenly.

Under the action of Aut (g_{24}) there are two distinct ways to select tetrads $t = \{c, d, e, f\}$, $u = \{a, b, e, f\}$, $v = \{a, b, c, d\}$ so that t + u + v = 0, depending on whether $\{a, b, ..., f\}$ is a special hexad or an umbral hexad (see Fig. 1). Correspondingly there are two [24,10,8] quarter Golay codes q_{24}^+ , q_{24}^- , consisting of the codewords of g_{24} that intersect all of t, u, v evenly. In [2] only the second of these was described and was there called q_{24} , while q_{24}^+ was called $(g_{16}+f_8)$. (The exceptional treatment of the components of this code given on p. 52 of [2] is now eliminated.)

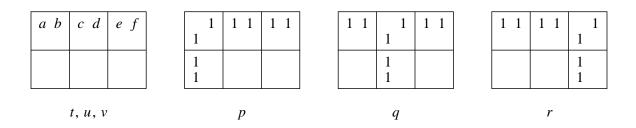
The glue space for either q_{24}^+ or q_{24}^- is four-dimensional, and is generated by t, u, v, p, q, rwith

$$t+u+v = 0 = p+q+r,$$

where p, q, r may be represented by special octads, with p orthogonal to t but not to u or v, q orthogonal to u but not to t or v, and r orthogonal to v but not to t or u (see Fig. 1).



 q_{24}^+ , {*a*, *b*, ..., *f*} special



 q_{24}^- , {*a*, *b*, ..., *f*} umbral

Fig. 1. The codes q_{24}^+, q_{24}^-

The 16 glue components and their minimal weights are:

Representative	Minimal Weight
0	0
t, u, v	4
<i>p</i> , <i>q</i> , <i>r</i>	8
p+u, q+v, r+t, p+v, q+t, r+u	6
p+t, q+u, r+v	8 in q_{24}^+ , 4 in q_{24}^-

The groups. The order |G| of the automorphism group of any of the 85 codes is given (as in [2]) by the formula

$$|G| = |G_0| |G_1| |G_2|,$$

while $|G_0|$ is the product of the $|G_0|$'s of the component codes, and $|G_1|$, $|G_2|$ are given in the third and fourth columns of Table A. |G| itself is given in the fifth column. Table B gives the groups G_0 (in ATLAS [1] notation) for the components.

Component	G_0	
d_{2m}	2^{m-1} . S_m	$2^{m-1}m!$
<i>e</i> ₇	$L_{3}(2)$	168
e_8	$2^3 \cdot L_3(2)$	1344
f_n	1	1
<i>8</i> 16	2^{4}	16
<i>B</i> 18	C_3	3
<i>8</i> 20	M_{20}	$2^{6}3.5$
<i>8</i> 21	M_{21}	$2^{6}3^{2}5.7$
<i>8</i> 22	M_{22}	$2^7 3^2 5.7.11$
<i>8</i> 24	M_{24}	$2^{10}3^35.7.11.23$
h_{24}	$2^6: 3S_6$	$2^{9}3^{3}5$
q_{24}^{+}	$2^{6} \cdot (S_{3} \times 2^{2})$	2 ⁹ 3
q_{24}^-	$2^2 \times S_4$	2 ⁵ 3

Table B The groups G_0

The mass checks. We repeated various "mass checks" on the 85 codes, verifying that the number of codes containing a specified subcode (e.g. d_4 or d_6) is as predicted by the formula given on p. 28 of [2]. In particular we rechecked that the total mass

$$\sum_{(85)} \frac{1}{|G|}$$

of the reciprocals of the numbers in the fifth column of Table A has the correct value

$$\frac{1}{32!} \prod_{i=0}^{14} (2^i + 1) ,$$

which is

$\frac{391266122896364123}{532283035423762022400} \ .$

Weight distributions. The sixth column gives u_4 , the number of codewords of weight 4. The full weight distribution can then be obtained from Table IV of [2].

Table C summarizes the amendments to Table III of [2] other than errors in the value of n_{30} .

Table C Other alterations to Table III of [2]

Code	Components	Change
C22, C39, C53, C65, C70, C71		f_m^2 has been replaced by f_{2m} .
C10	$d_{12}^2 e_8$	$ G_2 = 2$, not 1.
C41	$d_{8}d_{4}^{4}f_{8}$	Change <i>boczxAB</i> to <i>boozxAB</i> .
C61	$d_6 d_4^2 d_4^3 f_3^2$	The final - was omitted.
C66	$d_6 f_{13}^2$	The last character should be - not –
C71	$d_4^6 f_4^2$	The glue generators should be <i>ooyoxxAE</i> , <i>yooxoxBF</i> , <i>oyoxxoCD</i> , <i>oxyooxCG</i> , <i>yoxxooAG</i> , <i>xyooxoBG</i> , <i>ooxoxyFH</i> , <i>xooyoxDH</i> , <i>oxoxyoEH</i> , <i>oxxooyBD</i> , <i>xoxyooCE</i> , <i>xxooyoAF</i> , <i>ozxozx</i> -, <i>xozxoz</i> -, <i>xzoxzo</i>
C75	$d_4^4 f_{16}$	The printing of the glue is poorly aligned. Each glue word consists of a top line of 4 letters (chosen from o, x, y, z), with a 4 × 4 array beneath it.
C77	$d_4^2 q_{24}^+$	Redescribed above.
C78	$d_4^2 q_{24}^-$	Redescribed above.
C79	$d_4^2 f_4^6$	The parentheses around the final array indicate that its six columns are to be bodily permuted.
C80	$d_4 f_7^4$	The third and fourth glue generators should be $y(+++o+oo)(ooooooo)(+oooooo)(+oooooo), y(ooooooo)(+++o+oo)(+oooooo)(+oooooo).$

Additional errata to [2]

On page 37 the phrase "Figure (MOG)" refers to Ref. [5] (or Fig. 11.17 of [3]).

On p. 44, for the first code in Table I, change e_0 to e_8 .

On pp. 46 and 48, the heading should read n_{30} , n_{28} , n_{26} , n_{24}

On p. 52, the last entry in Table V should be 731, not 664.

On p. 53, the last author's name is misspelled in Ref. [5].

2. Self-dual codes of length less than 32

The numbers of children. We now describe how the final four columns of Table A were obtained. These give n_{30} , n_{28} , n_{26} , n_{24} , the number of self-dual codes (the "children") of lengths 30, ..., 24 that arise from each of the 85 codes.

Any self-dual code *C* of length 30 is obtained by taking all codewords of one of C1, ..., C85 for which some particular pair of coordinates *P*, *Q* (say) are 00 or 11, and deleting these coordinates. If *C* contains a weight 2 word, which it does when *P* and *Q* belong to a weight 4 word of the original code, we obtain a self-dual code with length less than 30 and $d \ge 4$ by "collapsing" *C*, i.e. by deleting all pairs of coordinates that support weight 2 words. All selfdual codes with length $n \le 30$ and $d \ge 4$ can be obtained in this way. There are several cases.

If the coordinates P, Q are in an e_8 the collapsed code is a doubly-even self-dual code of length 24, whose components are obtained by deleting the e_8 .

If P, Q are in an e_7 the collapsed code has length 26 and its components are obtained by replacing the e_7 by an f_1 .

If P, Q form a duad (a pair of identical coordinates, cf. [2], p. 33) in a d_m , $m \ge 6$, the collapsed code has length 32 - m and its components are obtained by deleting the d_m .

If P, Q are in a d_m , $m \ge 6$, but do not form a duad, or if P, Q belong to a d_4 component, the collapsed code has length 28.

In all other cases C does not collapse and we have a self-dual code with length 30 and $d \ge 4$.

As an example we consider the code C61. There are 19 orbits of Aut(C61) on unordered pairs of distinct coordinates, and so there are $n_{30} = 19$ length 30 children, 6 of which collapse to shorter lengths, as follows. One length 26 child is obtained from a duad in the d_6 (thus $n_{26} = 1$).

From two coordinates in the d_6 not forming a duad we obtain the first child of length 28, while a second child of length 28 is obtained from any two coordinates in the first type of d_4 , and three further children of length 28 arise from the three different ways of choosing a pair of coordinates from the other type of d_4 . Thus $n_{28} = n_{26} + 5 = 6$. Finally are 13 children with length 30 and $d \ge 4$, so that $n_{30} = n_{28} + 13 = 19$.

In [2] and [10] the actions of the automorphism groups of the 85 codes on pairs of coordinates were found (unfortunately often incorrectly) by hand. In the present version most of this work has been redone by computer (using in particular the graph-automorphism program Nauty [8]). The numbers of children of lengths $n \le 28$ given in [2] are correct. There are numerous errors in n_{30} , however (now corrected in Table A), and the total number of self-dual codes of length 30 is 731, not 664 as stated in Table V of [2].

Tables of self-dual codes of length $n \le 24$

The self-dual codes of length $n \le 20$ were first enumerated in [9], and those of lengths 22 and 24 in [11], although there they are not described in the terminology later used in [2]. For completeness we therefore give the components, values of $|G_1|$, $|G_2|$, weight distributions $\{u_i\}$ and glue generators for the codes with $n \le 22$ in Table D (at the end of the paper). The column headed "Code" gives the parent code of length 32 (with the component to be deleted in parentheses). The column headed "[9], [11]" gives the names used in these papers. ([9], [11] also give generator matrices for these codes.)

Table E lists the codes of length 24, although to save space we just describe each code by giving its parent (and in parentheses the component to be deleted), its components and minimal distance *d*. If the deleted component (in parentheses) is an e_8 the code is doubly-even, otherwise (if the deleted component is a d_8) it is singly-even.

Code	Components	[11]	\underline{d}	Code	Components	[11]	\underline{d}
$C2(e_8)$	d_{24}	E_{24}	4	$C32(d_8)$	$d_8 e_7^2 f_2$	J_{24}	4
$C6(e_8)$	$d_{16}e_{8}$	-	4	$C33(d_8)$	$d_{8}d_{6}^{2}f_{4}$	R_{24}	4
$C7(d_8)$	$d_{16}d_{8}$	H_{24}	4	$C34(d_8)$	$d_{8}d_{4}^{4}$	T_{24}	4
C10(<i>e</i> ₈)	d_{12}^2	A_{24}	4	$C35(d_8)$	$e_7 d_6^2 d_4 f_1$	P_{24}	4
$C11(d_8)$	d_{12}^2	-	4	$C26(e_8)$	d_6^4	D_{24}	4
$C12(d_8)$	$d_{12}d_8d_4$	I_{24}	4	$C36(d_8)$	d_{6}^{4}	Q_{24}	4
C18(<i>e</i> ₈)	$d_{10}e_7^2$	B_{24}	4	$C37(d_8)$	$d_6^2 d_6 d_4 f_2$	S_{24}	4
$C19(d_8)$	$d_{10}e_7d_6f_1$	K_{24}	4	$C38(d_8)$	$d_6^2 d_4^2 f_4$	U_{24}	4
$C20(d_8)$	$d_{10}d_6^2f_2$	N_{24}	4	$C39(d_8)$	$d_{6}d_{4}^{3}f_{6}$	W_{24}	4
C24(e ₈)	e_8^3	-	4	$C27(e_8)$	d_4^6	F_{24}	4
$C25(d_8)$	$e_{8}d_{8}^{2}$	-	4	$C40(d_8)$	d_{4}^{6}	V_{24}	4
$C25(e_8)$	d_8^3	C_{24}	4	$C41(d_8)$	$d_{4}^{4}f_{8}$	X_{24}	4
$C29(d_8)$	d_8^{3}	L_{24}	4	$C42(d_8)$	$d_4^2 g_{16}$	Y_{24}	4
$C30(d_8)$	d_{8}^{3}	M_{24}	4	$C43(d_8)$	h_{24}	Z_{24}	6
C31(<i>d</i> ₈)	$d_8^2 d_4^2$	0 ₂₄	4	$C28(e_8)$	<i>8</i> 24	G_{24}	8

Table E Self-dual codes with length 24 and $d \ge 4$

Codes with d \geq **6.** Similar tables could easily be constructed to list the self-dual codes of lengths 26, 28 and 30, but would occupy too much space. Instead we just describe the 17 codes with $d \geq 6$ (and correct some errors in [10]).

There is one code (A_{26}) of length 26, arising from C66; three codes of length 28, one (A_{28}) from C66 and two (B_{28}, C_{28}) from C80; and thirteen codes $(A_{30}, ..., M_{30})$ of length 30, one from each of C77, ..., C82, two from each of C83, C84, and three from C85.

Figure 2 contains generator matrices for C66, C77, ..., C85. Each row of Greek letters below one of these matrices specifies a self-dual child with $d \ge 6$. The child is obtained by restricting to the subcode consisting of the words that are equal on pairs of coordinates described by the same Greek letter, and then deleting these coordinates. (For C83 and C84 we have used the generator matrices described in [6], [12].) The weight distributions are given in Table F (compare [4]).

	<i>u</i> ₆	<u>u</u> ₈	<i>u</i> ₁₀	<i>u</i> ₁₂	<i>u</i> ₁₄
A_{26}	52	390	1313	2340	2340
A_{28}	26	442	1560	3653	5020
B_{28}, C_{28}	42	378	1624	3717	4680
A_{30}, B_{30}, C_{30}	19	393	1848	5192	8931
D_{30}	27	369	1848	5256	8883
E_{30}, \ldots, M_{30}	35	345	1848	5320	8835

Table F Weight distributions of self-dual codes with n = 26, 28, 30 and $d \ge 6$

Figure 2. Generator matrices for C66, C77, ..., C85 and their children of length 26, 28, 30 and d = 6.

C66 01010111010000010001000000000000 01010101101000001000100000000000 0101010011010000010001000000000 0101010001101000001000100000000 01010101000110100000000000000000 010101001000110100000000000000000 010101000001000110100000000000000 010110111111111110000000000000 ααββγγ A_{26}

 $A_{28} \quad \alpha\beta\alpha\beta$

C77

C//
111100000000000000000000000000000000000
000011110000000000000000000000000000000
000000011111110000000000000000000000000
00000000000000111111100000000
000000000000000000000000000000000000000
00000000101010101010100000000
000000001100110011001100000000
000000000011110000111100000000
00000101000001010000010100000101
00000011000000110000001100000011
010100001010000101000001010000
001100000110000011000000110000
0000000011110000100010001000100
0000000011110000010001000100010
0000000011110000001000100010001
000000000000000000111100001111

 A_{30}

α

α

 C_{30}

C78 B_{30} α α

- 12 -

 E_{30} αα

 D_{30}

α

α

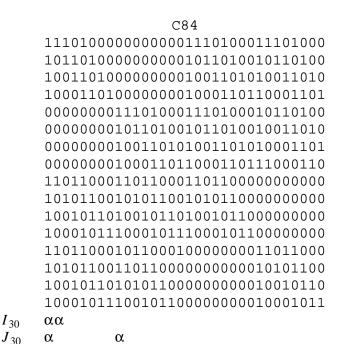
C81

C80 B_{28} ααββ C_{28} αβαβ

	1110100011101000	000000000000000000000000000000000000000
	1011010010110100	000000000000000000000000000000000000000
	1001101010011010	000000000000000000000000000000000000000
	1000110110001101	L0000000000000000000000000000000000000
	000000011101000)1110100011101000
	000000010110100	01011010010110100
	000000010011010	01001101010011010
	000000010001101	L1000110110001101
	1101100011011000)1101100000000000
	101011001010100	010101100000000000000000000000000000000
	1001011010010110	01001011000000000
	1000101110001011	L1000101100000000
	000000000000000000000000000000000000000	01101100011011000
	000000000000000000000000000000000000000	01010110010101100
	000000000000000000000000000000000000000	01001011010010110
	000000000000000000000000000000000000000	01000101110001011
G_{30}	αα	
H_{30}	α	α

C83

 F_{30} (



C85

 $\begin{array}{cccc} K_{30} & \alpha \alpha \\ L_{30} & \alpha & \alpha \\ M_{30} & \alpha \end{array}$

α

References

- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, "ATLAS of Finite Groups", Oxford Univ. Press, 1985.
- J. H. Conway and V. Pless, "On the enumeration of self-dual codes", J. Combinatorial Theory, A 28 (1980), 26-53.
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, NY 1988.
- J. H. Conway and N. J. A. Sloane, "A new upper bound on the minimal distance of selfdual codes", IEEE Trans. Information Theory, submitted.
- R. T. Curtis, "A new combinatorial approach to M₂₄", Math. Proc. Camb. Phil. Soc., 79 (1976), 25-42.
- H. V. Koch, "On self-dual, doubly-even codes of length 32", Report P-Math-32/84, Institut f
 ür Mathematik, Akademie der Wissenschaften der DDR, Berlin, 1984.
- F. J. MacWilliams and N. J. A. Sloane, "The Theory of Error-Correcting Codes", North-Holland, Amsterdam, 1977.
- B. D. McKay, "NAUTY User's Guide (Version 1.2)", Dept. Computer Science Technical Report TR-CS-87-03, Australian National University, Canberra, Australia, 1987.
- V. Pless, "A classification of self-orthogonal codes over *GF*(2)", Discrete Math., vol. 3 (1972), pp. 209-246.
- V. Pless, "The children of the (32,16) doubly even codes", IEEE Trans. Information Theory, 24 (1978), 738-746.

- V. Pless and N. J. A. Sloane, "On the classification and enumeration of self-dual codes", J. Combinatorial Theory, A 18 (1975), 313-335.
- V. Y. Yorgov, "On the extremal doubly-even codes of length 32", Proceedings Fourth Joint Swedish-Soviet International Workshop on Information Theory, Gotland, Sweden, 1989, pp. 275-279.

The Binary Self-Dual Codes of Length Up To 32: A Revised Enumeration*

J. H. Conway

Mathematics Department Princeton University Princeton, New Jersey 08540

V. Pless**

Mathematics Department University of Illinois at Chicago Chicago, Illinois 60680

N. J. A. Sloane

Mathematical Sciences Research Center AT&T Bell Laboratories Murray Hill, New Jersey 07974

February 28, 1990

ABSTRACT

This paper presents a revised enumeration of the binary self-dual codes of length up to 32 given in "On the enumeration of self-dual codes" (by J. H. C. and V. P.) and "The children of the (32,16) doubly even codes" (by V. P.). The list of eighty-five doubly-even self-dual codes of length 32 given in the first paper is essentially correct, but several of their descriptions need amending. The principal change is that there are 731 (not 664) inequivalent self-dual codes of length 30. Furthermore there are three (not two) [28,14,6] and thirteen (not eight) [30,15,6] self-dual codes. Some additional information is provided about the self-dual codes of length less than 32.

^{*} This paper appeared in J. Combinatorial Theory, Series A, 60 (1992), 183-195.

^{**} Research supported in part by Air Force Office of Scientific Research Grant 88027.