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Abstract: This paper introduces a method how to transform one regular gram-
mar to the second one. The transformation is based on regular grammar distance
computation. Regular grammars are equivalent to finite states machines and they
are represented by oriented graphs or by transition matrices, respectively. Thus,
the regular grammar distance is defined analogously to the distance between two
graphs. The distance is measured as the minimal count of elementary operations
over the grammar which transform the first grammar to the second one. The dis-
tance is computed by searching an optimal mapping of non-terminal symbols of
both grammars. The computation itself is done by the genetic algorithm because
the exhaustive evaluation of mapping leads to combinatorial explosion. Transfor-
mation steps are derived from differences in matrices. Differences are identified
during the computation of the distance.
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1. Introduction

A concept of the multilingual model of system alliance was presented e.g. in [1].
The alliance is understood as a heterogenous entity consisting of elements that are
coupled strongly or weakly. Interfaces are placed between two elements and be-
tween elements and neighboring area (supersystem). One way how to describe the
communication on interfaces is to use languages which can be generated by gram-
mars. There are several variants of this model and many tasks to define and to
solve. Languages and grammars were classified by Chomsky (unrestricted, context-
sensitive, context-free, regular grammars). The selection of the grammar to model
the communication determines the language and the complexity of the language
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analysis. The regular grammars generate regular languages and the regular lan-
guages are accepted (recognized) by the (nondeterministic) finite state machines,
the context-free languages are generated by the context-free grammars and they
are recognized by the (nondeterministic) pushdown automata. Context-sensitive
and unlimited languages generated by the appropriate grammars are more complex
and their analysis is an NP problem and it can be done by Turing machines.
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Fig. 1 Model of the alliance.

We suppose an alliance containing members P , Q, Fig. 1. Member Q is char-
acterized by an input language LI (occurring on the input interface) and member
P is characterized by an output language LO (occurring on the output interface).
The P member sends messages to the Q member. The special case is when input
and output languages are the same, LI = LO, or the output language is a subset
of the input language, LO ⊂ LI . The interface is regular from the point of system
analysis view. No conversion or translation is needed. If languages differ the inter-
face is irregular and the regularization process has to be done. The following two
methods are used very often in system analysis – to modify the element (its output
function) or to insert a conversion element between members. These methods can
be realized by specified steps in the multilingual model:

1. Transformation (modification) one of two languages LO, LI (grammars re-
spectively) toward to the second language (grammar respectively).

2. Searching a translation grammar between two languages and assign this gram-
mar to the conversion element.

The decision depends on several aspects which alternative to choose. Especially,
it depends on “distance” of languages. We can measure the cost of searching
translation grammar and implementing it to the conversion element and the cost
of transformation of the one language to the second one. The both costs are then
compared. If the transformations mentioned above are considered, the regard for
two language components should be taken into account: syntax and semantics.
Consequently, the correctness of translation (transformation) has two components:
syntactic and semantic correctness [8]. The translation will be syntactically correct
if the recipient accepts the sentence, semantically correct if the sentence has the
same or similar meaning which was meant by the first member. Syntactically

300
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correct translation should be done when the sentences will be created according
to correct rules by e.g. finite state machine (FSM), for semantic correctness there
should be real-time acknowledgement of the meaning, at least for the very first
time of communication. Semantically correct translation is much more complicated
(two semantically corresponding terminals may figure in more rules that are neither
corresponding nor similar). We focused on the first task. We try to find an optimal
transformation of one regular grammar to the second one. Our transformation is
syntactically correct.

2. The Transformation of Regular Grammars

Let us assume two regular grammars: G1 = 〈N1, T1, P1, S1〉, G2 = 〈N2, T2, P2, S2〉,
where N1, N2 are sets of non-terminal symbols, T1, T2 are sets of terminal symbols,
P1, P2 are sets of rules, S1 ∈ N1, S2 ∈ N2 are start symbols of the grammars. Sets
of non-terminal symbols are generally different, N1 6= N2, the count of non-terminal
symbols q1 =| N1 |, q2 =| N2 | can be equal or not, q1 = q2 or q1 6= q2. The forms
of regular grammar rules are: A → aB or A → a, where A,B are non-terminal
symbols, a is a terminal symbol.

The ideal case is if T1 = T2. Let us suppose T1 ⊂ T2 or T2 ⊂ T1. Then, the
smaller set can be simply completed so that T1 = T2. If T1 ∩ T2 6= {} and T1 6⊂ T2

neither T2 6⊂ T1 missing symbols are added to the both sets. If T1 ∩ T2 = {}
mapping of terminal symbols must be constructed, M : T1 → T2. Moreover, if
| T1 |6=| T2 | some symbols must be added to the set with less cardinality. We
only focus on the case when T1 = T2 or T1 ⊂ T2 or T2 ⊂ T1. Accordingly, if
q1 6= q2, q1 > q2 without a loss of generality, the set N2 is expanded by adding new
non-terminal symbols so that the cardinality of the both sets are the same.

The task is to transform the generative regular grammar G1 to the generative
regular grammar G2. The simple algorithm is described briefly below:

1. If T1 6= T2 insert missing terminal symbols into the appropriate set.

2. If q1 6= q2 add new nonterminal symbols to the smaller set to be q1 = q2.

3. Search the optimal mapping of non-terminal symbols such a number of steps
of transformation is minimal. The count of steps means the distance between
grammars.

4. Apply transformation steps that are derived from the optimal mapping.

2.1 The distance between regular grammars

A regular grammar is equivalent to a finite state machine (FSM) which is generally
nondeterministic and is defined without output function. The distance between
grammars can be defined analogously to the distance of the finite state machines.
The finite state machine is represented by the transition graph. Hence, the gram-
mar and FSM distance measurement is derived from the measuring of the distance
between two graphs [2].
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2.1.1 The distance between graphs

There are several approaches how to define the distance between two graphs. The
authors in [3], [4] define the distance between two unlabeled un-oriented graphs as
the length of the shortest sequence of elementary operations ei that transform the
graph GR1 to the graph GR2. The ei operation is the edge rotation or the edge
deletion. The edge deletion operation solves the situation when two graphs differ in
the number of edges. Authors also take into account graphs of an arbitrary order
(they differ in the number of vertices). They define that the graphs are equivalent
if they differ only by isolated vertices and their distance is equal to zero in this
case.

The distance calculation is an NP-complete problem. In [3], the authors consid-
ered only planar graphs. Bounds of distance are known and they are derived from
the different count of edges of the both graphs. Therefore, the authors delete some
edges and rotate edges and check for isomorphism using the linear time algorithm
for planar graphs introduced by Hopcroft and Wong [7]. In [5], the authors define
“edit distance” between labeled un-oriented graphs. They consider the following
operations: edge and vertex addition/deletion and substitution. The authors take
into account labeling of vertices (the mapping of vertices of GR1 to GR2 is partially
given) and they define the cost of each operation. The edit distance measurement
is applied in more fields (fingerprints, chemistry). The edit distance is calculated
by A* algorithm and graph matching [5].

2.1.2 The distance between regular grammars

We have already mentioned that a regular grammar is equivalent to a finite state
machine and this is represented by the oriented transition graph or the transition
matrix.

We remind firstly how rules of the regular grammar are transformed to the tran-
sitions of the corresponding finite state machine. We consider a regular grammar
G1 = 〈N, T, P, S〉 and the corresponding finite state machine FSM = 〈X,Q, λ, S〉,
where X is an input symbol set, Q is a set of internal states, λ is a transition
relation λ ⊂ Q×X ×Q because the automaton can be nondeterministic.

The input symbol set is equal to the terminal symbol set, X = T . The set of
internal state is equivalent to the set of non-terminal symbols plus extra terminal
state TS, Q = N ∪ {TS}, TS /∈ N . The initial states is the state equivalent to the
start symbol of the grammar S. The rule A → aB is transformed to the transition
from the A state to the B state initiated by the input symbol a, so (A, a, B) ∈ λ.
The rule A → a is transformed to the transition from the A state to the terminal
state TS initiated by the input symbol a, (A, a, TS) ∈ λ.

We use operations over the grammar in correspondence to [3] due to the equiv-
alence regular grammar = finite state machine = transition graph: edge rotation
and edge addition/deletion. It is clear that edge rotation covers three operations
over an existing rule in the grammar: the change of the non-terminal symbol on
the right side of the existing rule (A → aB to A → aC), the removing of the non-
terminal symbol from the right side of the existing rule (A → aB to A → a) (if the
target state is changed to TS) and the adding the non-terminal symbol to the right
side of the existing rule (A → a to A → aB) (if the previous state is TS) . The
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edge addition/deletion means removing an existing/adding a new rule to the set
of rules. One step of using of the edge rotation compensates two necessary steps:
edge deletion followed by edge addition. The operations are depicted in Fig. 2.

¹¸

º·

¹¸

º·

¹¸

º·

¹¸

º·

¹¸

º·

¹¸

º·

¹¸

º·

¹¸

º·

¹¸

º·

¹¸

º·

¹¸

º·

¹¸

º·

¹¸

º·

¹¸

º·

¹¸

º·

¹¸

º·

¹¸

º·

¹¸

º·

A A A

A A A

B B B

B B B

C C C

C C C

£
£
£°

£
£
£°

£
£
£°

B
B
BN

A → aB A → aB

A → aC A → aB

a a

aa

Edge rotation Edge deletion Edge adition

Fig. 2 Transformation operations.

Let us consider two regular grammars GA, GB with the same count of non-
terminal symbols and the same sets of terminal symbols. A sequence of grammars
exists:

GA = G1, G2, . . . , Gi, Gi+1, . . . , Gn = GB , (1)

where the grammar Gi is transformed to the Gi+1 grammar by one of the following
operations ei: the change of the non-terminal symbol on the right side of the existing
rule, the removing of the non-terminal symbol on the right side from the existing
rule, the adding of the non-terminal symbol to the right side of the existing rule,
removing an existing/adding a new rule to the set of rules. The distance between
grammars is the smallest positive n over all sequences.

If grammars are identical the distance is zero. Identical grammars could have
different labeling of non-terminal symbols. For example, G1 and G2 are identical
on Tab. I.

Additionally, the distance between grammars that differ only in isolated non-
terminal symbols is zero. Let us suppose a grammar that contains no rule having
the non-terminal symbol D on the right side of this rule and contains some rule
D → bE (or D → b). The rule D → bE (or D → b) cannot be used because the D
non-terminal symbol does not occur in derivation and it cannot be rewritten. Such
rule D → bE (or D → b) is useless and it can be removed from the grammar. The
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G1: G2:
N1 = {S,A, B} N2 = {R, C,D}
T1 = {a, b} T2 = {a, b}
P1 = {S → aA, A → aA,A → a, P2 = {R → aC, C → aC,C → a,

A → bB, B → bB, B → b, C → bD, D → bD, D → b,
B → aA} D → aC}

S is a start symbol R is a start symbol

Tab. I Identical grammars.

grammar with useless rules is not acceptable. We only consider grammars in the
sequence (1) which are acceptable.

The distance is a measure and it must satisfy three criteria:

1. to be positive or zero

2. to be symmetrical

3. triangle inequality

d(GA, GB) ≤ d(GA, GC) + d(GC , GB). (2)

The positivity is implied from the definition. The symmetry is implied from
the definition and from the equation (1) as well – the sequence of grammars in (1)
is turned.

The triangle inequality can be proven with the proof by contradiction. If there
is only one sequence from GA to GB including GC , GA, . . . , GC , . . . , GB , then
the inequality (2) changes to the equality, d(GA, GB) = d(GA, GC) + d(GC , GB).
If a sequence or more sequences from GA to GB exist that do not contain GC

these sequences can be of the same length, longer or shorter one than the sequence
containing GC . Because the distance is defined as the smallest positive n, the
shortest sequence is chosen and the distance d(GA, GB) is always less than or
equal to d(GA, GC) + d(GC , GB).

2.2 The Distance computation

Regular grammars can be represented like equivalent finite state machines – by
transition matrices. The matrix element is not an isolated non-terminal symbol
but the characteristic vector due to the possibility of the nondeterministic machine.

The distance can be computed by searching an optimal mapping non-terminal
symbols of the grammar G1 to G2. The mapping should assign start symbols and
TS reciprocally. For each mapping, the count of transformation steps is computed
from matrices of grammars. The distance between grammars is given as a minimum
of counts over all mappings.

The computational complexity is factorial due to check of all permutations. It
can be computed using brute force only for small grammars. One way how to search
the optimal mapping is to use a genetic algorithm. The linear chromosome codes
mapping of G1 non-terminal symbols to G2 non-terminal symbols. We use one
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point order crossover with a randomly generated crossover point. The mutation
swaps the assignment of two symbols.

The complete algorithm is shown in flowchart in Fig. 3.
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Fig. 3 Flowchart of the algorithm.

2.2.1 Transformation steps computation from transition matrices

The set of rules of the regular grammar is represented by a transition matrix equiv-
alent to FSM (Fig. 4(a)). The elements of the transition matrix are characteristic
vectors of the subset of non-terminal symbols. TS non-terminal symbol is added

· · · a · · · N = { S A B C TS }
...

...
...

... ~v = ( 0 1 0 1 1 )
A · · · v̄ · · ·
...

...
...

...

(a) (b)

Fig. 4 Grammar representation.
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to be able to represent rules without non-terminal on their right side, see vec-
tor v̄ in matrix on Fig. 4(b). Let us suppose the set of non-terminal symbols is
N = {S, A, B,C, TS}. If the characteristic vector v̄ is (0, 1, 0, 1, 1) it means the set
of rules contains A → aA, A → aC, A → a, Fig. 4(b).

The algorithm that finds count of transformation steps for an actual mapping
is described below in pseudo C. The grammar G1 (G2 respectively) is represented
by the matrix M1 (M2 respectively). The characteristic vector in the matrix M1

is denoted with index 1 etc.
sum = 0;
for each element in matrix M1

{
Find an appropriate element v̄2 in M2 that corresponds with v̄1 of

M1 according to the actual mapping;
Transform vector v̄1 of M1 to v̄

′
1 according to the actual mapping;

/* Calculate the difference in number of rules */
diff = cout of ones(v̄

′
1) - cout of ones(v̄2);

/* Add or delete non-terminals to/from v̄
′
1 so that the count of

non-terminals is the same as in v̄2≡ edge (rule) addition/deletion */
if (diff < 0) Add non terminals to(v̄

′
1,-diff);

if (diff > 0) Delete non terminals from(v̄
′
1,diff);

/* Count number of edge rotation as Hamming distance between v̄
′
1

and v̄2 divided by 2 */
rot = Hamm dist(v̄

′
1,v̄2)/2;

sum = sum + abs(diff)+rot;
}

It is clear that “right” non-terminals are added/deleted to minimize the count
od next steps – edge rotation.

Example:
Two grammars G1 =< N1, T1, P1, S >, G2 =< N2, T2, P2, R > are given. The

set of non-terminals are N1 = {S,A, B}, N2 = {R, C, D}, the sets of terminals are
the same T1 = T2 = {a, b}.
The first grammar contains six rules:
P1 = {S → aA, S → bB, A → aA,B → bB,A → a,B → b}.
The second grammar has five rules:
P2 = {R → aC, R → bD,C → aC,D → bC, C → a}.
We suppose the following mapping of non-terminals: S → R, A → C, B → D.

Fraction of matrices representing both grammars and characteristic vectors are
in Fig. 5. We show one step of the computation for v̄1 and v̄2 elements and we
calculate the contribution to the total count of differences.

1. Find an appropriate element v̄2 in M2 that corresponds with v̄1 of M1.
The vector v̄1 of M1 represents right sides of rules B → bX of G1. Because

the non-terminal B is mapped to D non-terminal the appropriate vector is one of
those v̄2 of M2 which represents the right sides of rules D → bX.
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2. Transform vector v̄1 of M1 to v̄
′
1 according to actual mapping.

The vector v̄1 does not change in this case due to B → D mapping and B and
D non-terminals are in the same position. TS is assigned without changing. Thus,
v̄
′
1 = (0, 0, 1, 1) and B → bB, B → b have images D → bD, D → b in G2.

3. Calculate the difference in number of rules.
diff = cout of ones(v̄

′
1) - cout of ones(v̄2) = 2 - 1 = 1

4. Delete non-terminals from v̄
′
1.

The difference is 1 so one non-terminal from v̄
′
1 is deleted, for example D (B

from v̄1 originally). The modified vector v̄
′
1 = (0, 0, 0, 1).

5. Calculate the contribution to the total count of differences.
rot = Hamm dist((0,0,0,1),(0,1,0,0))/2 = 2/2 = 1

The contribution is abs(diff)+rot = 1 + 1 = 2 (the total sum is increased by 2).

If we make a transformation of G1 towards to G2 we derive transformation steps
from matrices and vectors simply. There are two steps in our example:

1. The non-terminal D was deleted in step 4. If we return back to the G1 the
rule B → bB is deleted from G1 (edge deletion).

2. We have to do one edge rotation according to step 5 (rot = 1), v̄
′
1 = (0, 0, 0, 1)

→ v̄2 = (0, 1, 0, 0). It means the non-terminal A is added to the right side of
the rule B → b, thus the rule B → b is changed to B → bA.

M1: M2:
a b a b { S A B TS }

S · · · · · · R · · · · · · v̄1 = ( 0 0 1 1 )
A · · · · · · C · · · · · · { R C D TS }
B · · · v̄1 D · · · v̄2 v̄2 = ( 0 1 0 0 )

Fig. 5 Matrix representation of grammars and characteristic vectors.

3. Examples

The test program is written as a console application in C++ language. Two input
grammars are stored in text files and they are described by a list of non-terminals,
terminals, by a set of rules and a start terminal is defined. Parameters are the
probability of crossover Pc, the probability of mutation Pm, the size of generation
N and the maximal count if iterations I.

We tested the algorithm on 6 simple examples with recommended values for
genetic algorithms: Pc = 0.8, Pm = 0.1. The size of generation was N = 100 and
the maximal count of iteration was I = 100. The grammars had up to 10 rules and
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the rules were constructed by man so that the start distance was up to 5. The GA
always found a correct solution.

The example of different grammars and output of the program is shown:

Grammar G1: Grammar G2:
Non-terminals = {S,A,B} Non-terminals = {R,C,D}
Terminals = {a,b} Terminals = {a,b}
Rules = Rules =
{ {
S -> aA R -> aC
S -> bB R -> aD
A -> aA C -> aC
A -> a C -> a
B -> bB D -> bC
B -> b }
}
Start = S Start = R

The output of the program is shown:

The distance : 2
The best founded mapping
G1: S A B
------------------
G2: R C D

Deletion of rule B -> bB
Change of rule B -> b to B -> bA

Transformed grammar G1
---------------------
Non-terminals = {S,A,B}
Terminals = {a,b}
Rules =
{
S -> aA
S -> bB
A -> aA
A -> a
B -> bA
}
Start = S

4. Conclusion

The distance betwen two regular grammars was defined and the algorithm was pre-
sented which calculates the distance between two regular grammars using genetic
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algorithm. The algorithm is based on searching optimal mapping of non-terminal
symbols and minimizing differences in matrices that represent both grammars.
Transformation steps how to transform the first regular grammar to the second
one are derived from differences in matrices related to the optimal mapping of
non-terminal symbols. The algorithm can be used to adjust the communication on
interfaces between elements if the communication is described by regular languages
(or finite state machines) and the languages differ.

Further work will be focused on searching the translation regular grammar in
case two regular grammars are given with the consideration of semantic aspects.
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[10] Brandejský T.: Suggestion for Evolutionary Strategy Implementation in CUDA, MENDEL
2010, Brno University of Technology, 2010, pp. 35-40.

309



310




