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Abstract: One crucial step in the construction of the human representation of
the world is found at the boundary between two basic stimuli: visual experience
and the sounds of language. In the developmental stage when the ability of recog-
nizing objects consolidates, and that of segmenting streams of sounds into familiar
chunks emerges, the mind gradually grasps the idea that utterances are related to
the visible entities of the world. The model presented here is an attempt to repro-
duce this process, in its basic form, simulating the visual and auditory pathways,
and a portion of the prefrontal cortex putatively responsible for more abstract rep-
resentations of object classes. Simulations have been performed with the model,
using a set of images of 100 real world objects seen from many different viewpoints
and waveforms of labels of various classes of objects. Subsequently, categorization
processes with and without language are also compared.
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1. Introduction

One of the primary sources of information on our world arrives in the form of visual
input. An initial challenge we are faced with in building a representation of the
world in our brain is that of learning which light sensations belong to the same
class of entities, despite significant changes in appearance. A great step forward in
this learning process is, when the mind grasps the idea that sometimes patterns of
sound are used to identify and categorize visible objects, an ability that has been
claimed to be the essence of human nature [14]. This event takes place in the brain
at a boundary between the visual and language systems and it is the object under
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investigation in this paper. Our model is an attempt to investigate the emergence
of semantic categorization, with a computational model that adheres in varying
degrees to the reality of the corresponding computations taking place in the brain.
We are well aware that our model includes only a fraction of the complexity of
the mechanisms involved in categorization, neglecting modalities, such as touch,
motion perception, and sensorimotor coordination. However, we believe that the
key processes related to early categorization are included in the model and we
compare it with previous modeling attempts.

1.1 Theoretical issues in categorization

Our model embraces the idea that object categorization could emerge sponta-
neously from the ability to grasp patterns of statistical regularities. Several re-
searchers reject this position, Carey and Spelke, for example, postulate that there
must necessarily be innate constraints that have the effect of making certain fea-
tures more salient as opposed to others so as to narrow the hypotheses space with
respect to the kinds of objects to be categorized first [10]. Mandler offers a rather
different picture, presenting evidence that the first similarity dimensions employed
in categorization processes are indeed extremely general [35] and that features could
have a different explanation other than that of conceptual nativism. In the same
vein, [54] has reported a large body of psychological evidence that she interprets
as showing that we do not need to presuppose special mechanisms dedicated to
specific domains in early categorization. Smith suggests that words can contribute
to category formation in that they behave as features which co-vary with other
language-independent features of objects [53]. In [32], the special role visual shape
plays was emphasized, and how it could be crucial for bootstrapping categorization
processes.

Though Mandler rejects the idea that innate constraints are needed in order to
allow the emergence of categories, she puts emphasis on the distinction between
perceptual and conceptual categories. There are two main elements specific to con-
ceptual representations: they concern what objects do rather than what they look
like, and are promoted by attentive, active cognitive processes. Both constraints are
not explicit in our model, however, the involvement of functional information just
requires that such information is added to the mere appearance of objects and can
be done all the same through simple detection of regular covariation. The second
point implies active processing, but can be conceived simply as a pre-processing
phase that moves to the foreground the inputs of our current model.

1.2 Computational approaches

Several attempts have been made to shed light on the issue of how the human mind
acquires the mapping between words and categories of objects, by means of com-
putational models. In [46] the emergence of simple conceptual systems in infancy
is explored, inside the classical PDP framework [50] with an abstract connectionist
model trained with backpropagation. Their model learns categories of birds, fish,
flowers and trees, by associating a predefined set of visual features, like “red” or
“branches”, with a fixed set of attributes, such as “can walk”, “is living” and so
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on. Despite the higher level of abstraction, this model demonstrates important
facts, those being that quite general dimensions of similarity can emerge without
appealing to either physiological or cognitive constraints, simply as the result of a
coherent covariation of features.

The LEX model proposed by [44], based on associative memories, is aimed at
exploring a different facet of the problem: the relationship between the phonolog-
ical form of words and their meaning. In this case no attention is given to what
constitutes the source of meaning, such as visual features, instead the focus is on
the association with word forms. This model has shown that word learning might
behave in analogy with what previous models have suggested about categorization:
certain features of both objects and words can be made more salient than others,
simply as a consequence of regularities in objects, words and their co-variation. In
LEX, the level of abstraction is also very high and the phonological features are
completely artificial, without any relation to voicing features.

At the other extreme, [49] developed a system able to directly deal with real
stimuli, in learning labels of visual objects. The model was able to segment words
from utterances and to associate the proper word with the object, seen with impres-
sive accuracy. The computations implemented in this model, however, are careful
combinations of standard image processing and signal processing algorithms, with-
out any relationship to biological brain computations.

Limiting the discussion to vision, several models inspired by realistic brain com-
putations in object recognition and categorization can be found [17, 45]. Recently,
several models have also attempted to reproduce, to some extent, the structure of
the visual cortex [64, 15, 47, 55], as well as an earlier version of this model [43],
on which our work is based. Not many neural models have been proposed for the
auditory process [39, 61], and little is yet known about the kind of brain computa-
tions that lead to word recognition there. Recently, [27] addressed the important
issue of the roles and the interactions between ITC (Inferior Temporal Cortex) and
PFC (Pre-Frontal Cortex) in categorization, with a neural model, which was again
limited to vision without any relation to words.

As far as we know, this is the first model combining visual and auditory paths
by simulated cortical maps. While building on the current state-of-the-art, our at-
tempt is that of exploring a territory that is still relatively unknown, the boundaries
of integration between language and vision in the brain.

2. Artificial Maps for Visual and Auditory
Cortical Pathways

This section will introduce the model, the rationale for its design, its mathematical
background and the details of each component.

2.1 Mathematics for developing artificial cortical maps

One of the challenges faced by the attempts to model complex cognitive tasks is
that of deciding how to divide the whole task into modules that correspond to
elementary computational functions. The concept of “cortical maps”, originated
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Fig. 1 Overall scheme of the model. All acronyms are listed in Tab. I.

by [38], can serve as a useful tool and as a fairly legitimate criterion to use in the
task of partitioning the cortex, and has been widely used in vision science [65, 66].
The extent to which the correspondence between modules in our model and cortical
maps is faithful is variable. There are computational constraints on the degree of
detail in the model, but the most important limitation is the current knowledge
availble on the cortical structures that are relevant to this model. Information on
these areas continues to be relatively incomplete. As seen in §1.2, there is a large
gap between the better knowledge we have of the visual system, and the modest
one we have instead of the auditory stream. The boundaries where the two systems
meet are even more obscure.

A fruitful mathematical framework for simulating cortical maps from a devel-
opmental perspective is the concept of self-organization that has been the object
of several proposals for artificial neural network schemes. The first implementa-
tion was proposed by [62] in models of the development of aspects of the visual
system, based exclusively on the local interaction of neurons. Kohonen’s SOM
(Self-Organizing Map) has made the mechanism of self-organization of maps pop-
ular thanks to its efficiency and simplicity [30]. However, the winner-takes-all
mechanism at the basis of the SOM is a significant departure from the behavior of
biological cortical circuits.

In our model, we use the LISSOM architecture (Laterally Interconnected Syn-
ergetically Self-Organizing Map) [52], which implements flexible and modifiable
lateral connections of both excitatory and inhibitory types. The basic equation
of the LISSOM describes the activation level xi of a neuron i at a certain time
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step k:

x
(k)
i = f

(
γA

1 + γNU · vrA,i
arA,i · vrA,i + γEerE,i · x (k−1)

rE,i − γIirI,i · x (k−1)
rI,i

)
, (1)

where vector vrA,i is composed by afferent to unit i in a circular radius rA, the
vectors x (k−1)

rE,i and x (k−1)
rI,i

are the activations of all neurons in the map, where
a lateral connection exists with neuron i of an excitatory or inhibitory type, re-
spectively. Their fields are circular areas of radius, respectively, rE, rI. Vectors
ei and ii are composed by all connection strengths of the excitatory or inhibitory
neurons projecting to i. The scalars γX, γE, and γI, are constants modulating the
contribution of afferents.

The scalar γN controls the setting of the push-pull effect in the afferent weights,
allowing inhibitory effects without negative weight values. Mathematically, it rep-
resents dividing the response from the excitatory weights by the response from a
uniform disc of inhibitory weights over the receptive field of neuron i. In equation
(1) and all the following ones the operation x · y are the product of vectors x and
y. Vector U is just a vector of 1s of the same dimension of xi. The function f
can be any monotonic nonlinear continuous growing function limited between 0
and 1. For computational economy, it has been implemented as a piecewise linear
approximation of the sigmoid function, with a typical lower threshold of 0.1, and
an upper threshold of 0.7.

The final activation value of the neurons is assessed after a certain settling
time K, typically about 10 time steps. All connection strengths adapt according
to the general Hebbian principle, and include a normalization mechanism that
counterbalances the overall increase of connections of the pure Hebbian rule. The
equations are the following:

∆arA,i =
arA,i + ηAxivrA,i

‖arA,i + ηAxivrA,i‖ − arA,i, (2)

∆erE,i =
erE,i + ηExixrE,i

‖arE,i + ηExixrE,i‖ − erE,i, (3)

∆irI,i =
irI,i + ηIxixrI,i

‖irI,i + ηIxixrI,i‖
− irI,i, (4)

where η{A,E,I} are the learning rates for the afferent, excitatory, and inhibitory
weights.

LISSOM has been adapted as a model for vision [4], with an organization of the
components of input as receptive fields. The vector a is now made up of afferent
signals organized in a two-dimensional fashion, and v can be thought of as a two
dimensional function shaping the receptive field. Therefore, using two orthogonal
indexes r and c, equation (1) may be rewritten as:

x(k)
r,c = f

(
γX

1 + γNI · ar,c
γXar,c · vr,c + γEer,c · x (k−1)

r,c − γIir,c · x (k−1)
r,c

)
, (5)

where vr,c is now a vector composed by all values in a two-dimensional array in-
cluded in the circular receptive field projected by the neural element at coordinates
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layer size rA rE rI γA γE γI γN

LGN Lateral Geniculated Nucleus 144×144 4.7 - - - - - -
MGN Medial Geniculated Nucleus 32× 32 2.0 - - - - - -
V1 Primary Visual Cortex 96× 96 8.5 1.5 7.0 1.5 1.0 1.0 0.0
V2 Secondary Visual Cortex 30× 30 7.5 8.5 3.5 50.0 3.2 2.5 0.7
VO Ventral Occipital 30× 30 24.5 4.0 8.0 1.8 1.0 1.0 0.0
A1 Auditory Primary Cortex 24× 24 6.5 1.5 5.0 1.7 0.9 0.9 0.0
LOC Lateral Occipital Complex 16× 16 6.5 1.5 3.5 0.5 1.1 1.7 0.0
STS Superior Temporal Sulcus 16× 16 2.5 1.5 5.5 1.8 1.0 1.2 0.0
PFC Pre-Frontal Cortex 24× 24 2.5 1.5 5.5 1.5 3.2 4.1 0.0

Tab. I Main parameters of all maps used in the model.

r, c. There is a topological correspondence between a translation of r, c on the map
and the translation of the field in the input array. The input array can be the
retina, as well as another LISSOM map, so that complex models can be built using
this architecture. In our model the two-dimensional arrangement is extended to
sound stimuli in the time-frequency domains.

2.2 Overall structure of the model

An outline of the modules that make up the model is shown in Fig. 1, the main
parameters and the names of all the components are in Tab. I. There are two
main paths, one for the visual process and another for the auditory channel. The
visual path is built upon and extends a previous model of visual object recognition
[43]. The visual system encompasses the ventral stream only, the “what” stream
used in the classical dichotomy established by [57], which is specialized for object
recognition [42]. A similar division has been found in the auditory system as well,
with two streams originating in the caudal and rostral parts of the auditory cortex,
targeting spatial and non-spatial domains of the frontal lobe [48]. Here again, the
“what” stream is the only contribution taken into account by our model.

2.3 Subcortical components

Both visual and auditory paths include thalamic modules. They are not the object
of this study and are, therefore, hardwired according to what is known about their
functions. Their governing equations are the following:

x¯ = f
(
(lrA + mrA) · (g σN

rA
− g σW

rA

))
(6)

x} = f
(
(lrA + mrA) · (g σW

rA
− g σN

rA

))
(7)

xR+G−¯ = f
(
lrA · g σN

rA
−mrAg σW

rA

)
(8)

xR+G−} = f
(
lrA · g σW

rA
−mrAg σN

rA

)
(9)

xG+R−¯ = f
(
mrA · g σN

rA
− lrAg σW

rA

)
(10)
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xG+R−} = f
(
mrA · g σW

rA
− lrAg σN

rA

)
(11)

xMGN
τ,ω =

∣∣∣∣∣
tM∑

t=t0

v(t)w(t− τ)e−jωt

∣∣∣∣∣

2

, (12)

where x is the activation of a neuron, without indices for clarity, except in (12),
where the horizontal dimension τ is time, and the vertical dimension ω is fre-
quency. Function w(·) in (12) is a short-term temporal window that performs
a spectrogram-like response similar to that given by the combination of cochlear
and MGN processes [9]. In the visual path, there are two distinct pathways, one
achromatic processed by equations (6), (7), and another which is sensitive to col-
ors, limited here to medium and long wavelengths. The equations are: (8), (9),
(10), (11). The symbol ¯ refers to on-center receptive fields, and symbol } to
off-center receptive fields. The profile of all visual receptive fields is given by dif-
ferences of two Gaussians g σN and g σW , with standard deviations σN < σW. This
is an approximation of the combined contribution of ganglion cells and LGN [16].
The color-sensitive units combine on/off-center response with color opponency, as
shown in Fig. 1, for example units xR+G−¯ will have an increase in activation if red
light is shown in the center of the receptive field and/or green light if it is shown
in the surround.

2.4 Lower cortical maps

The lower cortical maps included in the model are V1, V2 and VO, the primary,
secondary, and ventral-occipital visual areas, and A1, the auditory primary cortex.
Their equations are the following:

xV1 = f

(
γV1
A

(
aV1←¯

rA
· x¯rA

+ aV1←}
rA

· x}
rA

)
+

+ γV1
E eV1

rE
· xV1

rE
− γV1

I iV1
rI
· xV1

rI

) (13)

xV2 = f
(
γV2
A aV2←V 1

rA
· xV 1

rA
+ γV2

E eV2
rE
· xV2

rE
− γV2

I iV2
rI
· xV2

rI

)
(14)

xVO = f

(
γVO
A

(
aVO←R+G−¯

rA
· xR+G−¯

rA
+ aVO←R+G−}

rA
· xR+G−}

rA
+

+aVO←G+R−¯
rA

· xG+R−¯
rA

+ aVO←G+R−}
rA

· xG+R−}
rA

)
+

+ γVO
E eVO

rE
· xVO

rE
− γVO

I iVO
rI

· xVO
rI

)
(15)

xA1 = f
(
γA1
A aA1←MGN

rA
· xMGN

rA
+ γA1

E eA1
rE
· xA1

rE
− γA1

I iA1
rI
· xA1

rI

)
(16)

In all the equations, the activation x has to be taken as the activation of a generic
i-th neuron of that level, and all receptive fields have to be intended as referring
to that neuron, the index i has been omitted for clarity. For the same reason, the
indication of the radius r of the circular receptive fields has not superscripted with
the indication of the layer, for example in equation (14) all rA should be read rV2

A ,
as the radii are different in each map.
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In the visual path, the use of still pictures justifies the lack of area V3 whose
main role is the processing of motion information [19]. In exploiting the modularity
of the model, enacted by the correspondence with cortical maps, a simplification
has been introduced by way of the separation of the processing of shape and color.
Shape is elaborated through V1 and V2, by equations (13) and (14), and the
processing of color is entrusted to VO, with equation (15).

There is evidence, in fact, that suggests that in the visual system no segrega-
tion of functions, such as shape or color, processing takes place, and that almost
all visual cortical maps cooperate in analysing form, color, motion and stereo in-
formation [58, 51]. On the other hand, it is clear that visual areas are not equally
involved in all aspects of object recognition. It is possible to identify specialization
in one main function in certain maps. This is the case in what has been called the
color center area by [69, 70] who named it “V4”. We are using the more general
name of VO (Ventral Occipital), given by [66]. V1 is the well-known primary visual
cortex, the most studied part of the brain [24, 25]. One of its main functions is the
organization of the map into domains of orientation tuned neurons [8, 59], which
are fundamental for early shape analysis, our model discards the contributions of
V1 to all other processes. The main projection from V1 is to its immediately ante-
rior area, V2, which is as large as V1, but by far much less understood. A general
and shared idea is that V2 is responsible for shape analysis at a level of complexity
and scale that is larger than that of V1 [29, 26, 2].

Very little is known about the computational organization of the auditory
primary cortex as compared to the early visual maps just discussed [34]. Our
model discards binaural interaction and preserves the main connectivity from single
cochlear signals in the Medial Geniculate nucleus to A1. A large body of evidence
points to an organization of A1 with a fundamental dependency on sound frequen-
cies along one cortical dimension and a distribution of neural responses to temporal
properties [3, 37, 68], model A1 has frequency and time as map dimensions.

Two additional notes on the connectivities in the model. The parameter γmathrmN

that allows inhibitory action at the afferent level is, in fact, an additional flexibil-
ity of the model, which is not always necessary, because the intracortical lateral
inhibitory effect often suffices in developing organizations in the maps which are
close enough to biological reality. As can be seen in Tab. I, it has been used only
for the V2 component. This version of the model does not include backprojections,
this is a limitation since the visual path and the auditory path as well are char-
acterized by significant amounts of projections from higher areas down to lower
areas. A further limitation is that of segregating modalities into separate paths,
due to the fact that in each perceptual path, neurons are actually responding, to
some extents, to other modalities as well [1].

2.5 Higher cortical maps

The equations for the higher cortical maps in the model are the following:

xLOC = f

(
γLOC
A

(
aLOC←V 2

rA
· xV 2

rA
+ aLOC←V O

rA
· xV O

rA

)
+

+ γLOC
E eLOC

rE
· xLOC

rE
− γLOC

I iLOC
rI

· xLOC
rI

) (17)
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xSTS = f

(
γSTS
A aSTS←A1

rA
· xA1

rA
+ γSTS

E eSTS
rE

· xSTS
rE

− γSTS
I iSTS

rI
· xSTS

rI

)
(18)

xPFC = f

(
γPFC
A

(
aPFC←LOC

rA
· xLOC

rA
+ aPFC←STS

rA
· xSTS

rA

)
+

+ γPFC
E ePFC

rE
· xPFC

rE
− γPFC

I iPFC
rI

· xPFC
rI

)
.

(19)

Equation (17) describes the convergence of shape and color processing paths
into the LOC model map, corresponding to the area in the human cortex thought
to be crucial for the task of recognition in vision, located anterior to Brodmann’s
area 19, near the lateral occipital sulcus, extending into the posterior and mid
fusiform gyrus and occipital-temporal sulcus, with an overall surface size similar
to that of V1. Perhaps one of the most important ideas concerning this area, and
one that has obtained a certain amount of consensus, is that it is involved in visual
behavior in which recognition is the main task [21, 22, 63, 31, 67].

In the auditory stream, equation (18) states the projection from A1 to STS.
This is the model’s correlate of a region in the cortical ventral auditory stream on
which there is accumulating evidence and a convergence of opinion on its role in
representing and processing phonological information [5, 6, 33, 23].

The model map where the ventral visual path and the auditory path meet,
equation (19), is PFC. As pointed out in §1.2, there are actually several areas
where visual and auditory signals converge and more than one area is activated in
categorization tasks. The reason for calling the model map PFC is that it is the
upper map in this system hierarchy, where categorization is expected to express the
best possible abstraction and integration of all available object information. This is
a role which is ascribed to biological PFC as well. Needless to say, biological PFC
deals with larger sets of object information than those used in the model, and these
would include for example, the functional information pertaining to what objects
can be used for.

From the model equation it can be seen that all radii being of the unit projec-
tions constant, its algorithmic complexity is linear using as dimension the number
of units. The time of one recall from stimuli to PFC is of about 400 milliseconds
on an AMD Athlon 7750, with 1350 KHz clock and 512 KB cache size.

3. Resulting Functions in the Maps

In this section, we will describe how the model has been trained in this experiment
and report on the functions developed in all the lower cortical maps of the model.
We will then discuss the various aspects of categorization that emerged in the
higher maps.

3.1 Simulation of inner and environmental experiences

The model has been exposed to a variety of stimuli, at different stages of its de-
velopment, that to some extent parallel periods of human development from the
prenatal stage to that of early language acquisition. Initially, only V1, VO and
A1 maps are allowed to modify their synaptic weights by equations (2), (3), and
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(4). The stimuli presented to V1 and VO are synthetic random blobs that mimic
waves of spontaneous retinal activity that are known to play a fundamental role
in the ontogenesis of the visual system [36, 28, 56, 20, 11]. Blobs presented to V1
are elongated along random directions to stimulate orientation selectivity. Blobs
to VO are circular, with constant hues, and random size, position, and intensity.
The A1 map is exposed to short trains of waves sweeping linearly around a central
frequency. Time durations, central frequencies and sweeping intervals are changed
randomly. The next period of development involves V2 and STS maps as well. The
visual stimuli comprises pairs of elongated blobs with a coinciding end point, to
enhance the experience of patterns that are slightly more complex than lines, such
as corners. The auditory stimuli are synthesized waves of the 7200 most common
English words (from http://www.bckelk.uklinux.net/menu.html), with length of 3
to 10 characters. All words are converted from text to waves using Festival soft-
ware [7], with cepstral order 64 and a unified time window of 2.3 seconds. In the
development stage that corresponds to that just after eye opening, natural images
are used. In order to include the primary and most realistic difficulty in recogni-
tion, which is the identification of an object under different views, the COIL-100
collection has been used [40], where for each of the 100 objects, 72 different views
are available. In most experiments, unless otherwise stated, only 8 views per object
have been used during the learning phase of the model and all 72 views are used
in the testing phases.

The last stage of the experiment simulates events in which an object is viewed
and a label corresponding to its basic category is heard simultaneously. The 100
objects have been grouped manually into 38 categories. Certain categories, such
as cup or medicine, have 5 exemplars in the object collection, while others, such
as telephone, have only one exemplar. Each category word is converted from
text to waves using the en1 “Roger” male voice, and the us1 female American
speaker in the Festival software. Both male and female utterances are duplicated at
standard and slower speeds, using the 1.3 value of the Duration_Stretch parameter
in Festival. Examples of the stimuli used can be seen in Fig. 2.

Fig. 2 Example of stimuli to the model. From the left, elongated blobs input to V1, hue
circular blobs for VO, wave trains for A1, couple of blobs for V2, real images for the visual

path, and word waves for the auditory path.
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3.2 Emergence of organization in the lower maps

At the end of development, different organizations are found in the lower maps that
enable the performance of processes that are essential to recognition, and that are
similar to those found in corresponding brain areas. These are mentioned in §2.4.
The V1 map in the model is organized according to orientation selectivity, with
responsiveness of neurons to oriented segments arranged over repeated patterns of
gradually changing orientations, broken by few discontinuities, as shown in Fig. 3.
This ordering resembles the one known to be found in biological primary cortex
[8, 59].

V1 V2 VO

Fig. 3 Organization of neural responses in the lower maps of the model. The two maps on
the left show orientation selectivity in V1. Of these, the map on the left shows the preferred
orientation for each neuron, coded in gray level from black→horizontal to white→vertical.
The map on the right contains the degree of neuronal selectivity in a gray scale from
black→equally responsive to all orientations, to white→highly selective to a single orien-
tation. The two middle maps show angle selectivity in V2. The map on the left is overlaid
with patterns inducing peak responses in the neurons, the map on the far right is the degree
of selectivity. The pair of maps on the far right represent the hue-responding domains in
VO. The map on the left encodes the preferred hue, from black→red to white→green, the

map on the left is again the degree of selectivity.

In the VO map of the model, most neurons respond to specific hues regardless
of intensity. This is one of the basic features of color processing. Color constancy is
crucial in object recognition and is known to develop somewhere between two and
four months of age [13]. The organization in the model’s VO is shown in Fig. 3. The
kind of mapping found in A1 is typically tonotopic and it encodes the dimensions
of frequency and time sequences in a sound pattern. This is known to be the main
ordering of neurons in biological A1 [60]. The main organization found in the V2
map is responsiveness to angles, especially in the 60 and 150 degrees range, this is
shown in Fig. 3. This kind of selectivity is one of the major phenomena recently
discovered in biological V2 [26, 2]. We refer to other published works for further
details on the functions that emerged in V1 and VO [43] and V2 [41].

3.3 Categorization in the higher maps

In the scope of this experiment the most interesting results are found in the three
higher maps. It is here where we expect forms of categorization to take place that
concern both visual and word forms, and mostly conceptual categorization that
intergrates the two.

A common method of analysis has been carried out for all the upper maps to
reveal possible distributions of neural activation as population coding of categories.
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Fig. 4 Examples of population coding of objects in the LOC map. In each row the map
on the far left displays the coding neurons. The following images in the row are samples

of views of the same object and the corresponding response patterns in LOC.

Let us introduce the following function:

xi(s) : S ∈ S → R+; s ∈ S ∈ S, (20)

that gives the activation x of a generic neuron i in one of the higher maps in
response to the presentation of the stimulus s to the system. This stimulus is an
instance of a class S, belonging to the set of all classes of stimuli S available in the
experiment. For a class S ∈ S we can define the two sets:

XS,i = {xi(sj) : sj ∈ S} ; XS,i = {xi(sj) : sj ∈ S′ 6= S ∈ S} . (21)

We can then associate with the class S a set of neurons in the map by ranking it
with the following function:

r(S, i) =
µXS,i

− µXS,i√
σXS,i

|XS,i| +
σXS,i

|XS,i|
, (22)

where µ is the average and σ the standard deviation of the values in the two sets,
and | · | is the cardinality of a set. Now the following relation can be established as
the population code of a class S:

p(S) : S → {〈i1, i2, · · · , iM 〉 : r(S, i1) > r(S, i2) > · · · > r(S, iM )} , (23)
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# of views discriminative power
average over all objects standard deviation

4 0.624 0.325
8 0.647 0.314
18 0.653 0.323

Tab. II Model LOC discriminative power of individual objects by population coding. As

a comparative figure, discrimination by chance would be 0.01.

where M is a given constant, typically one order of magnitude smaller than the
number of neurons in the map. The population code p(S) computed with (23) can
be used to classify a stimulus s in an expected category:

c(s) = arg max
S∈S





∑

j=1···M
αjxp(S)j

(s)



 , (24)

where p(S)j denotes the j-th element in the ordered set p(S) and α is a constant
that is close, but smaller, than one. It is possible to evaluate how the population
code of a map is effective in discriminating a category S by measuring the fraction
of hits in classifying stimuli belonging to that category:

a(S) =
|{s : s ∈ S ∧ c(s) = S}|

|S| . (25)

3.3.1 LOC map

It is possible to begin evaluating the type of representation established in LOC by
using as stimuli view o of an object O, therefore specializing the equation (20) as:

xLOC
i (o) : O ∈ O → R+; o ∈ O ∈ O, (26)

where xLOC
i (o) is computed by (17), when the image o is presented to the visual

path. In this case, a category S of (20) is just an individual object whose instances
can be ascribed to the same entity, or mistaken for a different entity, if a specific
point of view does not resemble the typical view of that object. Samples of popu-
lation coding of individual objects are shown in Fig. 4. As can be seen from the
comparison of the population coding map with LOC responses to different views
of the same object, most coding neurons exhibit invariant responses. Invariance,
an ability to recognize known objects despite large changes in their appearance on
the sensory surface, is the most important property to fulfill the requirement for an
object-recognition cortical area. It has been identified in human LOC by several
studies [22, 63, 31, 67].

Although the term invariance is commonly used in vision, a better term would
be “degree of tolerance” with respect to classes of changes in appearance of the same
object, since no cortical map contains neurons with responses that are absolutely
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invariant to transformations of the same object [12]. There is also psychophysical
evidence of inabilities to recognize objects viewed from less common perspectives,
even in adult humans [18]. In the model’s LOC the supposed coding by popula-
tion of individual objects is efficient in discriminating most of the views for many
objects, although not in an absolute way. By means of equation (25), adapted
to stimuli conditions described in (26), the discrimination power of LOC, i.e. the
fraction of samples correctly classified in their category, has been quantitatively
assessed, and is shown in Tab. II.

bird

cheese

telephone

ring

sauce

fruit

Fig. 5 Examples of population coding of word sounds in the STS map. In each row
the leftmost map displays the coding neurons. The following images in the row are
samples of sound of the same label and corresponding response patterns in STS.

3.3.2 STS map

In the STS map it is possible to evaluate the population coding of labels, as spoken
in four different voices, therefore using stimuli that specialize equation (20) as:

xSTS
i (n) : N ∈ N → R; n ∈ N ∈ N , (27)

where xSTS
i (n) is computed by (18), when the sound n is presented to the auditory

path. There are 38 classes N of sounds inN corresponding to the labels of 38 object
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voices discriminative power
average over all names standard deviation

female 0.882 0.242
male 0.895 0.234
both 0.658 0.300

Tab. III Model STS discriminative power of words heard by different voices. As

a comparative figure, discrimination by chance would be 0.026.

voices discriminative power
average over all categories standard deviation

female 0.878 0.220
male 0.895 0.167
both 0.695 0.240

Tab. IV Model PFC accuracy in discriminating linguistic categories by population coding.

As a comparative figure, discrimination by chance would be 0.026.

categories. Samples of population coding of labels are shown in Fig. 5. In Tab. III
the accuracy of STS in discriminating between the different labels is shown. The
development of STS has been experimented using three different sets of stimuli:
female voices only, male voices only, or using the full set of voices. Listening to
voices of a single gender facilitates the identification of names, as can be observed
in children.

3.3.3 PFC map

The PFC map is where the visual and the linguistic information meet, the popu-
lation coding is the computed specializing equation (20) as:

xPFC
i (c) : C ∈ C → R; c = 〈o, n〉 ∈ C =

(
{ε} ∪

⋃

O∈OC

O

)
× ({ε} ∪NC) , (28)

where xPFC
i (c) is computed by (19), when the sound n is presented to the auditory

path and the object o to the visual path. The 38 object categories introduce
a partition in the set of objects O, such that all sets of views in the partition
O ∈ OC are of objects of that category C. NC is the set of utterances naming
category C. Note that the empty sample ε is included, for experiments in which
only a single modality is presented, c = 〈o, ε〉 in the case of the visual modality
only, and c = 〈ε, n〉 in the case of linguistic input only. The development of PFC
followed that of all the lower hierarchies in the model and has been replicated, as in
the case of STS, for single gender voices, and for the full set. The objects have been
presented using 8 views, of the 72 available, for each. Tab. IV displays the accuracy
achieved at the end of the development, as for STS, the discrimination is quite more
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accurate when words are spoken by a person of a single gender. Nevertheless, the
model achieves a remarkable ability of categorizing objects taking into account
their names, even when thrown into a two gender speaking environment. All the
results described next refer to the full voice set experiment. Samples of population
coding and actual activations are shown in Fig. 5. As can be seen, both the

cigarettes

car

cup

fruit

truck

medicine

Fig. 6 Examples of population coding in the PFC map. In each row the leftmost map
displays the coding neurons. Following images in the row are samples of a sound of the
same name, a view of an object of the relevant class, and the corresponding response
patterns in PFC. The first sample always has a male voice sound and the second sample

a female voice.

population coding and map activations do not preserve any explicit trace of visual
features. The activations of neurons seem to code the categories in a rather abstract
way, as well as the peculiarities of the single samples. For each pair of waves and
images the activations in the PFC map exhibit an important overlap with the
population coding of the corresponding category, with contingent additional or
lacking activations denoting the specific view and the specific voice.

The PFC map is a high level abstract center, where multiple modalities con-
verge. In the specific case of this model, it is the place of convergence of the visual
and linguistic modalities. By supplying the model with partial inputs of the two
types c = 〈o, ε〉 and c = 〈ε, n〉, it is possible to derive population codings of PFC as
being unimodal by always using equations (23), (25), and thus investigate the sep-
arate effects of the two modalities. Several of these modal codings are compared in
Tab. 7 with the full multimodal map. There is a general spontaneous partitioning
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car drink fruit hanger jam pepper piece sauce toast tomato truck

Fig. 7 Examples in the PFC map of modal and multimodal population coding. Images in
the upper row are coding maps for the auditory mode only, in the lower row we find the
visual mode only, and the middle row is the full multimodal population coding of the

categories.

car

medicine

soap

chewinggum

bottle

cup

Fig. 8 Comparison of categorization in LOC and PFC maps of the model, for few classes
of objects. The two graphs are SOM clusterings of the LOC map on the left, and the PFC

map on the right.

in this map, with linguistic information more clustered on the right side and visual
on the left, but with large overlaps. In several cases, the multimodal coding looks
like a combination of the visual and linguistic representations, as in the case of
car, while others, like cigarettes or toast, are more influenced by the linguistic
representation. In the case of car, it could be due to the larger variety of visual
samples inside the same category car.

3.3.4 Spontaneous and linguistic categories

Representations in PFC are the result of the tension between the force of naming
and the regular similarities in visual appearance, in shaping categories. It is inter-
esting to compare the categories developed in PFC with those emerged in LOC,
where language has no effect. For this purpose, a Self Organizing Map [30] has
been used to cluster the output of LOC and PFC for all object samples. Both
SOM maps are 7 × 7 to allow for 38 categories. In Fig. 8 some classes of objects
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Fig. 9 Examples of non linguistic categories in SOM clusters of LOC maps that overlap

with linguistic categories in PFC.

are compared in the two SOM maps. As expected, in the case of PFC there is a
correspondence of SOM elements with linguistic classes of objects, while in the case
of LOC they are spread along multiple SOM elements, with overlaps as well. The
content of some LOC “natural” classes that include overlaps of linguistic classes
are shown in Fig. 9. The two cells (far left column), where the linguistic car cate-
gory is spread, share objects of categories chewing gum (upper cell) and medicine,
cigarettes (lower cell). In both cases, there are visual similarities in the presence
of labels with color contrast, in yellow and light green. There is no possibility of
paying special attention to the wheels as elements in building a specific concept of
car, without perceptual knowledge of how wheels are essential to cars. The other
cell in the lower row shares categories soap and bottle, probably because of their
shape and labeling. More surprising is the presence of an object class kitten. But
on the other hand, it might not be too surprising, if you take into account that
it displays a similar upright shape and pattern of colors (dominant white back-
ground), and that nothing in the model induces the “face” specificity in the visual
recognition process.

3.3.5 Visual imagery elicited by labels

It is possible to supply the model with input of type c = 〈ε, n̆〉, with missing visual
input, and check what visual imagery has been elicited by the word sounds n̆. For
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this purpose, a view ô of an object is selected by the following:

ô = arg min
oi∈

⋃
O, noi

∈Noi





∑

j=1···M
αj

(
xPFC

p(〈ε,n̆〉)j
(〈ε, n̆〉)− xPFC

p(〈ε,n̆〉)j
(〈oi, noi

〉)
)2



 , (29)

where p(S)j denotes the j-th element in the ordered set p(S), as in (24), the
function xPFC(·) is that defined by (28), and Noi

is the set of label sounds referring
to the category of object oi. In Fig. 10 several examples of images elicited by labels
are shown, uttered by female and male voices. Often, all possible voices elicit the
same view of an object that is a sort of a prototype for its class. Again, as in the
condition of spontaneous categorization, kitten is misunderstood, confirming that
face-like cues have no special effect on the model. The source of confusion for the
sound dog is likely to be phonetic due to the similarity with jug, the category to
which the elicited objects belong.

medicine cup hanger cigarettes dog plug
car kitten spoon pig toast jug

Fig. 10 Images elicited in PFC by voices of a category word, female voices in the
first row, male voices in the second row.

We should stress that this ability of model PFC of evoking one modality with
the other is limited compared to the rich forms that are possible in the human
brain; this is due to the obviously extreme simplfications of the model with respect
to a real brain, discussed in §2.4.

4. Conclusions

The model described here demonstrates that the perceptual experience of light and
sound is enough for a first emergence of concepts of visual objects and their labels,
with sounds being those uttered by people naming objects, and light being the
vision of those objects. Clearly, the grasping of a name in this model should be
interpreted as the pure association with a class of objects that share some visual
feature. There is nothing implemented here that would suggest any other aspect
of labels or names that would enrich their concepts in brain development. For
example, medicine is only a sound that induces one to accept some commonalities
between boxes with certain colored labels. In the real world, this name would,
of course, acquire the meaning of something one eats to treat illness, but only
when language has been grasped to the point of becoming the main source for the
creation of networks of associations between meanings. This can never happen in
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the model because it is not implemented. The step implemented here, however, is
not marginal at all, in that it is a first and difficult step that is necessary in order
to grasp the idea that sounds, spoken by other humans, might cluster categories in
the world. For this reason, our model allows us to address human symbolic ability
as such.

A strength in the model is the attempt to adhere to the chain of computational
processes taking place in the brain, especially in the cerebral cortex, and to rely on
fundamental plasticity mechanisms that allow functions to emerge from sensorial
experience. The model benefits from this effort to different degrees due to the
different levels of knowledge we have of the involved cortical processes. Much more
is known about visual recognition, and this explains why this path is much more
detailed in the model.

We conceive the model described here as an important step in a long-term
project of developing a brain-informed simulation of phenomena in the early acqui-
sition of language, in connection with visual experience. Its novelty is not just in
demonstrating the emergence of concepts from the association of visual information
and sounds, that has been already simulated in previous work, but rather in its
showing how this could happen in neural structures that are similar to the cortical
architecture of the human brain.
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