
A HYBRID MODEL FOR BUSINESS

FAILURE PREDICTION – UTILIZATION

OF PARTICLE SWARM OPTIMIZATION

AND SUPPORT VECTOR MACHINES

Mu-Yen Chen∗

Abstract: Bankruptcy has long been an important topic in finance and account-
ing research. Recent headline bankruptcies have included Enron, Fannie Mae,
Freddie Mac, Washington Mutual, Merrill Lynch, and Lehman Brothers. These
bankruptcies and their financial fallout have become a serious public concern due
to huge influence these companies play in the real economy. Many researchers be-
gan investigating bankruptcy predictions back in the early 1970s. However, until
recently, most research used prediction models based on traditional statistics. In
recent years, however, newly-developed data mining techniques have been applied
to various fields, including performance prediction systems. This research applies
particle swarm optimization (PSO) to obtain suitable parameter settings for a sup-
port vector machine (SVM) model and to select a subset of beneficial features
without reducing the classification accuracy rate. Experiments were conducted on
an initial sample of 80 electronic companies listed on the Taiwan Stock Exchange
Corporation (TSEC).

This paper makes four critical contributions: (1) The results indicate the busi-
ness cycle factor mainly affects financial prediction performance and has a greater
influence than financial ratios. (2) The closer we get to the actual occurrence of
financial distress, the higher the accuracy obtained both with and without fea-
ture selection under the business cycle approach. For example, PSO-SVM without
feature selection provides 89.37% average correct cross-validation for two quarters
prior to the occurrence of financial distress. (3) Our empirical results show that
PSO integrated with SVM provides better classification accuracy than the Grid
search, and genetic algorithm (GA) with SVM approaches for companies as normal
or under threat. (4) The PSO-SVM model also provides better prediction accu-
racy than do the Grid-SVM, GA-SVM, SVM, SOM, and SVR-SOM approaches
for seven well-known UCI datasets. Therefore, this paper proposes that the PSO-
SVM approach could be a more suitable method for predicting potential financial
distress.
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1. Introduction

The Asian financial crisis started on July 2, 1997 with a 15-20% devaluation of the
Thai Baht, after two months of massive speculative attacks and a little more than
a month after the bankruptcy of Thailand’s largest finance company, Finance One
[1]. The crisis resulted in unprecedented economic and financial hardship, which
spread to Taiwan as well. Taiwan’s export growth rate dropped from 5.3% in 1997
to −9.4% the following year, coinciding with a drop in industrial production from
7.4% to 2.6% [2]. The TAIEX (Taiwan Stock Exchange Capitalization Weighted
Stock Index) peaked at 10,116 on August 26, 1997, but the ensuing flight of foreign
capital and crash in investor confidence caused the TAIEX to drop to a low of 5,474
by February 1999. This caused a major upheaval in Taiwan’s financial markets,
with many investors incurring heavy losses. More recently, the crisis of 2007–2010
has proven to be the worst financial calamity since the Great Depression of the
1930s [3]. Housing bubbles, credit booms, sub-prime and predatory lending, incor-
rect pricing of risk and the collapse of the shadow banking system dealt a heavy
economic shock to the U.S. economy. Several major institutions, including Lehman
Brothers, Merrill Lynch, Fannie Mae, Freddie Mac, Washington Mutual, Wachovia,
and AIG, either failed, were acquired under duress, or were taken over by the gov-
ernment [4]. The FDIC (Federal Deposit Insurance Corporation) announced 111
U.S. bank failures from January to August 2010, and predicted another 140 failures
in the remainder of 2010 [5]. This crisis rapidly spread from the U.S. to the global
economy, putting pressure on all major sources of external revenue for developing
countries. Moreover, Taiwan’s electronics industry, boasting 670 companies listed
on the Taiwan Stock Exchange (TSE) and the OTC (Over-the-Counter) Securi-
ties Market and having an annual production value of US$300 billion, will play
the role of locomotive in Taiwan’s long-term and world economic development.
Thus, despite the existence of several methods for predicting corporate failure, it
is worthwhile for researchers and industry operators to continuously develop state-
of-the-art methods reflecting various symptoms of corporate failure that may not
be explained by the existing methods [6]. Therefore, we will apply evolutionary
techniques into financial bankruptcy prediction system construction with Taiwan’s
electronic industry.

Since the late 1960s considerable research has been conducted with the goal of
accurately predicting the failure of financial firms. Initial approaches were based on
statistical methodologies pioneered by Beaver (1966) who used univariate analysis
to build a financial prediction model for banks [7]. Altman (1968) later pointed
out drawbacks in Beaver’s model, and used discriminant analysis (DA) to rebuild
the model [8]. Several years later, Martin (1977) developed the stochastic model
with logistic regression to measure the probability of bank failure based on data
obtained from the Federal Reserve System [9]. In 1984, Zmijewski (1984) pro-
posed another stochastic model with probit analysis to weight the log-likelihood
function by the ratio of the population frequency rate to the sample frequency
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rate of individual groups, bankrupt and non-bankrupt [10]. Cielen, Peeters, and
Vanhoof (2004) [11] and Kao and Liu (2004) [12] used data envelopment analysis
(DEA) to predict the bank failures but strict assumptions, such as linearity and
normality, and independence among predictable variables limits the applicability
of their models in real world. Yet another approach employed artificial intelligence
(AI) methods and, beginning in the 2000s, a number of studies have applied these
methods to bankruptcy prediction problems.

Hu and Tseng (2007) integrated fuzzy integral theory with genetic algorithms
(GA) to predict bankruptcy [13], and their proposed method performed well in
comparison with traditional functional-link net and multivariate techniques. San-
chis et al. (2007) presented a new approach to predicting financial stability and
insurance insolvency using rough sets [14], with quite satisfactory results. Kirkos
et al. (2007) investigated the prediction accuracy of Decision Trees (DT), Artificial
Neural Networks (ANN) and Bayesian Belief Networks (BBN) in the identification
of fraudulent financial statements [15]. The results showed that BBN provided
more accurate predictions than ANN and DT. Sun and Li (2008) designed an
entropy-based discretization method for predicting financial distress in listed com-
panies [16]. An empirical experiment with 35 financial ratios and 135 pairs of listed
companies indicated that the DT model constructed by the data mining method
provided satisfactory prediction accuracy in both the training and validation sam-
ples. Ahn and Kim (2009) integrated GA and case-based reasoning (CBR) to
predict bankruptcy crises [17], with experimental results indicating their proposed
model can significantly improve the predictive accuracy of conventional CBR. Chen
and Du (2009) compared the predictive performance of ANN with traditional sta-
tistical and data mining techniques for listed companies in Taiwan [18], finding
that the ANN approach provided greater accuracy than the traditional statistical
and DM clustering approaches. Boyacioglu et al. (2009) applied various neural
network techniques, support vector machines and multivariate statistical methods
to predict the failure of Turkish banks [19]. The results showed that multi-layer
perceptron (MLP) and learning vector quantization (LVQ) are potentially the most
successful models in predicting bank failures.

However, there have been little researches into swarm-inspired optimization
techniques for bankruptcy prediction. Since most real world problems are multi-
criteria problems, it would seem appropriate to use multi-objective algorithms in
seeking solutions. Therefore, this paper aims to effectively solve continuous finan-
cial datasets. We integrate a novel particle swarm optimization (PSO) algorithm
with a support vector machines (SVM) classification model. The proposed algo-
rithm can reduce the probability of being trapped in local optima and enhance
accuracy and global search capabilities. The proposed PSO-SVM model will also
be compared with grid search (Grid-SVM), GA-SVM, SVM, Self-Organizing Map
(SOM), and Support Vector Regression (SVR) - SOM models. The main objectives
of this paper are to (1) adopt swarm-inspired optimization techniques to construct
a financial distress prediction model, (2) use financial ratios and business cycle
index to improve the accuracy of the financial distress prediction model, (3) com-
pare the accuracy of PSO-SVM and other neural networks approaches, and (4) to
expand this model so that it will work within a financial distress prediction system
as a type of early warning system.
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The remainder of this paper is organized as follows: Section 2 provides an
overview of SVM and PSO. Section 3 describes the PSO-SVM hybrid model. Sec-
tion 4 presents the experimental results from a simulation dataset. Conclusions are
presented in Section 5, along with recommendations for future research.

2. Literature Review

2.1 MLP and SVM neural networks

An MLP is a feed-forward artificial neural network model that maps sets of input
data onto a set of appropriate outputs. For neural networks, MLP uses a back-
propagation learning algorithm [20] as the standard algorithm for the subject of
ongoing research in computational neuroscience and soft computing. Fig. 1 shows
the l–m–n architecture of a MLP model (l denotes input neurons, m denotes hid-
den neurons, and n denotes output neurons). Neurons in the input layer have a
pure linear activation function, but some nonlinear activation functions, such as
logarithmic and tangent sigmoid functions, are used in the neurons in hidden and
output layers. The input signals are modified by the interconnection weight, known
as weight factor wji, which represents the interconnection of the ith node of the
first layer to the jth node of the second layer. The sum of the modified signals
(total activation) is then modified by a sigmoid transfer function(f). Similarly, the
output signals of the hidden layer are modified by interconnection weight wkj of
the kth node of the output layer to the jth node of the hidden layer. The sum of
the modified signals is then modified using the sigmoid transfer (f) function and
the output is collected at the output layer.

Fig. 1 MLP architecture.
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Let Ip = (Ip1, Ip2, . . .Ipl), p = 1, 2...N be the pth pattern among N input pat-
terns, where wji and wkj are respectively the connection weights between the ith
input neuron to the jth hidden neuron, and the jth hidden neuron to the kth
output neuron [21].

Output from a neuron in the input layer is

Opi = Ipi, i = 1, 2, . . . , l. (1)

Output from a neuron in the hidden layer is,

Opj = f (NETpj) = f

(
l∑

i=1

wjiopi

)
, for 1 ≤ j ≤ m (2)

Output from a neuron in the output layer is,

Opk = f (NETpk) = f




m∑

j=1

wkjopj


 , for 1 ≤ k ≤ n, (3)

where f() is the sigmoid transfer function given by f(x) = 1/(1 + e−x).
Given a set of training examples, each marked as belonging to one of two cat-

egories, Vapnik’s Support Vector Machine (SVM) training algorithm [22] builds a
model that predicts whether a new example falls into one category or in the other.
More formally, an SVM constructs a hyperplane or a set of hyperplanes in a high or
infinite dimensional space, which can then be used for classification, regression or
other tasks. Intuitively, a good separation is achieved by the hyperplane that has
the largest distance to the nearest training data points of any class (the so-called
functional margin), since, in general, the larger the margin the lower the general-
ization error of the classifier. The SVM architecture and hyperplane representation
is shown in Fig. 2.

Fig. 2 SVM architecture and hyperplane representation.
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In support vector machines, the input vector x is mapped to the high-dimensional
feature space using the mapping function Φ(x) to enhance linear separability. Let
the M training input–output pairs be (xi, y(xi)), i = 1, . . . , M , where y(xi) = 1 if
xi belongs to Class 1, and y(xi) = −1 if xi belongs to Class 2. If the training data
are linearly separable in the feature space, we can obtain the decision function:

f(x) = wT φ(x) + b, (4)

where w is a weight vector, b is a bias term, and y(xi)f(xi) > 0 for i = 1, . . . , M.
For unknown data x, if f(x) ≥ 0, the data are classified into Class 1 and, if
f(x) < 0, into Class 2. The distance between the separating hyperplane and the
training datum nearest to the hyperplane is called the margin. The hyperplane with
the maximum margin is called the optimal separating hyperplane that separates
two classes. If the classification problem is not linearly separable in the feature
space, the optimal separating hyperplane can be obtained by solving the following
optimization problem:

Minimize Q(w, ξ) =
1
2
‖w‖2 + C

M∑

i=1

ζi (5)

Subject to y(xi)(wT φ(x) + b) ≥ 1− ζi

For i = 1, 2, . . . , M (6)

where C is the regularization parameter that determines the trade off between the
maximization of the margin and the minimization of the classification error, and ζi

is the non-negative slack variable for xi. Some of the kernels that are used in the
support vector machines are as follows:

K(x, x′) is a kernel function that is given by

K(x, x′) = φ(x)T φ(x′). (7)

The polynomial kernel with degree d is given by

K(x, x′) = (xT x′ + 1)d. (8)

The radial basis function (RBF) kernel is given by

K(x, x′) = exp(−γ ‖x− x′‖2), (9)

where γ is a positive parameter for slope control.
By introducing Lagrange multipliers αi, the SVM training procedure amounts

to solving a convex quadratic problem (QP). The solution is a unique globally-
optimized result with the following properties

w =
N∑

i

αiyixi. (10)

Only if the corresponding αi > 0, are the xi called support vectors. When the
SVMs are trained, the decision function can be written as
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f(x) = sign

(
N∑

i=1

αiyi(x · xi) + b

)
(11)

In addition to applying SVMs to classification problems, Vapnik and his col-
leagues proposed a special version for regression, called SVR [23], entailing an
ε – insensitive zone in the error loss function (see Fig. 2). This zone represents the
degree of precision to which the bounds of generalization ability apply. Training
vectors that lie within this zone are deemed correct, whereas those outside this zone
are deemed incorrect, and contribute to the error loss function. These incorrect
vectors become the support vectors. Such loss functions usually lead to a sparse
representation of the decision rule, resulting in significant algorithmic and repre-
sentational advantages. Besides, the SVR still contains all the main features that
characterize the maximum margin algorithm: a non-linear function is learned by
linear learning machine mapping onto a high-dimensional kernel-induced feature
space. Moreover, one of the advantages of the SVR is that it can be used to avoid
the difficulties inherent in linear functions in high-dimensional feature space, and
the optimization problem is transformed into a dual convex QP [24].

2.2 Particle swarm optimization

The PSO algorithm was first introduced by Eberhart and Kennedy (1995) [25].
PSO is designed to simulate social behavior. Like evolutionary algorithms, PSO
executes searches using a population (called a swarm) of individuals (called par-
ticles) that are renewed from iteration to iteration. All the particles have fitness
values that are evaluated according to the fitness function to be optimized, and have
velocities that direct the flight of the particles. It searches for the optimal value by
sharing historical information and social information between the individual parti-
cles [26]. Moreover, through cooperation and competition among the population,
population-based optimization approaches can often arrive at very good solutions
efficiently and effectively. The advantages of PSO are that PSO is easy to imple-
ment in a few lines of computer code, it has few parameters requiring adjustment,
and it is computationally inexpensive in terms of memory requirements and run
time. Early testing has found the implementation to be effective with several kinds
of problems, such as function optimization, artificial neural network training, fuzzy
system control, and other areas [27].

A particle represents a potential problem solution move through a d-dimensional
search space. Each particle i represents a candidate position, remembering the best
value and the current position which had resulted in that value, called pbest. When
a particle takes the entire population as its topological neighbors, the best value is a
global best and is called gbest. All particles can share information about the search
space. The d-dimensional position for particle i at iteration t can be represented
as xt

i = {xt
i1, x

t
i2, . . ., x

t
id}. Likewise, the velocity, which is also a d-dimensional

vector, for particle i at iteration t can be described as vt
i = {vt

i1, v
t
i2, . . ., v

t
id}. Fig.

3 illustrates the concept of modulating searching points. Let Pid denote the best
previous position encountered by the ith particle. Pgd denotes the global best
position thus far. The current velocity of the dth dimension of the ith particle at
iteration t is as follows:
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Fig. 3 Search concept of particle swarm optimization.

V t
id = wV t−1

id + c1r1(Pidt − xt
id) + c2r2(P t

gd − xt
id),

d = 1, 2, . . ., D. (12)

In the above formula, r() is a random function in the range [0, 1], positive
constants c1 and c2 are personal and social learning factors, and w is the inertia
weight [28]. The velocity is restricted to the [−Vmax, Vmax] range in which Vmax

is a predefined boundary value. The new position of a particle is calculated using
the following formula:

Xt
id = Xt

id + V t
id, d = 1, 2, . . ., D (13)

Unlike in GA, evolutionary programming and evolution strategies, in PSO the
selection operation is not performed [29]. All particles in PSO are kept as members
of the population through the course run. The velocity of the particle is updated
according to its own previous best position and the previous best positions of its
companions. The particles then fly with the updated velocities. PSO is the only
evolutionary algorithm that does not implement survival of the fittest [30].

3. Research Methodology and Materials

3.1 Research methodology

In this research, we integrated the PSO and SVM techniques to create an early
warning evaluation model of firms’ financial structures. The research methodology
is illustrated in Fig. 4. The three steps for building a financial bankruptcy crisis
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Fig. 4 Research methodology.

prediction system are the preparation, construction, and swarming phases. The
preparation phase deals with the dataset – basically a huge set of original records
from the Taiwan Stock Exchange Corporation (TSEC) which must first undergo
data pre-processing. Various methods can be used for preprocessing. In the splitting
method, we adopted k-fold cross validation and set k as 3, 4, and 5. The data
was divided into three, four, and five portions, respectively. In the transformation
method, the raw data is manipulated to produce a single input. In our experiments,
the financial ratios and business cycle index are all number variables which do not
require transformation. The scaling method applies to prevent feature values in
greater numeric ranges from dominating those in smaller numeric ranges. We used
the min-max data scaling method to standardize all ratios as Z-values. Moreover,
the Z-values were beyond the range of [0, 1], allowing us to prevent numerical
difficulties in the calculation. The denoising method removes noise from the data.
The goal of this phase was to select suitable indicators, including financial ratios
and business cycle index, and then construct two models: Financial Model and
Business Cycle Model. In the Financial Model, these input variables were composed
of pure financial ratios. However, the financial ratios and business cycle index
were collected together in the Business Cycle Model. Once the above processes are
completed, the next phase loads the suitable indicators and the discovery prediction
patterns for use in the SVM classification.

In the construction phase, we collected financial statement datasets and business
cycle index which were derived from the above preparation phase. During the
feature selection process, each particle denotes a selected subset of features and
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parameter values. The selected features, parameter values, and training dataset
are used to build the SVM model. After the classification model is built, the testing
dataset is used to determine its fitness value, with a higher classification accuracy
rate indicating a higher fitness value for the particle. If the particle’s fitness is
better than its best previous experience (i.e. pbest), the best previous experience
of the particle is updated accordingly. Furthermore, if the particle’s fitness is better
than the global best fitness (i.e. gbest), the global best fitness is also updated. If
the termination criteria are satisfied, then the process ends, producing the accuracy
rate from our proposed financial bankruptcy crisis prediction system; otherwise, the
next iteration occurs and the system enters into a swarming phase. The termination
criterion used in this research is the maximum number of iterations.

In the swarming phase, the system first initializes the particles and sets the
PSO parameters including the feature mask, C, and γ. The PSO parameters set
includes the number of iterations, velocity limitation, number of particles, particle
dimensions, and weight for fitness calculation. Next, iteration is set to 0, and the
training process is performed from “feature selection” through “SVM modeling”
to “fitness calculation”. Third, the system generates different parameters for the
particles and updates the global and personal best values according to the fitness
evaluation results. Each particle will move to its next position using formulas (12)
and (13). If the stopping criteria or predefined maximum iteration count are met,
then the system returns to the construction phase. Finally, with the termination
of the training iteration determined in the previous step, the retraining of the PSO
will reveal the best values for the SVM parameters feature mask, C, and γ. If
the swarming phase is terminated, then the PSO-SVM system will return to the
construction phase and use these optimized values obtained from previous PSO
training. The SVM model also measures testing accuracy on the testing dataset
via the trained SVM classifier, and ends the procedure.

3.2 Data

Our samples contained raw data from 80 electronic firms listed by the Taiwan Stock
Exchange Corporation (TSEC). The sampling period ranged from January 2000 to
June 2010 (10 years and 6 months). 40 electronic firms in financial distress were
matched with 40 healthy electronic firms identified by the absence of any indication
or proof concerning issues of financial distress in auditors’ reports. All the financial
variables used in the sample were extracted from formal financial statements, such
as balance sheets, cash flow statements, and income statements. In addition, the
business cycle information used in this research was obtained from government
annual reports. Thus the utility of this research is not restricted by the limitation
of the sample to Taiwanese companies.

3.3 Variables

The selection of variables to be used as candidates for participation in the input
vector was based upon prior research linked to predictions of financial distress.
From a financial perspective, the selection was based on research by Chen and Du
[18] which contains suggested indicators of financial distress prediction. Therefore,
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this paper adopted related variables based on prior research, the Taiwanese Eco-
nomic Journal (TEJ), and the Taiwanese Economic Database. The 13 variables
selected were Debt to Equity Ratio, Gearing Ratio, Debt/Equity (DE), Return on
Asset (ROA), Earnings per Share (EPS), Return on Equity (ROE), Current Ratio,
Acid-Test Ratio, Current Assets to Total Assets, Cash Flow to Total Debt Ratio,
Cash Flow Ratio, Inventory to Total Assets Ratio, and Inventory to Sales Ratio.
Therefore, these 13 variables were collected to set up the Financial Model in our
experiment.

From a macroeconomic perspective, we extended the financial ratios to include
the macroeconomic indexes for financial crisis prediction. These 9 variables include
Monetary Aggregates M1B, Direct and Indirect Finance, Stock Price Index, Indus-
trial Production Index, Nonagricultural Employment, Customers-Cleared Exports,
Imports of Machinery and Electrical Equipment, Manufacturing Sales, Wholesale,
Retail and Food Services Sales. The above variables are expressed in terms of
percentage changes over 1-year time span. All variables, except the stock price
index, were seasonally adjusted. In this experiment, these variables were normal-
ized and the 9 indexes were recalculated into only 1 “Business Cycle Index”. The
macroeconomic indexes were obtained from the Council for Economic Planning
and Development in Taiwan. Therefore, above 13 financial variables and business
cycle index were collected together and set up the Business Cycle Model in our
experiment.

4. Empirical Analysis

4.1 Experimental environment and parameter settings

The platform adopted to develop the proposed PSO–SVM and other AI approaches
uses a PC with the following features: Intel I7 six-core CPU, 4G RAM, a Windows 7
operating system and the MATLAB R2009 development environment. Throughout
the initial experiment, the parameter values used in the proposed PSO–SVM with
feature selection were set as follows. The cognition learning factor c1 and the
social learning factor c2 for PSO–SVM were set to 2 and 1, respectively. The
number of particles and the maximum number of iterations were set as 20 and
1000, respectively. The searching range of SVM parameter C was set between 1
and 100, while the searching range of the SVM parameter γ was set between 1 and
100 [31]. The k-fold approach [32] was used to evaluate the classification accuracy
rate. This research set k as 3, 4, and 5 and the data was divided into three, four,
and five portions, respectively. The final average accuracy rate was the average of
the three, four, and five accuracy rates.

This process uses the financial and macroeconomic ratios to construct a financial
distress prediction model following feature selection strategy. The variables are
then loaded as SVM input nodes. In addition, to ensure stability and fairness
in the prediction accuracy, we also applied the above experimental parameters to
investigate the two, four, six and eight quarters prior to the onset of financial
distress.
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4.2 Comparative research

4.2.1 Experiments without feature selection strategy

The results obtained by the proposed PSO–SVM approach for Financial Model are
shown in Tab. I. To verify the proposed PSO–SVM approach, the results compared
by Grid-SVM and GA-SVM are also shown in Tab. I. Besides, this experiment
obtained a result with 13 financial ratios. As shown in Tab. I, for the previous
two quarters the PSO-SVM produced an estimated average accuracy rate for CV
as high as 78.12%. Unexpectedly, the CV average accuracy rates rise to 91.50%,
when measured over the previous 8 quarters. As shown in Tab. I, overall durations
(two, four, six and eight quarters) PSO-SVM results without feature selection were
superior to those of the Grid-SVM and GA-SVM. The average accuracy rates for
PSO-SVM, Grid-SVM, and GA-SVM are 87.02%, 86.78%, and 86.65%, respec-
tively. The Fig. 5 shows the PSO-SVM accuracy rate snapshot for two quarters
with 3-fold simulation. Besides, the Fig. 6 and Fig. 7 show the Grid-SVM and
GA-SVM accuracy rate snapshot for two quarters with simulation, respectively.

This experiment obtained a result after using 13 original pairs of financial ratio
variables and business cycle index that had undergone without feature selection
in the Business Cycle Model in Tab. II. As shown in Tab. II, for the previous
two quarters, the PSO-SVM, Grid-SVM, and GA-SVM have estimated average
accuracy rates for CV as high as 89.37, 89.79%, and 87.91%, respectively. However,
the CV average accurate rates drop to 86.14%, 86.40%, and 84.73%, respectively,
when measured over the previous eight seasons. Tab. II shows the average cross
validation with the 3-fold, 4-fold, and 5-fold results for PSO-SVM is better than
that produced by GA-SVM. The average accuracy rates for PSO-SVM are 89.37%,
86.97%, 85.55% and 86.14%, respectively, as compared to 87.91%, 86.45%, 83.95%
and 84.73% for GA-SVM. Moreover, the evaluation performance between PSO-
SVM and Grid-SVM is very similar and has not significant difference.

4.2.2 Experiments with feature selection strategy

This experiment obtained a result after using 13 original pairs of financial ratio
variables that had undergone feature selection. As shown in Tab. III, for the
previous two quarters in the Financial Model, the CV produced estimated average
accuracy rates for PSO-SVM as high as 82.70%. However, the CV average accurate
rates drop to 78.00%, when measured over the previous eight quarters and, accuracy
for PSO-SVM, Grid-SVM and GA-SVM rises as the time to the financial crisis falls.
The average accuracy rates for PSO-SVM, Grid-SVM, and GA-SVM are 81.10%,
80.40%, and 79.34%, respectively. As the result, the PSO-SVM produces a higher
CV average accuracy rate than GA-SVM and nearly equal to that of Grid-SVM.

This experiment obtained a result after using 13 original pairs of financial ratio
variables and business cycle index that had undergone with feature selection in
the Business Cycle Model in Tab. IV. As shown in Tab. IV, for the previous two
quarters, the PSO-SVM, Grid-SVM, and GA-SVM have estimated average accu-
racy rates for CV as high as 89.79, 89.58%, and 88.95%, respectively. However, the
CV average accurate rates drop to 73.17%, 71.92%, and 71.45%, respectively, when
measured over the previous eight seasons and, in keeping with the results from the
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Fig. 5 The snapshot for PSO-SVM simulation.

above experiment, accuracy rises as time to the financial crisis falls. Tab. IV shows
the average cross validation with the 3-fold, 4-fold, and 5-fold results for PSO-SVM
is better than that produced by Grid-SVM and GA-SVM. The average accuracy
rates for PSO-SVM, Grid-SVM, and GA-SVM are 80.26%, 79.43%, and 78.77%,
respectively.
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Fig. 6 The snapshot for Grid-SVM simulation.

4.3 Discussion

Firstly, we observed the average accuracy rate has no significant difference for
Financial Model and Business Cycle model without feature selection strategy in
Tab. I and Tab. II. In Tab. I, the average accuracy rates for PSO-SVM, Grid-
SVM, and GA-SVM are 87.02%, 86.78%, and 86.65%, respectively. Moreover,
the average accuracy rates for PSO-SVM, Grid-SVM, and GA-SVM are 87.00%,
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Fig. 7 The snapshot for GA-SVM simulation.

87.40%, and 85.76% respectively in Tab. II. However, we could find the PSO-SVM
produced an estimated average accuracy rate for CV as high as 78.125% for the
previous two quarters in Tab. I. Unexpectedly, the CV average accuracy rates
rise to 91.50%, when measured over the previous 8 quarters. The same results
obtained as Grid-SVM and GA-SVM in Tab. I. Therefore, we could infer that
better accuracy rate would be obtained for PSO-SVM, Grid-SVM and GA-SVM
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with more datasets when without feature selection. However, we could also observe
the different results in Business Cycle Model in Tab. II. As shown in Tab. II, for
the previous two quarters, the PSO-SVM, Grid-SVM, and GA-SVM have estimated
average accuracy rates for CV as high as 89.37, 89.79%, and 87.91%, respectively.
These results have obviously better performance than Financial Model in Tab. I.
Therefore, we could also infer that the business cycle index would affect heavy
impact for short-term financial bankruptcy prediction.

Secondly, the classification accuracy for PSO-SVM, Grid-SVM, and GA-SVM
approaches could evidently be retained by removing noisy and keeping highly cor-
related features. However, the higher deduction by feature selection results in lower
CV classification accuracy for PSO-SVM, Grid-SVM, and GA-SVM. As shown in
Tab. III, the average CV accuracy rate for PSO-SVM, Grid-SVM, and GA-SVM
drops to 81.10%, 80.40% and 79.34%, respectively, while the average CV accuracy
rate for these three approaches is 87.02%, 86.78% and 86.65% in Tab. I, respec-
tively. The same situation results for PSO-SVM, Grid-SVM, and GA-SVM, with
average CV accuracy rates 80.26%, 79.43%, and 78.77%, respectively in Tab. IV,
while the average CV accuracy rate for these three approaches is 87.00%, 87.40%
and 85.76% in Tab. II, respectively. Therefore, the results show that we cannot
obtain higher classification accuracy by removing too many variables with feature
selection. In our experiments, we could observe that the original 13 features are
decreased to 4 features over the previous two quarters in Tab. III. Besides, the orig-
inal 14 features are also decreased to 4 features over the previous two quarters in
Tab. IV. On the contrary, doing so would result in the loss of important or suitable
input variables for learning and training with neural networks or soft computing
approaches. The only exception is the use of feature selection to extract useful fea-
tures for short-term financial predictions. Table IV indicates that the PSO-SVM,
Grid-SVM, and GA-SVM average accuracy rate for the previous two quarters is
not affected by the feature selection. The average accuracy rates for the previous
two quarters with PSO-SVM, Grid-SVM, and GA-SVM are 89.79%, 89.58%, and
88.95%, respectively. Therefore, we observe that we could still obtain high average
accuracy rates with less features and computation times by using feature selection
in Business Cycle Model.

This research presents several key findings regarding the implications and de-
terminants of financial predictions of business bankruptcy:

1. Our approach requires 70% fewer financial ratios than other methods but still
presents highly-accurate short-term financial bankruptcy predictions.

2. The experimental results of the feature selection show that our proposed
swarm-inspired optimization approach has a high average accuracy rate both
for the previous two and four quarters. Thus, the experiments indicate that
we could still maintain an acceptable average accuracy rate for long-term
predictions, including an accuracy rate above 70% accuracy rate two years
(eight quarters) before bankruptcy occurs. Retaining enough suitable features
will allow for a higher accuracy rate in the feature selection strategy.

3. This research found that the business cycle index would significantly influence
the prediction accuracy, especially in short term. This issue has been seldom
explored in prior researches on business failure prediction.
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4. This study empirically determined that the swarm-inspired optimization
achieved better forecasting accuracy than other evolutionary approaches,
such as Grid search and GA. Furthermore, the swarm-inspired optimiza-
tion approach has rarely been used for forecasting, especially for financial
problems.

Thus, the findings of this research are valuable and provide several important
implications for research in financial predictions and in practice.

4.4 UCI datasets

To compare the proposed PSO–SVM with other approaches, we used three finan-
cial related datasets, two popular small datasets, and two large datasets collected
from the UCI Machine Learning Repository [33]. The seven datasets are Australian
Credit Approval, German Credit Data, Japan CRX, Iris, Wine, Chess, and Adult,
respectively. The other approaches used as a basis for comparison were SVM- and
SOM-related approaches which reported at least one classification accuracy rate for
the above-mentioned datasets in the literature. These approaches included Grid-
SVM, GA-SVM, SVM, and SOM. For the purposes of discussion, the experimental
parameters settings were identical to those detailed in Section 4.1, and the feature
selection methods for all related-SVM approaches were adopted and run to mea-
sure their relative prediction performance. Tab. V clearly shows that the proposed
PSO–SVM provides the highest accuracy rate for the seven UCI datasets. The ex-
perimental results show that there are no significant differences between PSO-SVM
and Grid-SVM when handling small datasets with few variables. However, PSO-
SVM has better prediction rate than Grid-SVM for datasets with larger instances
and more variables, as shown in Tab. V. This demonstrates that the proposed
approaches can be applied to financial and other widely-used datasets.

Dataset
Variables Instances

PSO- Grid- GA-
SVM SOM

(From UCI) -SVM -SVM -SVM

Japanese 15 125 86.16% 86.16% 82.78% 81.63% 65.82%

Iris 4 150 97.77% 97.77% 95.33% 96.00% 91.33%

Wine 13 178 100% 100% 91.66% 89.88% 97.75%

Australian 14 690 85.10% 86.06% 84.62% 85.02% 73.43%

German 20 1000 80.33% 79% 78.33% 75.33% 73.33%

Chess 36 3196 90.11% 83.54% 81.20% 80.03% 72.15%

Adult 14 48842 92.00% 86.01% 84.99% 82.00% 76.19%

Tab. V Comparison UCI datasets between various approaches.

5. Conclusions

This research focused on 13 financial ratios and 1 business cycle index used in
financial statements, and used the PSO-SVM, Grid-SVM and GA-SVM to com-
pare the performance of financial distress predictions. 40 electronic companies in
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financial crisis were matched with 40 healthy electronic companies in the electronic
industries. The dataset was obtained from the TSEC database and sampled them
for durations of two, four, six and eight quarters prior to the onset of financial
crisis. This data was then used to establish Financial Model and Business Cycle
Model, with comparisons made for each ratio variable in the models.

Our experiments provide four critical contributions. Firstly, we found that when
we applied business cycle index to construct Business Cycle Model, we could ob-
tain better accuracy rate than Financial Model in short-term financial bankruptcy
prediction. This result shows the macroeconomic index mainly affects financial
prediction performance and has greater influence than financial ratios.

Secondly, the closer we get to the onset of actual financial distress, the more
accurate the prediction will be in the PSO-SVM, Grid-SVM, and GA-SVM ap-
proaches with business cycle index. For example, PSO-SVM without feature se-
lection provides 89.37% average CV accuracy rate for two quarters prior to the
occurrence of financial distress, but only 86.14% when measured eight quarters in
advance. However, the larger dataset we own the higher accuracy rate we get,
when we do not consider adopting business cycle index and featuring selection.

Thirdly, the PSO-SVM approach yields higher classification accuracy than other
approaches. Removing those noisy and highly-correlated features greatly improves
computation times, but removing too many features would adversely affect clas-
sification accuracy. According to the literature, when adopting a crisis prediction
model, most researchers extracted and sorted reduction variables for convenient
analysis. However, the experimental results show that, given a small number of
variables, an error exists between the reduction and original variables, and that
artificial intelligence or neural networks would not have enough data to conduct
learning and training. Therefore, the experiments show that we could still retain
high average accuracy rate if we keep enough and suitable features.

Finally, the PSO-SVM approach generally produces better prediction accuracy
than the Grid-SVM, GA-SVM, SVM, SOM, and SVR-SOM models in predicting
the Australian, German, Japan CRX financial datasets, Iris, Wine, Adult, and
Chess datasets from UCI. Therefore, our proposed PSO-SVM approach is suitable
for predicting financial distress and events in other fields.

More research is needed. Firstly, while the results in this research were obtained
through the PSO method, other soft-computing methods can also be applied to
the SVM-based approach. Secondly, the experimental results obtained from other
public datasets or real-world problems can be tested to verify and extend this
approach.

Acknowledgements

The author thanks the support of the National Scientific Council (NSC) of the
Republic of China (ROC) to this work under Grant No. NSC-98-2410-H-025-011.
The author also gratefully acknowledges the Editor and anonymous reviewers for
their valuable comments and constructive suggestions.

150



Mu-Yen Chen: A hybrid model for business failure prediction. . .

References

[1] Garay U.: The Asian Financial Crisis of 1997 – 1998 and the Behavior of Asian Stock
Markets. A Web Journal of Applied Topics in Business and Economics, 2003. Accessed
available from http://www.westga.edu/∼bquest/2003/asian.htm

[2] Chen M. H.: How Could Taiwan Have been Insulated from the 1997 Financial Crisis? Na-
tional Policy Foundation Research Report, National Policy Foundation, 2001.

[3] Business Wire, Three top economists agree 2009 worst financial crisis since great depression;
risks increase if right steps are not taken. February, 29, 2009. Business Wire News database.
Accessed 16 August 2010.

[4] Jaffe M.: Government Watchdog Says Treasury and Fed Knew Bailed-Out Banks Were Not
Healthy. ABC News Dataset, October 5, 2009.

[5] FDIC, Failed Bank List, 2010. Available from the website database:
http://www.fdic.gov/bank/individual/failed/banklist.html

[6] Min J. H., Jeong C.: A binary classification method for bankruptcy prediction. Expert
Systems with Applications 36, 2009, pp. 5256–5263.

[7] Beaver W.: Financial ratios as predictors of failure, empirical research in accounting: Selected
studies. Journal of Accounting Research, 1966, pp. 71–111.

[8] Altman E. L.: Financial ratios, discriminant analysis and the prediction of corporate
bankruptcy. Journal of Finance, 23, 3, 1968, pp. 589–609.

[9] Martin D.: Early warning of bank failure a logit (?) regression approach. Journal of Banking
& Finance, 1, 1977, pp. 249–276.

[10] Zmijewski M. E.: Methodological issues related to the estimation of financial distress pre-
diction models. Journal of Accounting Research, 22, 1984, pp. 59–82.

[11] Cielen A., Peeters L., Vanhoof K: Bankruptcy prediction using a data envelopment analysis.
European Journal of Operational Research, 154, 2004, pp. 526–532.

[12] Kao C., Liu S. T.: Prediction bank performance with financial forecasts: A case of Taiwan
commercial banks. Journal of Banking & Finance, 28, 2004, pp. 2353–2368.

[13] Hu Y. C., Tseng F. M.: Functional-link net with fuzzy integral for bankruptcy prediction.
Neurocomputing, 70, 16–18, 2007, pp. 2959–2968.

[14] Sanchis A., Segovia M. J., Gil J. A., Heras A., Vilar J. L.: Rough Sets and the role of the
monetary policy in financial stability and the prediction of insolvency in insurance sector.
European Journal of Operational Research, 181, 3, 2007, pp. 1554–1573.

[15] Kirkos E., Spathis C., Manolopoulos Y.: Data mining techniques for the detection of fraud-
ulent financial statements. Expert Systems with Applications, 32, 4, 2007, pp. 995–1003.

[16] Sun J., Li H.: Data mining method for listed companies’ financial distress prediction.
Knowledge-Based Systems, 21, 1, 2008, pp. 1–5.

[17] Ahn H., Kim K.: Bankruptcy prediction modeling with hybrid case-based reasoning and
genetic algorithms approach. Applied Soft Computing, 9, 2, 2009, pp. 599–607.

[18] Chen M. Y., Du Y. K.: Using neural networks and data mining techniques for the financial
distress prediction model. Expert Systems with Applications, 36, 2, 2009, pp. 4075–4086.
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