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SUPPORT VECTOR MACHINES IN TIME
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Abstract: Time series consists of complex nonlinear and chaotic patterns that
are difficult to forecast. This paper proposes a novel hybrid forecasting model
which combines the group method of data handling (GMDH) and the least squares
support vector machine (LSSVM), known as GLSSVM. The GMDH is used to
determine the useful input variables for the LSSVM model and the LSSVM model
that works as time series forecasting. Three well-known time series data sets are
used in this study to demonstrate the effectiveness of the forecasting model. These
data are utilized to forecast through an application aimed to handle real life time
series. The results found by the proposed model were compared with the results
of the GMDH and LSSVM models. Experiment result indicates that the hybrid
model was a powerful tool to model time series data and provides a promising
technique in time series forecasting methods .
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1. Introduction

Accurate forecasting of time series data has been one of the most important issues
in hydrological research. The most comprehensive of all popular and widely known
statistical models, which have been utilized in the last four decades for time series
forecasting, are the Autoregressive Integrated Moving Average (ARIMA) model
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[39,40,41,42]. The ARIMA model is only a class of linear model and thus it can
only capture linear feature of data time series.

More advanced Al is support vector machine (SVM), which was proposed by
Vapnik and his co-workers in 1995 through statistical learning theory [1]. The SVM
is a powerful methodology and has become a hot topic of intensive study due to its
successful application to solve most non-linear regression and time series problems
and its growing use in the modeling and forecasting of time series processes. The
standard SVM is solved by using quadratic programming methods. However, this
method is often time-consuming and has a higher computational burden because
of the required constrained optimization programming.

Least squares support vector machine (LSSVM), as a modification of SVM,
was introduced by Suykens [2]. The method uses equality constraints instead of
inequality constraints and adopts the least squares linear system as its loss function,
which is computationally attractive. The LSSVM also has good convergence and
high precision. Hence, this method is easier to use than quadratic programming
solvers in the SVM method. Extensive empirical studies [3] have shown that the
LSSVM is comparable to the SVM in terms of generalization performance. The
major advantage of the LSSVM is that it is computationally very cheap while it
still possesses some important properties of the SVM.

One sub-model of ANN is a group method of data handling (GMDH) algo-
rithm. It was first developed by Ivakhnenko [4] as a multivariate analysis method
for modeling and identification of complex systems. The main idea of the GMDH
is to build an analytical function in a feed-forward network based on a quadratic
node transfer function whose coefficients are obtained by using a regression tech-
nique. This model has been successfully used to deal with uncertainty, linear or
nonlinearity of systems in a wide range of disciplines, such as engineering, science,
economy, medical diagnostics, signal processing and control systems [5,6,7,8,9].

There have been several studies suggesting hybrid models, combining the ARIMA
and ANN model [10,11,12,13,38], the GMDH and ANN model [14], GMDH and dif-
ferential evolution [9], ARIMA and support vector machine (SVM) [15], ANN and
Fuzzy system [16], ANN and SVM [37], ANN and Genetic Algorithm [43,46], Par-
ticle Swarm Optimization and SVM [44,45]. Their results showed that the hybrid
model can be an effective way to improving predictions achieved by either of the
models used separately.

In this paper, a novel hybrid GMDH-type algorithm is proposed by integrating
simple the GMDH with the LSSVM to forecast time series data. The hybrid
model combines the GMDH and the LSSVM into one methodology, known as
the GLSSVM. To verify the application of this approach, three well-known data
sets that always handled in real life time series application are used in this study.
There are the Canadian lynx data, Wolf’s sunspot data and the international airline
passengers.

2. Individual Forecasting Models

This section presents the GMDH, LSSVM and combination of the GMDH and
LSSVM models used for modeling time series. The models were chosen in this
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study because these methods have been widely and successfully used in forecasting
time series.

2.1 The least square vector machines (LSSVM) model

The LSSVM is a new technique for regression. The LSSVM predictor is trained
using a set of time series historic values as inputs and a single output as the target
value. In the following, we briefly introduce the LSSVM, which can be used for
time series forecasting.

Consider a given training set of n data points {;, y; }7; with input data z; €
R™, p is the total number of data patterns and output y; € R. SVM approximate
the function in the following form

y(@) = wl () +0, (1)

where ¢(x) represents the high dimensional feature spaces, which is nonlinearly
mapped from the input space z. In the LSSVM, for function estimation, the
optimization problem is formulated (Suykens et al., 2002) as follows:

n
min J(w,e) = %wTw + %Z e2. 2)
i=1
Subject to the equality constraints
y(x) =wld(z;) +b+e;, i=1,2, .., n.
The solution is obtained after constructing the Lagrange

N

L(w,b,e,a) = J(w,e) — Zai{wT¢(xi) +b+ei —yil}
i=1

With Lagrange multipliers a;. The conditions for optimality are given by

oL

N
o = 0—w= Zaigb(xi),
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= — . = .
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L
(’?ozi =0—w'g(x;) +b+e —y; =0,
for i =1, 2, ..., n. After elimination of e; and w the solution is given by the

following set of linear equations:

: é?m%(xz)ﬂlf ] [ . ] B { 2 } 7
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where y = [y1; ... yn], 1 =[1;...; 1], @« = [aq; ...; ay]. According to Mercer’s
condition, the kernel function can be defined as

K(xzvxj) = ¢(zz)T¢(x1)7 ia .7 = 17 27 sy T (3)

This finally leads to the following LSSVM model for function estimation:
y(@) =Y aiK (zi,2;) +b, (4)
i=1

where «;, b are the solution to the linear system. Any function that satisfies
Mercer’s condition can be used as the kernel function. The choice of the kernel
function K(.,.) has several possibilities. K (x;,x;) is defined as the kernel function.
The value of the kernel is equal to the inner product of two vectors X; and X; in
the feature space ¢(z;) and ¢(x;), that is, K(x;, x;) = ¢(x;) *¢(x;). The structure
of an SVM is shown in Fig. 1.

Nonlinear
Input Layer Function Kernel
Function
Forecasting
¢(xt—l Results
X Ki (xi—l > )C)
Ax. )
X2 ) K(x, 5,x) z
X p—>
v

Fig. 1 Structure of an SVM.

The typical examples of the kernel function are as follows:

Linear:

K(v;,7;) =l x;
Sigmoid: K(x;,x;) = tanh(yx] z; +7)
Polynomial: K(wi,x;) = (yalz; +7r)% >0
Radial basis function (RBF): K (4, ;) = exp(—v ||lz; — z;]|*), ~>0 (5)

Here «,r and d are kernel parameters. The kernel parameters should be care-
fully chosen as they implicitly define the structure of the high dimensional feature
space ¢(x) and thus control the complexity of the final solution.
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2.2 The group method of the data handling (GMDH)
model

The GMDH was introduced by Ivakhnenko in early 1970 as a multivariate analysis
method for modeling and identification of complex systems. The GMDH method
was originally formulated to solve higher order regression polynomials, specially for
solving modeling and classification problem. General connection between inputs
and output variables can be expressed by a complicated polynomial series in the
form of the Volterra series, known as the Kolmogorov-Gabor polynomial [4]:

M M M
y:ao+Zaﬂ:ﬂrZZaljxl:ﬂ]JrZZZawkx Tixp + .. (6)
=1 j=1 i=1 j=1k=1

where z is the input to the system, M is the number of inputs and a are coefficients
or weights. However, for most applications the quadratic forms are called as partial
descriptions (PD) for only two variables are used in the form

Yy = ap + a12; + asx; + azz;x; + 5149322 + a5:17? (7)

to predict the output. To obtain the value of the coefficients a for each m models,
a system of Gauss normal equations is solved. The coefficient a; of nodes in each
layer is expressed in the form

A=X"X)"'XTY, (8)
where Y = [y1 y2...ym]7, A = [ag, a1, as,as, a4, as),

2
1 z1p g T1pTig Ty, X,

2
X 1 zop o TopTog Ty, Ty

2
I oymp Tmg TMpTmq Thrp Ty

and M is the number of observations in the training set.

The main function of GMDH is based on the forward propagation of signal
through nodes of the net similar to principal used in classical neural nets. Every
layer consists of simple nodes each of which performs its own polynomial transfer
function and passes its output to nodes in the next layer. The basic steps involved
in the conventional GMDH modeling [18] are as follows:

Step 1: Select normalized data X = {z1,za,...,za} as input variables.
Divide the available data into training and testing data sets.

Step 2: Construct MCy = M (M — 1)/2 new variables in the training data
set and construct the regression polynomial for first layer by forming the
quadratic expression which approximates the output y in Eq. (7).

Step 3: Identify the contributing nodes at each hidden layer according to
the value of mean root square error (RMSE). Eliminate the least effective

variable with replace the columns of X (old columns) by the new columns
of Z.
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Step 4: The GMDH algorithm is carried out by repeating steps 2 and 3 of
the algorithm. When the errors of the test data in each layer stop decreasing,
the iterative computation is terminated.

The configuration of the conventional GMDH structure is shown in Fig. 2.

z,= f(X)=g+ax +ax, +a,xx +a,x +a,x,

Fig. 2 Basic structure of conventional GMDH.

2.3 The hybrid model

In the proposed method, the combination of GMDH and LSSVM (GLSSVM) is
applied to enhance the capability of the hybrid model. As input variables are
selected by the decision made by GMDH and LSSVM model is used as time series
forecasting. The hybrid model procedure is carried out in the following step:

Step 1: The normalized data are separated into the training and testing sets
data.

Step 2: All combinations of two input variables (x;,z;) are generated in each
layer. The number of input variables are MCy = M (M — 1)/2. Construct
the regression polynomial for this layer by forming the quadratic expression
which approximates the output y in Eq. (10). The coefficient vector of the
PD is determined by the least square estimation approach.

Step 3: Determine new input variables for the next layer. The output z’
variable which gives the smallest of root mean square error (RMSE) for the
train data set is combined with the input variables {1, o, ..., 2, 2’} with
M = M+ 1. The new input {z1, z2,..., 2z, 2’} of the neurons in the hidden
layers is used as input for the LSSVM model.
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Step 4: The GLSSVM algorithm is carried out by repeating steps 2 to 3 until
k = 5 iteration. The GLSSVM model with the minimum value of the RMSE
is selected as the output model. The configuration of the GLSSVM structure
is shown in Fig. 3.
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Fig. 3 Structure of the GLSSVM model for time series forecasting.

3. Empirical Results

In this section, we illustrate the hybrid GMDH-type algorithm and show its per-
formance for a number of well-known and widely used datasets. The first one is a
time series of the Canadian lynx data which was studied previously by Moran [19],
Kajitani et al. [20], Subba Rao and Gabr [21], Zhang [10], Aladag et al. [22], and
Khashei and Bijari [23]. The other one containing airline passenger data deals with
nonlinear behavior and shows multiplicative seasonal behavior being already ex-
ploited in time series [24,25,26,27]. The third one is concerned with Wolf’s sunspot
data [28,21,10,23]. These time series come from different areas and have different
statistical characteristics.

A. Lynx Series The first series that is considered is the lynx series which con-
tains the number of lynx trapped per year in the Mackenzie River district of North-
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ern Canada. The data set has 114 observations, corresponding to the period of
1821-1934. It has also been extensively analyzed in the time series literature with
a focus on nonlinear modeling. These lynx data are one of the most frequently
used time series. The data are plotted in Fig. 4, which shows a periodicity of
approximately 10 years.
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1 11 22 33 44 55 66 77 8 9 110
Time

Fig. 4 Canadian lynx data series (1821-193/4).

In designing the LSSVM, GMDH and GLSSVM models, one must determine
the following variables: the number of input nodes and the number of layers. The
selection of the number of input corresponds to the number of variables which play
important roles in many successful applications of the ANN and GMDH models.

To make these models simple and to reduce some of the computational burden,
only the lagged variables obtained from the Box-Jenkins are used as input layers.
The lynx series was studied by many researchers and the first time series analysis
was carried out by Moran [19] and then recently by Kajitani et al. [20] who fit
an AR(2) model to the logged data. Subba Rao and Gabr [21], Zhang [10] and
Khashei and Bijari [23] found the best-fitted model is AR(12) model.

Hence, in this study, based on Box-Jenkins methodology, the AR(2) and AR(12)
models are linear modeling and are considered as nonlinear function of several past
observations, respectively as follows

xy = f(z4m1, Tp—2) + ar (10)

and

@ = f(@p—1, T2, ..., Te_12) + a, (11)

where f is a nonlinear function determined by the LSSVM, GMDH and GLSSVM
models. In the training and testing of these models, the same input structures
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of the data set are used. The precision and convergence of the LSSVM is also
affected by (v, 02). In the LSSVM model, parameter values for v and 2 need to
be first specified. There is no structured way to choose the optimal parameters
of the LSSVM. In order to obtain the optimal model parameters of the LSSVM,
a grid search algorithm was employed in the parameter space. Cross-validation
is a popular technique for estimating generalization performance. To obtain good
generalization ability, we conduct a validation process to decide parameters. In
order to better evaluate the performance of the proposed approach, we consider
a grid search of (v, o) with v in the range 10 to 1000 and ¢? in the range 0.01
to 1.0. For each hyperparameter pair (v, o) in the search space, 5-fold cross val-
idation on the training set is performed to predict prediction error. The best fit
model structure for each model is determined according to criteria of performance
evaluation. In the study, the LSSVM model was implemented with software pack-
age LS-SVMlab1.5 (Pelckmans et al. 2002) using MATLAB. The LSSVM method
is employed, so a kernel function has to be selected from the qualified function.
Many works on the use of the LSSVM in time series modeling and forecasting have
demonstrated the favorable performance of the RBF kernel (Liu & Wang, 2008, Yu
et al., 2006; Gencoglu and Uyar, 2009). Therefore, the RBF kernel, which has a
parameter v as in Eq. (5), is adopted in this work. Tab. V shows the performance
results obtained in the training and testing period of the LSSVM approach.

The GMDH works by building successive layers with complex connections that
are created by using second-order polynomial function. The first layer created is
made by computing regressions of the input variables. The second layer is created
by computing regressions of the output value. Only the best are chosen at each
layer and this process continues until a pre-specified selection criterion is found.

The proposed hybrid learning architecture is composed of two stages. In the
first stage, the GMDH is used to determine the useful inputs for the LSSVM
method. The estimated output values x’ are used as the feedback value and are
combined with the input variables {z;_1,2¢—2,..., 2t} in the next loop calcula-
tions. In the second stage, the LSSVM mapping of the combination inputs variables
{z4_1,T4—2,...,4_p1, 2’} seeks optimal solutions for determining the best output
for forecasting.

The performances of the GMDH, LSSVM and GLSSVM for time series fore-
casting models for lynx data are given in Tab. I.

Training Testing
Input Model MAE MSE MAE MSE
M1 GMDH 0.1681  0.0444 0.0634  0.0082
LSSVM 0.1613  0.0411  0.0657  0.0074
GLSSVM  0.1681  0.0442 0.0552 0.0056

M2 GMDH 0.1522  0.0359  0.0623  0.0058
LSSVM 0.0898 0.0141 0.1303  0.0301
GLSSVM 0.1507 0.0346  0.0654  0.0067

Tab. I Comparison of the GMDH, LSSVM and GLSSVM in training and testing.
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It is clear from Tab. I, in the training phase that the LSSVM obtained the
best MSE and MAE statistic of 0.0898 and 0.0141, respectively. Analyzing the
results during testing, considering the MSE and MAE being regarded here as a
performance index, the experimental results clearly demonstrate that the GLSSVM
outperforms the other models. Fig. 5 shows the actual and forecasted values
respectively.

3.6
3.44
3.2+
g 3.0
g 2.8
&
2.64 T Q Variable
—@®— Data
—®— GMDH
2.44 4 LSSVM
= — = GLSSVM
2.24 i
1 2 3 4 5 6 7 8 9 10 11 ikz 13 14
Time

Fig. 5 Comparison between observed and predicted for the GMDH, LSSVM and
GLSSVM models for lynz time series (testing phase).

Tab. II shows the performance of our proposed model and other models studied
in the previous literature. The experiment results show that our proposed model
offers encouraging advantages and has good performance.

Model MSE MAE
Zhang’ ARIMA [10] 0.02049 0.1123
Zhang’ ANN [10] 0.02046 0.1121
Zhang’ Hybrid [10] 0.01723 0.10397
Khashei & Bijari’ ANN [23]  0.01361 0.089625
Kajitani’ SETAR [20] 0.01400 -
Kajitani’ FNN [20] 0.0090 -
Aladag’ Hybrid [22] 0.0090 -

Proposed Model (GLSSVM) 0.00560 0.0552

Tab. IT Comparison of performance of the proposed model with those of other
forecasting models.
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B. The Airline Passenger Data The airline passenger data set was first used
by Brown [33] and then by Box and Jenkins [24]. The airline passenger data set
consists of the total number (in thousands) of passengers on international airlines
from January 1949 to December 1960. Fig. 6 shows that the data have an up-
ward trend together with seasonal variation whose size is roughly proportional to
the local mean level called multiplicative seasonality. The airline series exhibits
nonlinear behavior and shows multiplicative seasonal behavior.
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3004
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i 14 28 4 56 70 84 08 112 126 140

Fig. 6 Airline passenger data series (Jan 1949 — Dec 1960).

As in many other studies involving this time series, the data from the first 11
years (132 observations) are used for modeling and the 12 last observations are used
for testing. For the airlines series, Box et al. [34] identified that the best model that
fits the airline data is SARIMA(0,1,1)x(0,1,1);2 after making logarithmic transfor-
mation same as that identified by other researchers, e.g. Newton (1988), Faraway
and Chatfield [26].

Using the Box-Jenkins approach on the airlines data, the best model found is
the SARIMA model of order (0,1,1)x(0,1,1);2 given by

(1—B)(1 — B?)z; = (1 — 0.3484B)(1 — 0.5623B'?)a,
Ty = T4_1 + Ti—12 — Ty_13 — 0.3484a,_1 — 0.5623a;_12 + 0.1959a;:_13 + a;. (12)
For the airlines series presented in Eq. 12, the output z; can be expressed as follows
ry = f(T4—1, %12, 413, Q4—1, G412, G¢—13). (13)

The nodes in the input layer consist of lagged variables x;_1, T¢_12, T¢_13 and the
effects of random errors a;_1, a;_12, a;_13 on forecast. Hence, the LSSVM, GMDH
and GLSSVM models have six input nodes in the input layer for the independent
variables in the function f, and one output node in the out layer consists of the
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Training Testing
Model MAE MSE MAE MSE
GMDH 10.726  187.712 11.726  188.948
LSSVM 4.786 37.376 20.287  591.000
GLSSVM  7.426  103.371 11.316 186.027

Tab. III Comparison of the GMDH, LSSVM, and GLSSVM in training and
testing.

prediction value at the next month. The results of the forecasting experiments for
the LSSVM, GMDH and GLSSVM models are summarized in Tab. III.

Tab. IIT shows that in the training phase, the LSSVM model obtained the best
MSE and MAE statistics of 37.376 and 4.786, respectively. However, analyzing the

results during testing, it can be observed that the GLSSVM model outperforms all
other models in terms of MSE and MAE. Fig. 7 shows the output results.
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Fig. 7 Comparison between observed and predicted for the GMDH, LSSVM and
GLSSVM models for airlines passenger time series (testing phase).

Tab. IV compares the GLSSVM with other models existing in the literature.
For the purpose of comparison, the best value of sum of square error (SSE) for the
ARIMA and ANN models found by Faraway and Chatfield [26] are also shown in
Tab. I. From Tab. IV, using MSE (or SSE) as the performance index, the best SSE
value found by the SARIMA method in the forecasting of this series is 4328, the
best value of Faraway and Chatfield [26] found with ANN is 2900, and the best SSE
value found by the GLSSVM is 2863. It is observed that the proposed GLSSVM
model was significantly better than other models.
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Model SSE  MSE
Faraway’ ARIMA [26] 4328  325.839
Faraway’ ANN [26] 2900 241.670

Proposed model(GLSSVM) 2863  228.546

Tab. IV Comparison of performance of the proposed model with those of other
forecasting models.

C. Box-Jenkins Furnace Time Series Finally, for further evaluation, we test
a benchmark data set that is Box-Jenkins furnace time series [34]. This data set
has been used extensively as a benchmark example for process identification. Box
and Jenkins [24] used a time-series based approach to develop a model based on
the gas furnace data set. This model has been referred to, repeatedly, as the linear
model. The data set has since been used by many researchers including [35,36].

The data originally consist of 296 data points [y(t),u(t)] from ¢t = 1 to 296,
where y(t) represents the concentration of carbon dioxide in the gas mixture flowing
out of a gas furnace under a steady air supply and u(t) represents the flow rate of
the methane gas in a gas furnace. The data are plotted in Fig. 8. Here we are
trying to predict y(t) based on x = [z(t—p), ..,z (t—1),y(t—p),...,y(t—1)], where
p is lag.
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Fig. 8 Time series of gas furnace.

One of the most important steps in developing a satisfactory time series forecast-
ing is the selection of the input variables. For the GMDH, LSSVM and GLSSVM
models, there is no systematic approach which can be followed. The various input
structures were tried. In this study, a number of lag (p), 1, 2 and 3 were considered.
The input structures of forecasting models are shown in Tab. V.
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Model | Input Structure

M1 x=[z(t—1),y(t—1)]
M2 x=[z(t—2),x(t—1),y(t
M3 x = [z(t —3),z(t — 2), z(t

Tab. V Input structure of the models for Box-Jenkins furnace time series.

In this study, 246 data samples are used for training and the remaining data
samples are used for testing. Tab. VI reports the training and testing results of
MAE and RMSE of different input structures for each of the individual forecasts
and a hybrid forecasts for the furnace time series.

Input Training Testing
Structure Model MAE MSE MAE MSE
M1 GMDH 0.3555  0.2034  0.5373  0.4814
LSSVM 0.3456  0.1976  0.5474  0.4867
GLSSVM  0.3426  0.1901  0.5454  0.4828

M2 GMDH 0.1146  0.0220 0.2624  0.1350
LSSVM 0.0814  0.0106  0.2824  0.1478
GLSSVM 0.0896  0.0129 0.2560 0.1303

M3 GMDH 0.1028  0.0174  0.3048  0.1937
LSSVM 0.0625 0.0071 0.3480 0.2328
GLSSVM  0.0699  0.0089  0.2885  0.1542

Tab. VI The training and testing results of the GMDH, LSSVM and GLSSVM
models.

The results show that the best performance criteria (MAE = 0.0625, MSE =
0.0071) in training were obtained for the LSSVM model whose input structure is
M3. For the testing phase, the best values of MAE and MSE (MAE = 0.2560,
MSE = 0.1303) for the GLSSVM model was obtained using M2. The simulation
results demonstrated that the new hybrid algorithm is more efficient than the con-
ventional GMDH and LSSVM models. The observed and the best results obtained
in predicted by GMDH, LSSVM and GLSSVM models are shown in Fig. 9.

Tab. VII contains a comparative analysis between the performances of the pro-
posed GLSSVM model with other models studied in the literature. Compared with
these models, the GLSSVM comes with a high accuracy and improved prediction
capability.

4. Conclusion
There are plenty of models used to predict time series data. In this paper, we have

demonstrated how the time series data could be well represented by the hybrid
models, combining the GMDH and LSSVM models. To illustrate the capability
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Fig. 9 Comparison between observed and predicted for the GMDH, LSSVM and
GLSSVM models for gas furnace problem (testing phase).

MSE
Model Training | Testing
Oh and Pedrycz’s model [47] 0.020 0.271
Kim et al. model [48] 0.034 0.244
Lin and Cunningham’s model [49] 0.071 0.261

Oh and Pedrycz’s model Type 1 Basic case 1 [50] | 0.017 0.148
Oh and Pedrycz’s model Type 1 PNN case 2 [50] | 0.017 0.147
Proposed model (GLSSVM) 0.0129 | 0.1303

Tab. VII Comparison of performance of the proposed model with those of other
forecasting models.

of the LSSVM model, the lynx, airlines and gas furnace data were chosen as a
case study. The time series data having various input structures are trained and
tested to investigate the applicability of the GLSSVM compared with the GMDH
and LSSVM models. One of the most important factor in developing a satisfactory
forecasting model, such as the GMDH and LSSVM models, is the selection of
the input variables. Empirical results on the three data sets using three different
models clearly reveal the efficiency of the hybrid model. In terms of MSE and MAE
values, for three data sets, the LSSVM model has the best ones in training, while
proposed model has the best ones in testing. These results show that the hybrid
model provides a robust modeling capable of capturing the nonlinear nature of the
time series data and thus producing more accurate forecasts.
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