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Abstract: Investigated are possibilistic distributions taking as their values se-
quences from the infinite Cartesian product of identical copies of a fixed finite
subset of the unit interval of real numbers. Uniform and lexicographic partial or-
derings on the space of these sequences are defined and the related complete lattices
introduced. Lattice-valued entropy function is defined in the common pattern for
both the orderings, naturally leading to different entropy values for the particular
ordering applied in the case under consideration. The mappings on possibilistic
distributions with uniform partial ordering under which the corresponding entropy
values are conserved as well as approximations of possibilistic distributions with
respect to this entropy function are also investigated.
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1. Introduction and Motivation

The oldest mathematical models of uncertainty quantification and processing were
those dealing with uncertainty in the sense of randomness, in other terms, models
based on probability theory and mathematical statistics. For two reasons, uncer-
tainty and probability have been quantified by real numbers from the unit interval
[0, 1]. First, this space of values was preferred in general because of the fact that in
this interval a great number of mathematical operations and notions are definable
and applicable, which may be used as an aid when processing uncertainty (i.e.,
randomness and probability in this case) values during various theoretical studies
and practical applications. The other reason leading to preferences for unit inter-
val as an appropriate space for probability values consists in the fact that relative
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frequences of the occurences of random events in sequences (statistically indepen-
dent, let us say) random samples are quantified by real numbers from [0, 1] simply
because they are defined in this way. Hence, the aim to apply relative frequences as
reasonable estimations of the related probability values may be taken as a support
for the idea to quantify also probability values within this interval.

Quantification of uncertainty degrees by real numbers (in particular, in [0, 1])
implied that all such values (probability values or expected values, in particular)
could be related to each other by binary relation “greater than”, “smaller than” or
“equal to” (“identical with”). However, the application of uncertainty degrees with
incomparable values involved serious problems: a projection of these uncertainty
degrees onto real line, or even unit interval, become possible only under very strong
and, because of the nature of the problem to be solved, hard to accept further
conditions. Remember, e.g., the case of uncertainty degrees quantified by various
subsets of some space, so that these subsets need not be nested (i.e., need not be
completely ordered by the relation of set inclusion).

A theoretical solution to these problems consisted in replacing the unit interval
as the space for uncertainty degrees or values by a weaker structure. The well-
known approach in this sense is that leading to lattice-valued possibilistic measures
initiated by J. A. Goguen in [5] and theoretically pursued by G. DeCooman in [2].
Further weakening of the conditions imposed on the structures in which possibility
degrees take their values would lead to values in lattices (not necessarily complete)
and to various semilattices, almost-lattices, etc.

In this paper we will not follow the pattern of further weakening of the condi-
tions imposed on the structure in which possibility degrees take their values. Rather
we will consider lattice-valued possibilistic distributions and measures taking their
values in a particular complete lattice defined by the infinite countable Cartesian
product of identical finite complete lattices, each of them being defined by a finite
subset Q of the unit interval [0, 1] such that 0, 1 ∈ Q holds and equipped by the
standard linear ordering ≤ on [0, 1]. So, the support of our complete lattice will be
defined by the set Q∞ = {〈x1, x2, . . . 〉 : xi ∈ Q, i = 1, 2, . . . }. We may also write
Q∞ = X∞i=1Qi, Qi = Q, i ∈ N = {1, 2, . . . }. Two partial orderings ≤T and ≤L will
be defined on Q∞, namely, for x = 〈x1, x2, . . . 〉, y = 〈y1, y2, . . . 〉 ∈ Q∞, x ≤T y
holds iff xi ≤ yi is valid for each i ∈ N , and x ≤L y holds iff either x = y or
xi0 < yi0 holds for i0 = min{i ∈ N : xi 6= yi}. Both the relations ≤T and ≤L
define partial orderings on Q∞, the first may be called the Boolean one, and the
other the lexicographical.

The related complete lattices are denoted by T = 〈Q∞,≤T 〉 and L = 〈Q∞,≤L〉
and T -possibilistic distributions (L-possibilistic distributions, resp.) on a space
Ω are defined, as mappings π : Ω → Q∞ such that

∨T {π(ω) : ω ∈ Ω} = 1T
(
∨L{π(ω) : ω ∈ Ω} = 1L, resp.) holds, where 1T = 〈1, 1, . . . 〉 ∈ Ω∞ holds. In

order to quantify the total amount of uncertainty contained in a T - or L-possibilistic
distribution π on Ω we introduce a rather simple T - or L-valued possibilistic entropy
function IT or IL. This entropy function is nontrivial only in the case of unimodal
possibilistic distribution π (i.e., if π(ω0) = 1T for at most one ω0 ∈ Ω), but if
this condition is satisfied, the achieved results seem to be rather interesting and
nontrivial. The reader is referred to more detailed explanations and examples in
Sections 3 and 4.
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Starting in Section 5, our analysis will be focused on T -valued possibilistic dis-
tributions and measures. Proposed are real-valued characteristics of the T -valued
entropy function IT which conserve at least some properties of Q∞-valued (i.e.,
infinite vector valued) function IT , and these characteristics seem to be rather
sensitive to differences between T -possibilistic distributions. Analyzed are also
possibilistic products of T -possibilistic distributions and approximations of such
distributions.

Let us summarize our intention again: to analyze a lattice-valued possibilistic
distributions and measures the values of which are not, in general, comparable with
each other, hence, which take their values in a complete lattice which is not linear,
but which is supported by a structure rich enough to allow for the deduction of
nontrivial and perhaps important and interesting results. A very sketched outlook
to some possible ways of further analysis of the problems submitted below can be
found in the concluding Section 9 of this paper.

The paper is written on an almost self-explanatory level, just some elementary
preliminaries from set theory, Boolean algebras and lattice theory in the extent of
introductory chapters of [1, 4] or [10] (or some more recent textbooks or mono-
graphs) seem to be recommended. Zadeh’s pioneering ideas concerning fuzzy sets
and possibilistic measures can be found in [12, 13], interesting discussions on mutual
relations among various notions of uncertainty are presented in [3].

2. Two Particular Complete Lattices

Let Q = QK = {0 < λ1 < λ2 < . . . λK < 1},K = 0, 1, 2, . . . , denote a K + 2-tuple
of real numbers from the unit interval [0, 1], where ≤ is the standard linear ordering
on [0, 1], let Q∞ = {x = 〈x1, x2, . . . 〉 : xi ∈ Q for each i ∈ N = {1, 2, . . . }} denote
the set of all infinite sequences of real numbers from Q. Let us introduce the two
following binary relations ≤T and ≤L on Q∞.

(i) For each x, y ∈ Q∞, x = 〈x1, x2, . . . 〉,y = 〈y1, y2, . . . 〉,x ≤T y holds iff
xi ≤ yi holds for each i ∈ N .

(ii) For the same x, y ∈ Q∞, x ≤L y holds iff either x = y (i.e., xi = yi for each
i ∈ N ), or iff xi0 < yi0 holds for i0 = min{i ∈ N : xi 6= yi}.

Lemma 2.1 Both the structures 〈Q∞,≤T 〉 and 〈Q∞,≤L〉 define complete lattices
on Q∞.

Proof: First of all, let us prove that both ≤T and ≤L define partial orderings on
Q∞. For ≤T , x ≤T x for each x ∈ Q∞ (reflexivity) and the implication “if x ≤T y
and y ≤T x hold together, then x = y” (antisymmetry) are obviously valid. If
x ≤T y and y ≤T z holds for x, y,z ∈ Q∞, then for each i ∈ N , xi ≤ yi and
yi ≤ zi holds, hence, xi ≤ zi follows, so that x ≤T z is valid (transitivity) and ≤T

defines a partial ordering on Q∞.
For ≤L, x ≤L x holds for each x ∈ Q∞ by definition. Supposing that x,y ∈

Q∞, x 6= y, but x ≤L y and y ≤L x hold together, we arrive at the conclusion
that for i0 = min{i ∈ N : xi 6= yi} the inequalities xi0 < yi0 and yi0 < xi0 hold
together – a contradiction, so that x = y follows. Let x ≤L y and y ≤L z be the
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case for some x, y,z ∈ Q∞. If x = y or y = z, then x ≤L z reduces to x ≤L y or
to y ≤L z, so that x ≤L z is trivially valid. Let x <L y and y <L z hold, so that
the values i0 = min{i ∈ N : xi 6= yi} and j0 = min{j ∈ N : yj 6= zj} are defined.
If i0 = j0, then xi = yi = zi holds for each i < i0 and the inequality xi0 < yi0 < zi0

is valid, so that x <l z follows. If i0 < j0 is the case, then xi0 < yi0 = zi0 holds,
hence, xi0 < zi0 follows and the relation x <L z is proved.

If i0 > j0 is the case, then xj0 = yj0 < zji
holds, so that x <L z holds as well.

Hence, the transitivity of the relation ≤L is proved, so that ≤L defines a partial
ordering on Q∞.

In order to prove that both 〈Q∞,≤T 〉 and 〈Q∞,≤L〉 define complete lattices
on Q∞ we have to prove that for each ∅ 6= A ⊂ Q∞ the supremum

∨T
A and the

infimum
∧T

A (induced by ≤T on P(Q∞)), as well as the supremum
∨L

A and
the infimum

∧
L A (induced by ≤L on P(Ω∞)) are defined (written in more detail,∨T

A =
∨T

x∈A x,
∧T

A =
∧T

x∈A x, and similarly for
∨L

A and
∧L

A).
Considering ≤T and ∅ 6= A ⊂ Q∞, we may easily verify that

T∨
A =

{ ∨

x∈A

xi

}∞

i=1

=

〈 ∨

x∈A

x1,
∨

x∈A

x2,
∨

x∈A

x3, . . .

〉
(2.1)

and

T∧
A =

{ ∧

x∈A

xi

}∞

i=1

=

〈 ∧

x∈A

x1,
∧

x∈A

x2,
∧

x∈A

x3, . . .

〉
, (2.2)

obviously, the supremum and infimum operations in
∨

x∈A xi and
∧

x∈A xi are
induced by the standard linear ordering in [0, 1], here reduced to Q = {0 < λ1 <
λ2 < · · · < λK < 1}.

For ≤L we proceed as follows. Given ∅ 6= A ⊂ Q∞, set x0
1 =

∨
x∈A x1 and set

A1 = {x ∈ A : x1 = x0
1}. As the set Q is finite, supremum (w.r.to≤ on [0, 1]) of each

nonempty subset of Q is identical with some element of the subset of Q in question,
so that the set A1 is nonempty. Set x0

2 =
∨

x∈A1
x2, set A2 = {x ∈ A1 : x2 = x0

2}.
Again, A2 6= ∅, so that we set x0

3 =
∨

x∈A2
x3 and A3 = {x ∈ A2 : x3 = x0

3},
etc. In general, if An ⊂ An−1 ⊂ · · · ⊂ A1 ⊂ A and x0

1, x
0
2, . . . , x

0
n are defined, set

x0
n+1 =

∨
x∈An

xn+1 and An+1 = {x ∈ An : xn+1 = x0
n+1}.

As can be easily seen, for each i ∈ N the set Ai ⊂ A is nonempty, hence, x0
i+1 is

defined. Consequently, the intersection
⋂∞

i=1 Ai is nonempty and x0 = 〈x0
1, x

0
2, . . . 〉

is in this set. Let x∗ ∈ Q∞ be a sequence, different from x0, so that there exists i0 ∈
N such that x0

i0
6= x∗i0 . In this case, however, x∗i0 6=

∨
x∈Ai0−1

xi0 , hence, x∗ cannot
be in Ai0 , so that x∗ is not in

⋂∞
i=1 Ai. So, A∞ =

⋂∞
i=1 Ai = {x0} = {〈x0

1, x
0
2, . . . 〉}

and x∗ ≤L x0 holds for each x∗ ∈ A. Consequently, x0 =
∨L

A follows. If A is
finite, then x0 ∈ A holds, for infinite A this need not be the case. For

∧L
A the

construction is completely dual, setting y0
1 =

∧
x∈A x1, B1 = {x ∈ A : y1 = y0

1},
y0
2 =

∧
y∈B0

y2, B2 = {y ∈ B1 : y2 = y0
2}, etc. The sequence y0 = 〈y0

1 , y0
2 , . . . 〉 ∈ A

then defines the infimum
∧

L A. Hence, also 〈Q∞,≤L〉 defines a complete lattice
and the assertion is proved. 2
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The following remarks concerning both the complete lattices are perhaps worth
being noted explicitly. Taking K = O, we obtain that Q∞ = Q∞

0 = {0, 1}∞ and
〈{0, 1}∞,≤T 〉 is particular case of complete lattices under consideration. As can
be easily seen, this complete lattice is isomorphic to the Boolean algebra of all
subsets of N with respect to standard set operations and to the set inclusion as
partial ordering, the only what is to be done is to identify subsets of N with their
characteristic functions or identifiers (infinite 0 − 1 sequences, in this particular
case). Hence, as subsystems of the power-set P(N ) are not closed w.r.to unions
(i.e., suprema in 〈P(N ),⊆〉) in the sense that for some A ⊂ P(N ) the set

⋃A =⋃
A∈AA is not in A, the same is valid for each 〈Q∞,≤T 〉 for no matter which

K ≥ 0. On the other side, as proved in Lemma 2.1, for ≤L and for finite set A
the supremum

∨L
A =

∨L
x∈A x is always identical with some x ∈ A no matter

which the value K ⊂ 0, 1, 2, . . . may be. This fact is valid due to the finiteness
of each set Q = QK = {0 < λ1 < λ2 < · · · < λK < 1}. For infinite sets Q, say,
Q = {0 < λ1 < λ2 < · · · < 1} the supremum value

∨
Q0 for Q0 ⊂ Q,Q0 6= Q

need not be in Q, so that nor the sequence
∨L

A, even if perhaps defined, need
not be in A. The partial ordering ≤L on Q∞ is linear (complete) in the sense
that for each x, y ∈ Q∞, x 6= y, either x <L y or y <L x holds. Indeed, let
i0 = min{i ∈ N : xi 6= yi}; if xi0 < yi0 holds, then x <L y is the case, if yi0 < xi0

is valid, then y <L x is the case.

Lemma 2.2 For each ∅ 6= A ⊂ A∞ the inequalities
∨L

A ≤T

∨T
A and

∨L
A ≤L∨T

A are valid.

Proof: As shown in (2.1), for each i ∈ N the relation (
∨T

A)i =
∨

x∈A xi holds.
As (

∨L
A)i is identical with xi for some x ∈ A, the relation (

∨T
A)i ≥ (

∨L
A)i

holds for each i ∈ N , hence,
∨L

A ≤T

∨T
A follows.

If
∨L

A =
∨T

A, also the second relation in Lemma 2.2 trivially holds. If∨L
A 6= ∨T

A, set i0 = min{i ∈ N : (
∨L

A)i 6= (
∨T

A)i}. Combining this fact
with the first part of this proof, we obtain that (

∨L
A)i0 < (

∨T
A)i0 holds, hence,∨L

A ≤L

∨T
A follows. The assertion is proved. 2

Partial ordering ≤T will be called Boolean, as in the most simple case with
K = 0, when Q∞ = {0, 1}∞ ≤T copies the inclusion in the Boolean algebra
of all subsubsets of the set N of positive integers. Partial ordering ≤L will be
called lexicographical and its inspiration by ordering of words in vocabularies or by
ordering of binary or decadic codes of real numbers is obvious.

3. T - and L-Possibilistic Distributions and
Possibilistic Entropy Function

Definition 3.1 Let T = 〈Q∞,≤T 〉 and L = 〈Q∞,≤L〉 be the complete lattices
defined in Section 2, let Ω be a nonempty set. A mapping π : Ω → Q∞ is called
T -(valued) possibilistic distribution on Ω, if

∨T
ω∈Ω π(ω) = 〈1, 1, . . . 〉 = 1T . A map-

ping π : Ω → Q∞ is called L-valued possibilistic distribution on Ω, if
∨L

ω∈Ω π(ω) =
〈1, 1, . . . 〉 = 1L.
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When seeking a lattice-valued modification of an entropy or uncertainty function
applicable to possibilistic distributions π : Ω → Q∞, we take inspiration from
the classical Shannon entropy function H. Given a finite or countable space Ω =
{ω1, ω2, . . . } and a probability distrubution p on Ω, i.e., p : Ω → [0, 1] is such that∑∞

i=1 p(ωi) = 1, then Shannon entropy H of p is defined by (cf., e.g., [6])

H(p) = −
∞∑

i=1

pi log2(pi) =
∞∑

i=1

pi log2(1/pi) =

=
∑

ω∈Ω

p(ω) log2(1/p(ω)), (3.1)

applying the convention 0 logL 0 = 0. Hence, H(p) is defined as the expected value
of the decreasing (in p(ω)) function log2(1/p(ω)). Replacing this function by an-
other nonincreasing function of p(ω), namely by the function 1−p(ω), we arrive at
the function

∑
ω∈Ω p(ω)P (Ω− {ω}), where P is the probability measure on P(Ω)

induced by p (cf. [9] and [11] for more detail).
In order to shift our model from probability distributions to T or L-possibilistic

distributions let us replace P (Ω − {ω}) by ΠT (Ω − {ω}) =
∨T

ω0∈Ω,ω0 6=ω π(ω0) (by
ΠL(Ω − {ω}) =

∨L
ω0∈Ω,ω0 6=ω π(ω0), resp.) and the product by ∧T (∧L, resp.), so

arriving at functions

IT (π) =
∨T

ω∈Ω
[π(ω) ∧T ΠT (Ω− {ω})] (3.2)

and

IL(π) =
∨L

ω∈Ω
[π(ω) ∧L ΠL(Ω− {ω})]. (3.3)

These quantifications of uncertainty are not too fine or flexible, if IT (π) = 1T (if
IL(π) = 1, resp.). Indeed, if π(ω1) = π(ω2) = 1 for ω1, ω2 ∈ Ω, ω1 6= ω2, then for
each ω ∈ Ω either ω1 or ω2 is in Ω− {ω}, so that Π(Ω− {ω}) = 1 and

IT =
∨T

ω∈Ω
[π(ω) ∧Π(Ω− {ω})] =

∨T
π(ω) = 1 (3.4)

holds, the relation IL(π) = 1 being valid as well (a refinement of this entropy
function being suggested in [7] and [8]). Nevertheless, let us apply IT and IL in
what follows. T - and L-possibilistic distributions on Ω will be called single, if there
is just one ω ∈ Ω such that π(ω) = 1.

Before going on with a deeper analysis of T - and L-possibilistic distributions,
let us introduce a very simple example for illustration.

Let K = 1, so that Q = Q1 = {0 < λ1 < 1}, let Ω = {ω1, ω2, ω3}, let
π : Ω → Q∞ be defined in this way:

π(ω1) = 〈λ1, λ1, 1, 1, 1, . . . 〉 = 〈λ, λ, 1〉,
π(ω2) = 〈1, 0, λ1, 1, 1, . . . 〉 = 〈1, 0, λ, 〉,
π(ω3) = 〈1, 1, 1, 1, 1, . . . 〉 = 〈1, 1, 1, 〉. (3.5)
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In order to simplify our notation we omit the values (π(ωi))j for j ≥ 4, as these
values are supposed to be 1, and we write λ instead of λ1. Obviously,

∨T

ω∈Ω
π(ω1) = π(ω1) ∨T π(ω2) ∨T π(ω3) = 〈1, 1, 1〉 = 1

∨L

ω∈Ω
π(ω), (3.6)

holds, so that π defines a T -as well as an L-possibilistic distribution on Ω. For
πT (Ω− {ω}) we obtain that

ΠT (Ω− {ω1}) = π(ω2) ∨T π(ω3) = 〈1, 0, λ〉 ∨T 〈1, 1, 1〉 = 〈1, 1, 1〉,
ΠT (Ω− {ω2}) = π(ω1) ∨T π(ω3) = 〈λ, λ, 1〉 ∨T 〈1, 1, 1〉 = 〈1, 1, 1〉,
ΠT (Ω− {ω3}) = π(ω1) ∨T π(ω2) = 〈λ, λ, 1〉 ∨T 〈1, 0, λ〉 = 〈1, λ, 1〉. (3.7)

Hence,

IT (π) =
∨T,3

i=1
[π(ωi) ∧Π(Ω− {ωj})] =

= (〈λ, λ, 1〉 ∧T 〈1, 1, 1〉) ∨T (〈1, 0, λ〉 ∧ 〈1, 1, 1〉) ∨T (〈1, 1, 1〉 ∧T 〈1, λ, 1〉) =
= 〈λ, λ, 1〉 ∨T 〈1, 0, λ〉 ∨T 〈1, λ, 1〉 = 〈1, λ, 1〉 6= 1. (3.8)

For ΠL(Ω− {ω}) we obtain that

ΠL(Ω− {ω1}) = π(ω2) ∨L π(ω3) = 〈1, 0, λ〉 ∨L 〈1, 1, 1〉 = 〈1, 1, 1〉,
ΠL(Ω− {ω2}) = π(ω1) ∨L π(ω3) = 〈λ, λ, 1〉 ∨L 〈1, 1, 1〉 = 〈1, 1, 1〉,
ΠL(Ω− {ω3}) = π(ω1) ∨L π(ω2) = 〈λ, λ, 1〉 ∨L 〈1, 0, λ〉 = 〈1, 0, λ〉. (3.9)

Hence,

IL(π) =
∨L,3

i=1
[π(ωi) ∧L (Ω− {ωi}) =

= (〈λ, λ, 1〉 ∧L 〈1, 1, 1〉) ∨L (〈1, 0, λ〉 ∧L 〈1, 1, 1〉) ∨L

∨L (〈1, 1, 1〉 ∧L (〈1, 0, λ〉) =
= 〈λ, λ, 1〉 ∨L 〈1, 0, λ〉 ∨L 〈1, 0, λ〉 = ∠1, 0, λ〉. (3.10)

The inequalities IL(π) <T IT (π) as well as IL(π) ≤L IT (π) are obviously valid.

Lemma 3.1 Let T = 〈Q∞,≤T 〉 and L = 〈Q∞,≤L〉 be the complete lattices de-
fined in Section 2, let Ω be a nonempty set, let π1, π2 : Ω → Q∞ be two mappings.

(i) If π1 is a T -possibilistic distribution on Ω and if π1 ≤T π2 holds, i.e., if
π1(ω) ≤T π2(ω) holds for each ω ∈ Ω, then π2 defines a T -possibilistic
distribution on Ω and the relation IT (π1) ≤T IT (π2) holds.

(ii) If π1 is an L-possibilistic distribution on Ω and if π1 ≤L π2 holds, i.e., if
π1(ω) ≤L π2(ω) holds for each ω ∈ Ω, then π2 defines an L-possibilistic
distribution on Ω and the relation IL(π1) ≤L IL(π2) holds.
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Proof: Consider the case (i). If π1(ω) ≤T π2(ω) holds for each ω ∈ Ω, then
ΠT

1 (A) =
∨T

ω∈A π1(ω) ≤T

∨T
ω∈A π2(ω) = ΠT

2 (A) holds for each ∅ 6= A ⊂ Ω, in
particular, ΠT

1 (Ω − {ω}) ≤T ΠT
2 (Ω − {ω}) holds for each ω ∈ Ω. Moreover, if

x1 ≤T x2 and y1 ≤T y2 holds for some x1, x2, y1, y2 ∈ Q∞, then x1 ∧T y1 ≤T

x2 ∧T y2 holds as well. Applying these trivial inequalities to xi = πi(ω) and
yi = ΠT

i (Ω− {ω}), i = 1, 2, we obtain that

IT (π1) =
∨T

ω∈Ω
[π1(ω) ∧ΠT

1 (Ω− {ω})] ≤T

∨T

ω∈Ω
[π2(ω) ∧ΠT

2 (Ω− {ω})] =

= IT (π2) (3.11)

holds. Consequently,
∨T

ω∈Ω π(ω) = 1, so that π2 defines a T -possibilistic distribu-
tion on Ω.

Analyzing, in more detail, the proof just introduced we can easily observe that
only the most elementary properties of partial orderings and related supremum and
infimum operations were applied and these properties are common for both the
partial orderings ≤T and ≤L and for the induced operations

∨T
,
∧T and

∨L
,
∧L.

Hence, (ii) can be proved by a routine rewriting of the proof above, just replacing
T by L,

∨T by
∨L and

∧T by
∧L. The assertion is proved. 2

4. Some Properties of the Possibilistic Entropy
Function for T -Possibilistic Distributions

Let Ω be a nonempty set and let π : Ω → Q∞ be a T -possibilistic distribution on
Ω, hence, π(ω) = 〈(π(ω))1, (π(ω))2, (π(ω))3, . . . 〉, (π(ω))j ∈ Q = {0 < λ1 < λ2 <

· · · < λk < 1} holds for each ω ∈ Ω and each j = 1, 2, . . . , and
∨T

ω∈Ω π(ω) = 1 =
〈1, 1, . . . 〉 holds. As, due to (2.1),

∨T

ω∈Ω
π(ω) =

〈 ∨

ω∈Ω

(π(ω))1,
∨

ω∈Ω

(π(ω))2, . . .
〉

=
〈 ∨

ω∈Ω

(π(ω))j

〉∞
j=1

(4.1)

trivially holds, π : Ω → Q∞ defines a T -possibilistic distribution on Ω, if for each
j = 1, 2, · · ·∨ω∈Ω(π(ω))j = 1 holds, here

∨
denotes the standard linear ordering

on [0, 1] reduced to Q ⊂ [0, 1]. As the set Q is well-ordered and finite, the relation∨
ω∈Ω(π(ω))j = 1 holds iff there exists ωj ∈ Ω such that (π(ωj))j = 1. To conclude,

we arrive at the following simple assertion.

Lemma 4.1 A mapping π : Ω → Q∞ defines a T -possibilistic distribution on Ω
iff there exists, for each j ∈ N , an element ωj ∈ Ω such that (π(ωj))j = 1.

Consequently, if π is a T -possibilistic distribution on Ω, then for each j ∈ N the
mapping (π(·))j : Ω → Q defines a real-valued possibilistic distribution on Ω and
the mapping Πj : P(Ω) → Q, defined by Πj(A) =

∨
ω∈A(π(ω))j for each A ⊂ Ω,

defines the real-valued possibilistic measure on P(Ω) induced by (π(ω))j on Ω. In
particular,
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Πj(Ω− {ω}) =
∨

ω1∈Ω,ω1 6=ω

(π(ω1))j . (4.2)

Applying, again, (2.1) we obtain, for each A ⊂ Ω, that

Π(A) =
∨T

ω∈A
π(ω) =

∨T

ω∈A
〈(π(ω))1, (π(ω))2, (π(ω))3, . . . 〉 =

=
〈 ∨

ω∈A

(π(ω))1,
∨

ω∈A

(π(ω))2,
∨

ω∈A

(π(ω))3, . . .
〉

= 〈Π1(A),Π2(A),Π3(A), . . . 〉 (4.3)

according to the definition of Πj(A) a few lines above. In particular, for A =
Ω− {ω}, ω ∈ Ω, we obtain that

Π(Ω− {ω}) =
〈 ∨

ω1∈Ω,ω1 6=ω

(π(ω1))1,
∨

ω1∈Ω,ω1 6=ω

(π(ω1))2, . . .
〉

= 〈Π1(Ω− {ω}), Π2(Ω− {ω}), Π3(Ω− {ω}), . . . 〉. (4.4)

Consequently,

π(ω) ∧T Π(Ω− {ω}) = 〈(π(ω))1 ∧Π1(Ω− {ω}), (π(ω))2 ∧Π2(Ω− {ω}),
(π(ω))3 ∧Π3(Ω− {ω}). . . . 〉, (4.5)

and, according to the relation (3.2),

IT (π) =
∨T

ω∈Ω
(π(ω) ∧Π(Ω− {ω})) =

=
〈 ∨

ω∈Ω

((π(ω))1 ∧Π1(Ω− {ω})),
∨

ω∈Ω

((π(ω))2 ∧Π2(Ω− {ω})),
∨

ω∈Ω

((π(ω))3 ∧Π3(Ω− {ω})), . . .
〉

=

= 〈I1(π), I2(π), . . . 〉, (4.6)

where Ij(π) =
∨

ω∈Ω((π(ω))j ∧Πj(Ω− {ω})), j = 1, 2, . . . .

Lemma 4.2 Let π : Ω → Q∞ define a T -possibilistic distribution on a nonempty
space Ω, let the T -valued entropy function IT (π) be defined by (3.2), let the Q-
valued entropies Ij(π), j = 1, 2, . . . , be defined by (4.2). For each j = 1, 2, . . . ,
let ωj be an element of Ω such that (π(ω))j = 1. Then, the value Πj(Ω − {ωj})
is uniquely defined, i.e., does not depend on possible free choice of ωj , and the
relation

Ij(π) = Πj(Ω− {ωj}) (4.7)

holds.
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Proof: As proved above, for each j ∈ N the mapping (π(·))j : Ω → Q defines a
Q-valued possibilistic distribution on Ω so that, due to the fact that Q is finite and
qK < 1 holds, there exists at least one ωj ∈ Ω such that π(ωj)j = 1 holds. Let us
analyze the two cases.

(i) There exist at least two ω1
j , ω2

j ∈ Ω such that (π(ω1
j ))j = (π(ω2

j ))j = 1 is
valid. Hence, at least one of the values (π(ω1

j ))j or (π(ω2
j ))j (or both) are in

the set of values from Q such that
∨

ω∗∈Ω,ω∗ 6=ω(π(ω∗))j = Πj(Ω − {ω}), so
that the identity Πj(Ω− {ω}) = 1 for each ω ∈ Ω follows.
Consequently, the relation

Ij(π) =
∨

ω∈Ω

((π(ω))j ∧Πj(Ω− {ω})) =
∨

ω∈Ω

((π(ω))j ∧ 1) =

=
∨

ω∈Ω

(π(ω))j = 1−Πj(Ω− {ωj}) (4.8)

holds for both ωj = ω1
j , ω2

j (as a matter of fact, for each ωj such that
(π(ωj))j = 1).

(ii) Let there exist just one ωj ∈ Ω such that (π(ωj))j = 1. As (π(·))j defines a
Q-valued possibilistic distribution on Ω,Πj is the corresponding possibilistic
measure on P(Ω) and {ω}∪ (Ω−{ω}) = Ω holds, we obtain that the relation
(π(ω))j ∨ Πj(Ω − {ω}) = 1 is valid for each ω ∈ Ω, where ∨ denotes the
standard supremum in 〈[0, 1],≤〉. So, if (π(ω))j < 1 is the case, then Πj(Ω−
{ω}) = 1 follows, so that

Ij(π) =
∨

ω∈Ω

((π(ω))j ∧Πj(Ω− {ω})) =

=
∨

ω∈Ω,ω 6=ωj

((π(ω))j ∧Πj(Ω− {ω})) ∨ ((π(ωj))j ∧Π(Ω− {ωj})) =

=


 ∨

ω∈Ω,ω 6=ωj

[(π(ωj))j ∧ 1]


 ∨ [1 ∧Πj(Ω− {ωj})] =

= (Πj(Ω− {ωj})) ∨ (Πj(Ω− {ωj}) = Πj(Ω− {ωj}). (4.9)

The assertion is proved. 2

Corollary 4.1 Let the notations and conditions of Lemma 4.2 hold, let there
exist just one ωj ∈ Ω such that (π(ωj))j = 1 holds. Then, the inequality Ij(π) < 1
follows.

Proof: Indeed, according to (4.7),

Ij(π) = Πj(Ω− {ωj}) =
∨

ω∈Ω,ω 6=ωj

(π(ω))j =
∨
{((π(ω))j : ω ∈ Ω, (π(ω))j < 1} =

=
∨
{(π(ω))j : ω ∈ Ω, (π(ω))j ≤ qK} ≤ λK < 1 (4.10)
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holds. As a trivial consequence we obtain that

I(π) =
∨T

ω∈Ω
(π(ω) ∧T Π(Ω− {ω})) = 〈I1(π), I2(π), I3(π), . . . 〉 < 1 (4.11)

follows, as Ij(π) < 1 is the case.
To summarize intuitively the results: if there are at least two occurrences of 1 in

{(π(ω))j : ω ∈ Ω}, then Ij(π) = 1, if there is just one occurrence of 1 in {(π(ω))j :
ω ∈ Ω} and (π(ω))j = 0 for each other ω ∈ Ω, then Ij(π) = 0, and 0 < Ij(π) < 1
holds otherwise, i.e., if there is just one occurrence of 1 in {(π(ω))j : ω ∈ Ω}, but
0 < (π(ω))j < 1 holds for at least one ω ∈ Ω. Consequently, if there are ω1, ω2 ∈ Ω
such that π(ω1) = π(ω2) = 〈1, 1, . . . 〉 = 1 and ω1 6= ω2, then Ij(π) = 1 for each
j = 1, 2, . . . , hence IT (π) = 1T . 2

5. Real-Valued Embeddings of T -Valued
Sequences in General and Entropy Functions
in Particular

We still keep in mind and firmly support all the arguments imposed by numer-
ous and highly appreciated authors in favor of the idea to quantify uncertainty
(in the sense of vagueness) by non-numerical fuzziness degrees, in particular, by
fuzzy subsets of the set of positive integers, as introduced and analyzed above.
Nevertheless, we do not eliminate from consideration the application of natural
and real numbers, as well as the rich and deeply analyzed mathematical structures
over them, as appropriate tools when processing the non-numerical objects and
structures under consideration. In particular, let us define and investigate the fol-
lowing mapping ascribing real numbers from [0, 1] to Q∞-valued sequences. For
each x = 〈x1, x2, . . . 〉 ∈ Q∞ set c(x) =

∑∞
i=1 xi2−i ∈ [0, 1]. Obviously, c(x) takes

its minimum value 0 iff x = 〈0, 0, . . . 〉 = ∅T and c(x) takes its maximum value 1 iff
x = 〈1, 1, . . . 〉 = 1T holds. The mapping c is consistent with the partial ordering
≤T on Q∞ in the sense that c(x) ≤ c(y) holds for each x, y ∈ Q∞ such that
x ≤T y (i.e., xi ≤ yi for every i ∈ N ) is the case.

As analyzed above, given a T -valued possibilistic distribution on a nonempty
space Ω, its possibilistic entropy

IT (π) = 〈I1(π), I2(π), . . . 〉 = 〈Π1(Ω− {ω1}), Π2(Ω− {ω2}), . . . 〉, (5.1)

where, for each j ∈ N , (π(ωj))j = 1 holds, takes also its values in Q∞, so that the
value c(IT (π)) =

∑∞
i=1 Ij(π)2−i is defined and may be taken as a real-valued

characteristic of the entropy value in question. Hence, when transforming T -
possibilistic distribution π into a new possibilistic distribution π∗, we may calculate
and compare both the values c(IT (π)) and c(IT (π∗) and we may draw some con-
clusions from this comparison. Let us illustrate this idea on the following very
simple example.
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Let K = 1, so that Q = {0, λ, 1} is the case (the index in λ, being omitted as
superfluous), let Ω = {ω1, ω2}, and let π : Ω → Q∞ be defined in the following
way.

π(ω1) = 〈1, λ, 0, 0, 1, 1, 1, λ, 0, 0, 1, 1, . . . 〉,
π(ω2) = 〈0, 1, 1, 1, λ, 0, 0, 1, 1, 1, λ, 0, . . . 〉, (5.2)

hence π(ω1) is defined by the infinite sequential repetition of the six-tuples 〈1, λ, 0,
0, 1, 1〉, and π(ω2) is defined by the infinite sequential repetition of the six-tuples
〈0, 1, 1, 1, λ, 0〉. As can be easily verified, for each j = 1, 2, . . . either ((π(ω1))j or
((π(ω2))j equals 1, so that π(ω1) ∨T π(ω)2) = 〈1, 1, 1, . . . 〉 = 1 is the case and π
defines a T -possibilistic distribution on Ω for Q∞ = 〈0, λ, 1}∞.

For Ij(π) we obtain that

I1(π) = Π1(Ω− {ω1}) = Π1({ω2}) = (π(ω2))1 = 0, as (π(ω1))1 = 1,

I2(π) = Π2(Ω− {ω2}) = Π2({ω1}) = (π(ω1))2 = λ, as (π(ω2))2 = 1,

I3(π) = Π3(Ω− {ω2}) = Π3({ω1}) = (π(ω1))3 = 0, as (π(ω2))3 = 1. (5.3)

The values Ij(π) do not depend on the ordering of the elements of Ω, so that
I4(π) = I1(π) = 0, I5(π) = I2(π) = λ, I6(π) = I3(π) = 0, and for greater indices j
the values Ij(π) repeat in regular cycles. Hence,

IT (π) = 〈I1(π), I2(π), . . . 〉 = 〈0, λ, 0, 0, λ, 0, 0, λ, 0 . . . 〉, (5.4)

so that Ij(π) = λ for j = 2 + 3i, i = 0, 1, 2, . . . , Ij(π) = 0 otherwise. Hence,

c(IT (π)) =
∞∑

j=1

(Ij(π))2−j = λ

∞∑

i=0

(2−2)2−3i = (λ/4)
∞∑

i=0

(1/8)i =

= (λ/4)/(1− (1/8)) = (λ/4)(8/7) = (2/7)λ. (5.5)

Let us consider the modification of T -possibilistic distribution π resulting when
replacing in both the sequences π(ω1), π(ω2) ∈ Q∞ all the occurrences of λ by 1,
hence, applying the notation introduced above, when replacing each π(ωi), i = 1, 2,
by π+(ωi). As π(ωi) ≤ π+(ωi) obviously holds, π+ defines a Q∞-valued possibilistic
distribution on Ω (for Q = {1, λ, 0}, as above). Hence,

π+(ω1) = 〈1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, . . . 〉,
π+(ω2) = 〈0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, . . . 〉. (5.6)

Checking the calculations from above, leading from π(ω1) and π(ω2) to IT (π) and
c(IT (π)), we can easily observe that the corresponding calculation for IT (π+) and
c(IT (π+)) consists in simple replacement of λ by 1, so that we arrive at the result
that

IT (π+) = 〈I1(π+), I2(π+), . . . , 〉 = 〈0, 1, 0, 0, 1, 0, . . . 〉, (5.7)
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so that

c(IT (π+)) =
∞∑

i=0

(2−2) · 2−3i = (1/4)
∞∑

i=0

(1/8)i = 2/7. (5.8)

As an illustration of the sensitivity of the mapping c(IT (π)) when aiming to
distinguish among different Q∞-valued possibilistic distributions on Ω perhaps still
another example is worth being introduced explicitly. Consider the possibilistic
distribution π1 on Ω = {ω1, ω2} defined as follows.

π1(ω1) = 〈(π1(ω1))1, (π1(ω1))2, . . . 〉 = 〈1, λ1, 1, λ1, 1, λ1, . . . 〉,
π1(ω2) = 〈(π1(ω2))1, (π1(ω2))2, . . . 〉 = 〈λ2, 1, λ2, 1, λ2, 1, . . . 〉. (5.9)

Hence, ij(π1) = Πj(Ω − {ωj}) = λ2, if j = 1, 3, 5, 7, . . . , Ij(π1) = λ1, if j =
2, 4, 6, . . . So,

c(IT (π1)) =
∞∑

j=1

(Ij(π1))2−j =
∞∑

j=1,j odd
λ22−j +

∞∑

j=1,j even
λ12−j =

=
∞∑

j=0

λ22−(2j+1) +
∞∑

j=1

λ12−2j = λ2(1/2)
∞∑

j=0

2−2j + λ1(1/4)
∞∑

j=0

2−2j =

= (λ2/2)
∞∑

j=0

(1/4)j + (λ1/4)
∞∑

j=0

(1/4)j = (λ2/2)(1/(1− (1/4))) +

+ (λ1/4)(1/(1− (1/4))) = (λ2/2)(4/3) + (λ1/4)(4/3) = (2/3)λ2 + (1/3)λ1.

(5.10)

Let π2 be the possibilistic distribution on Ω = {ω1, ω2} defined in the same way
as π1, just with the roles of the values λ1 and λ2 interchanged, so that c(IT (π2)) =
(2/3)λ1+(1/3)λ2. So, e.g., if λ1 = 1/3 and λ2 = 2/3, then c(IT (π1)) = (2/3)(2/3)+
(1/3)(1/3) = 5/9, and c(IT (π2)) = (2/3)(1/3) + (1/3)(2/9) = 4/9. Obviously, if
λ1 = λ2 = λ, then c(IT (π1)) = c(IT (π2)) = λ.

6. Entropy-Value-Preserving Operations over
Q∞-Valued Possibilistic Distributions

As above, let us consider the set Q = QK = {0 < λ1 < λ2 < · · · < λK <
1}, K ≥ 0, and the space Q∞ of all infinite sequences of elements from Q. Q∞-
valued possibilistic distribution on a nonempty space Ω is a mapping π : Ω → Q∞

such that
∨T

ω∈Ω π(ω) = 〈1, 1, 1, . . . 〉 = 1T . Here T = 〈Q∞,≤T 〉 is the complete
lattice with the partial ordering ≤T on Q∞ defined by the Cartesian product of
the ordering 0 < λ1 < λ2 < . . . λK < 1 on Q, so that, for each x = 〈x1, x2, . . . 〉,y =
〈y1, y2, . . . 〉 ∈ Q∞,x ≤T y holds iff xj ≤ yj is the case for each j = 1, 2, . . .
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Lemma 6.1 For each Q∞-valued possibilistic distribution π defined on a nonempty
space Ω there exists Q∞-valued possibilistic distribution π∗ on a two-element space
Ω∗ = {ω1, ω2} such that IT (π) = IT (π∗) holds in the sense of equality relation on
Q∞, so that Ij(π) = Ij(π∗) is valid for each j ∈ N = {1, 2, . . . }.

Proof: According to the definitions and results introduced above,

IT (π) = 〈I1(π), I2(π), . . . 〉 = 〈Π(Ω− {ω1}),Π(Ω− {ω2}), . . . 〉, (6.1)

where, for each j ∈ N , ωj ∈ Ω is such an element of Ω that (π(ωj))j = 1 holds. At
least one such element always exists for each j ∈ N , if there are two or more such
elements, the choice of one of them is irrelevant, as in such a case Π(Ω−{ωj}) = 1
holds.

Considering Ω∗ = {ω1, ω2}, let π∗ : Ω∗ → Q∞ be defined in this way.

π∗(ω1) = 〈(π∗(ω1))1, (π∗(ω1))2, (π∗(ω1))3, . . . 〉, (6.2)

where (π∗(ω1))j = 1, if j = 1, 3, 5, . . . (i.e., for j odd), and (π∗(ω1))j = Πj(Ω −
{ωj}), if j = 2, 4, 6, . . . (i.e., for j even). Dually, (π∗(ω2))j = Πj(Ω− {ωj}), if j is
odd, and (π∗(ω2))j = 1, if j is even.

As can be easily checked, π∗(ω1)∨T π∗(ω2) = 〈1, 1, . . . 〉 = 1T , so that π∗ defines
a Q∞-valued possibilistic distribution on Ω∗. Moreover

IT (π∗) = 〈Π∗1(Ω∗ − {ω1,∗}),Π∗2(Ω∗ − {ω2,∗}), . . . 〉
= 〈Π1(Ω− {ω1}), Π2(Ω− {ω2}), . . . 〉
= 〈I1(π), I2(π), . . . 〉, (6.3)

where, for each j ∈ N , ωj,∗ is an element from Ω∗ such that (π∗(ωj,∗)) = 1; such
ωj,∗ ∈ Ω∗ always exists. Hence, Ij(π) = Ij(π∗) holds for each j ∈ N and the
assertion is proved. 2

Lemma 6.2 Let Q∞, Ω, Ω∗, and π be as in Lemma 6.1, let λ = c(IT (π)) =∑∞
i=1(Ij(π))2−j be defined. Then, there exists a {0, 1, λ}∞-valued possibilistic

distribution on Ω∗ such that c(IT (π)) = c(IT (π∗)) holds.

Remark 1 The shift from Lemma 6.1 to Lemma 6.2 seems to be evident. In
Lemma 6.1, when seeking a simplified possibilistic distribution with the same en-
tropy value, we still have to keep the whole space Q∞ as the source for our pos-
sibility degrees, on the other side, the entropy value of the simplified Q∞-valued
possibilistic distribution is identical with the entropy value IT (π) of the original
possibilistic distribution in the sense of sequential identity, i.e., each pairs of se-
quence members are identical. On the other side, when seeking the approximating
distribution and its entropy value just in the more simple space {0, 1, λ}∞, i.e., in
Q∞ with Q reduced to {0, λ, 1}, we have succeeded just in the sense that the real-
valued mapping c ascribes the same value to both the possibilistic distributions π
and π∗.
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Proof: (of Lemma 6.2) Given Q∞-valued possibilistic distribution π on Ω, denote
by λ the real value

c(IT (π)) =
∞∑

j=1

(Ij(π))2−j =
∞∑

j=1

(Πj(Ω− {ωj}))2−j (6.4)

for ωj such that (π(ωj))j = 1. Define π∗ on Ω∗ = {ω1, ω2} in this way: (π(ω1))j = 1
for j = 1, 3, 5, . . . , (π(ω1))j = λ for j = 2, 4, 6, . . . , and dually (π(ω2))j = λ for
j = 1, 3, 5, . . . , (π(ω2))j = 1 for j = 2, 4, 6, . . . Obviously, π∗(ω1) ∨T π∗(ω2) =
〈1, 1, 1, . . . 〉 = 1T , so that π∗ defines a {0, 1, λ}∞-valued possibilistic distribution
on Ω∗. Moreover, Ij(π∗) = Π∗(Ω∗ − {ω∗,j}) = λ holds for each j = 1, 2, . . . , here
ω∗,j ∈ Ω∗ is such an element that (π∗(ω∗,j))j = 1 holds. Consequently, we obtain
that the relation

c(IT (π∗)) =
∞∑

j=1

(Ij(π∗))2−j =
∞∑

j=1

Π∗(Ω∗ − {ω∗,j})2−j =
∞∑

j=1

λ2−j = λ (6.5)

holds. The assertion is proved. 2

7. Approximations of Q∞-Valued Possibilistic
Distributions

Let π : Ω → Q∞ be a Q∞-valued possibilistic distribution on Ω, so that
∨T

ω∈Ω π(ω) =
〈1, 1, 1, . . . 〉 = 1T holds. Let for each i ∈ N = {1, 2, . . . } the pair 0 ≤ αi ≤ βi ≤ 1
of real numbers be given, let R denote the system {〈αi, βi〉 : i ∈ N}. Define the
mapping πR : Ω → Q∞, i.e., πR(ω) = 〈(πR(ω))1, (πR(ω))2, . . . 〉, in this way:

(i) if (π(ω))i < αi, then (πR(ω))i = 0,

(ii) if (π(ω))i > βi, then (πR(ω))i = 1,

(iii) (πR(ω))i = (π(ω))i otherwise, i.e., if αi ≤ (π(ω))i =≤ βi holds.
(7.1)

Lemma 7.1 For each Q∞-valued possibilistic distribution π on Ω and for each
system R, πR defines a Q∞-valued possibilistic distribution on Ω.

Proof: According to our former results, the only item we have to prove is the
relation

∨
ω∈Ω(πR(ω))i = 1 for each i ∈ N . As

∨
ω∈Ω(π(ω))i = 1 holds for each

i ∈ N and
∨K

j=1 λj = λK < 1 holds in Q, we obtain that, for each j ∈ N , there
exists ωj ∈ Ω such that (π(ωj)j = 1 holds. However, in this case (7.1) yields that
(πR(ωj))j = 1, hence,

∨
ω∈Ω(πR(ω))j = 1, so that

∨
ω∈Ω πR(ω) = 〈1, 1, . . . 〉 = 1T

follows and the assertion is proved. 2

Theorem 7.1 Under the notations and conditions of Lemma 7.1 the following
inequalities are valid:
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(i) if Ij(π) ∈ 〈αj , βj〉 holds, then Ij(πR) = Ij(π),
(ii) if Ij(π) < αj , then Ij(πR) = 0,

(iii) if Ij(π) > βj , then Ij(πR) = 1. (7.2)

Proof: Let αj ≤ Ij(π) ≤ βj be the case. As Ij(π) = Πj(Ω − {ωj}) holds, where
(π(ωj))j = 1, we obtain that Ij(π) =

∨
ω∈Ω,ω 6=ωj

(π(ω))j ≤ βi follows. As the values
in Q are such that 0 < λ1 < λ2 < · · · < λK < 1 holds, there exists ω∗j ∈ Ω, ω∗j 6= ωj ,
such that

αj ≤ Ij(π) = (π(ω∗j ))j ≤ βj (7.3)

follows. Hence, for all ω ∈ Ω, either (πR(ω))j = 0 (if (π(ω))j < αj holds), or
(πR(ω))j = (π(ω))j (if (π(ω))j ≥ αj holds), and there is at least one ω ∈ Ω,
namely ω = ω∗j , satisfying this last condition. Consequently,

Ij(π) =
∨

ω∈Ω,ω 6=ωj

(π(ω))j =
∨

ω∈Ω,ω 6=ωj

(πR(ω))j = Ij(πR) (7.4)

holds, and the case (i) in (7.2) is proved.
Let Ij(π) < αj be the case. Then, however, for ω∗j defined by (7.3), the in-

equality (π(ω∗j ))j < αj holds, hence, (π(ω))j < αj holds for each ω ∈ Ω, ω 6= ωj .
Consequently, (πR(ω))j = 0 holds for each ω ∈ Ω, ω 6= ωj , so that Ij(πR) =∨

ω∈Ω,ω 6ω′(π
R(ω))j = 0 follows. Dually, let Ij(π) > βj hold, then the element ω∗j ∈

Ω such that Πj(Ω−{ωj}) = (π(ω∗j ))j holds must satisfy the inequality (π(ω∗j ))j >

βj , so that (πR(ω∗j ))j = 1 follows. Consequently, Ij(πR) =
∨

ω∈Ω,ω 6=ωj
(πR(ω))j = 1

holds and the assertion is proved. 2

8. Cartesian Products of Q∞-Valued Possibilistic
Distributions

Theorem 8.1 Let Ω1, Ω2 be nonempty spaces, let Q = {0, λ1, λ2, . . . , λK , 1}, 0 <
λ1 < λ2 < · · · < λK < 1. For both i = 1, 2, let πi : Ωi → Q∞ be a Q∞-valued
possibilistic distribution on Ωi, i.e., let

∨T
ω∈Ωi

πi(ω) = 〈1, 1, . . . 〉 = 1T hold, where
T = 〈Q∞,≤T 〉. Let π12 : Ω1 × Ω2 → Q∞ be defined so that

π12(ω1, ω2) = π1(ω1) ∧T π2(ω2) (8.1)

holds for each 〈ω1, ω2〉 ∈ Q1 × Q2. Then, π12 defines a Ω∞-valued possibilistic
distribution on Ω1 × Ω2, so that the relation

∨T

〈ω1,ω2〉∈Ω1×Ω2
π12(ω1, ω2) = 〈1, 1, . . . 〉 = 1T (8.2)

holds.
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Proof: We have to prove that

∨T

〈ω1,ω2〉∈Ω1×Ω2
π12(ω1, ω2) =

∨T

ω1∈Ω1

(∨T

ω2∈Ω1
(π1(ω1) ∧T π2(ω2))

)
=

= 〈1, 1, . . . 〉 = 1T (8.3)

holds. Hence, as π1 defines a Q∞-possibilistic distribution on Ω1, it suffices to
prove that

∨T

ω2∈Ω2
(π1(ω1) ∧ π2(ω2)) = π1(ω1) (8.4)

holds for each ω1 ∈ Ω1. For each 〈ω1, ω2〉 ∈ Ω1×Ω2, π
12(ω1, ω2) = π1(ω1)∧ π2(ω2)

is in Q∞, so that

π12(ω1, ω2) = 〈(π12(ω1, ω2))1, (π12(ω1, ω2))2, (π12(ω1, ω2))3, . . . 〉 =
= 〈(π1(ω1) ∧T π2(ω2))1, (π1(ω1) ∧T π2(ω2))2, (π1(ω1) ∧T π2(ω2))3, . . . 〉 =
= 〈(π1(ω1))1 ∧ (π2(ω2))1, (π1(ω1))2 ∧ (π2(ω2))2, (π1(ω1))3 ∧ (π2(ω2))3, . . . 〉.

(8.5)

Hence,

∨T

ω2∈Ω2
π12(ω1, ω2) = 〈

∨

ω2∈Ω2

((π1(ω1))1 ∧ (π2(ω2))1),

∨

ω2∈Ω2

((π1(ω1))2 ∧ (π2(ω2))2),
∨

ω2∈Ω2

((π1(ω1))3 ∧ (π2(ω2))3), . . . 〉. (8.6)

As π2 defines a Q∞-valued possibilistic distribution on Ω2, so that
∨T

ω2∈Ω2
π2(ω2) =

〈1, 1, . . . 〉 = 1T holds, we obtain that
∨

ω2∈Ω2
(π2(ω2))j = 1 is the case for each

j ∈ N = 1, 2, . . . Hence, as Q = {0 < λ1 < λ2 < · · · < λK ≤ 1} holds, for each
j ∈ N there exists ω2,j ∈ Ω2 such that (π2(ω2,j))j = 1. Consequently, for each
j ∈ N there exists ω2,j ∈ Ω2 such that (π1(ω1))j ∧ (π2(ω2,j))j = (π1(ω1))j ∧ 1 =
(π1(ω1))j . Hence,

∨

ω2∈Ω2

[(π1(ω1))j ∧ (π2(ω2))j ] =
∨

ω2∈Ω2

((π1(ω1))j ∧ 1 = (π1(ω1))j . (8.7)

As this is valid for each j ∈ N , we obtain that for each ω1 ∈ Ω
∨

ω2∈Ω2

(π1(ω1) ∧T π2(ω2)) = π(ω1) (8.8)

holds. The assertion is proved. 2

Theorem 8.2 Let the notations and conditions of Theorem 8.1 hold. Then, there
exists, for each j ∈ N = {1, 2, . . . }, an element 〈ωj,1, ωj,2〉 ∈ Ω1 × Ω2 such that
(π12(ωj,1, ωj,2))j = 1.
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Proof: As proved in Theorem 8.1, the relation

∨T

〈ω1,ω2〉∈Ω1×Ω2
π12(ω1, ω2) = 1T = 〈1, 1, . . . 〉 =

=
〈(∨T

〈ω1,ω2〉∈Ω1×Ω2
π12(ω1, ω2)

)

1

,

(∨T

〈ω1,ω2〉∈Ω1×Ω2
π12(ω1, ω2)

)

2

, . . .

〉
=

=

〈 ∨

〈ω1,ω2〉∈Ω1×Ω2

π12(ω1, ω2))1,
∨

〈ω1,ω2〉∈Ω1×Ω2

π12(ω1, ω2))2, . . .

〉
(8.9)

holds, as π12 defines a Q∞-possibilistic distribution on Ω1 × Ω2. Hence,
∨

〈ω1,ω2〉∈Ω1×Ω2

(π12(ω1, ω2))j = 1 (8.10)

holds for each j ∈ N . However, for each j ∈ N and each 〈ω1, ω2〉 ∈ Ω1 ×
Ω2, the value (π12(ω1, ω2))j is in Q, so that either (π12(ω1, ω2))j ≤ λK < 1 or
(π12(ω1, ω2))j = 1 is the case. So, the relation (8.10) is fulfilled only if there
exists a pair 〈ωj,1, ωj,2〉 ∈ Ω1 × Ω2, such that (π12(ωj,1, ωj,2))j = 1, hence, as
(π12(ωj,1, ωj,2))j , = (π1(ωj,1))j ∧ (π2(ωj,2))j holds, (π1(ωj,1))j = (π2(ωj,2))j = 1
follows. Consequently, for each j ∈ N , the relation

{〈ω1, ω2〉 ∈ Ω1 × Ω2 : (π12(ω1, ω2))j = 1} =
= {ω1 ∈ Ω1 : (π1(ω1))j = 1} × {ω2 ∈ Ω2 : (π2(ω2))j = 1} (8.11)

is valid. The assertion is proved. 2

For the value of the entropy function IT defined by (3.2) and applied to Q∞-
valued possibilistic distribution π12 defined on the Cartesian product Ω1 × Ω2 we
obtain, applying (4.4) and (4.7), that

IT (π12) = 〈I1(π12), I2(π12), . . . 〉, (8.12)

where, for each j ∈ N ,

Ij(π12) = Π12
j ((Ω1 × Ω2)− {〈ωj,1, ωj,2〉}). (8.13)

Here 〈ωj,1, ωj,2〉 ∈ Ω1 × Ω2 is such that (π12(ωj,1, ωj,2))j = 1, and Π12
j is the

Q-valued possibilistic measure on P(Ω1 × Ω2) induced by the possibilistic dis-
tribution π12

j ascribing to each 〈ω1, ω2〉 ∈ Ω1 × Ω2 the value π12(ω1, ω2))j =
(π1(ω1))j ∧ (π2(ω2))j ∈ Q.

Theorem 8.3 Let the notations and conditions of Theorem 8.1 hold. Then, for
both i = 1, 2, the relation

IT (π12) = 〈I1(π12), I2(π12), . . . 〉 ≥T 〈I1(πi), I2(πi), . . . 〉 = IT (πi) (8.14)

holds, i.e., for each j ∈ N and for both i = 1, 2 the inequality
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Ij(π12) = Π12
j (Ω1 × Ω2)− {〈ωj,1, ωj,2〉}) ≥ Ij(πi) = Πi

j(Ωi − {ωj,i}) (8.15)

is valid. Here 〈ωj,1, ωj,2〉 ∈ Ω1 × Ω2 is such that (π12(ωj,1, ωj,2))j = 1, so that
(π1(ωj,1))j = π2(ωj,2))j = 1 follows.

Proof: Let us prove that for i = 1 and for each ω1 ∈ Ω1 the equality

Π1
j (Ω1 − {ω1}) = Π12

j ((Ω1 × Ω2)− ({ω1} × Ω2)) (8.16)

holds, the proof for i = 2 being analogous. So,

Π1
j (Ω1{ω1}) =

∨

ω∗1∈Ω1,ω∗1 6=ω1

(π1(ω∗1))j , (8.17)

Π12
j ((Ω1 × Ω2)− ({ω1} × Ω2)) =

∨

〈ω′1,ω′2〉∈Ω1×Ω2,ω′1 6=ω1

(π12(ω′1, ω
′
2))j =

=
∨

〈ω′1,ω′2〉∈Ω1×Ω2,ω′1 6=ω1

((π1(ω′j))j ∧ (π2(ω′2))j) =

=
∨

〈ω′1,ω′2〉∈Ω1×Ω2,ω′1 6=ω1

((π1(ω′1))j ∧ 1 =
∨

ω′∈Ω1,ω′ 6=ω1

(π1(ω′1))j =

= Π1
j (Ω1 − {ω1}). (8.18)

As the inclusions {〈ω1, ω2〉} ∈ {ω1} ×Ω2, hence, also (Ω1 ×Ω2)− {〈ω1, ω2〉} ⊃
(Ω1 + Ω2)− ({ω1} × Ω2) are trivially valid, the inequality

Π12((Ω1 × Ω2)− {〈ω1, ω2〉}) ≥ Π12
j ((Ω1 × Ω2)− ({ω1} × Ω2)) =

= Π1
j (Ω1 − {ω1}) (8.19)

follows and the assertion is proved. 2

Lemma 8.1 For each j ∈ N , if Ij(π12) = 1, then either Ij(π1) = 1 or Ij(π2) = 1
(or both) is valid.

Proof: Let Ij(π12) = 1. Applying (8.13) we obtain that

Π12
j ((Ω1 × Ω2)− {〈ωj,1, ωj,2〉}) = 1 (8.20)

holds, where 〈ωj,1, ωj,2〉 ∈ Ω1 × Ω2 is such that (π12(ωj,1, ωj,2))j = 1, as for the
values π12(ω1, ω2) either π12(ω1, ω2) ≤ λK < 1 or π12(ω1, ω2) = 1 holds, the
relation (8.20) may be valid only if there exists 〈ω∗j,1, ω∗j,2〉 ∈ Ω1 × Ω2, 〈ω∗1 , ω∗2〉 6=
〈ωj,1, ωj,2〉, hence, 〈ω∗j,1, ω∗j,2〉 ∈ (Ω1 × Ω2)− {〈ωj,1, ωj,2〉}, such that

(π12(ω∗j,1, ω
∗
j,2))j = (π1(ω∗j,1))j ∧ (π2(ω∗j,2))j = 1 (8.21)

holds, consequently, (π1(ω∗j,1))j = (π2(ω∗j,2))j = 1. According to the property
(π12(ωj,1, ωj,2))j = 1 imposed on 〈ωj,1, ωj,2〉 ∈ 〈Ω1 × Ω2〉 by (8.19) we obtain
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that also (π1(ωj,1))j = (π2(ωj,2))j = 1 holds. As 〈ωj,1, ωj,2〉 6= 〈ω∗j,1, ω∗j,2〉 is the
case, then either ωj,1 6= ω∗j,1 or ωj,2 6= ω∗j,2 (or both) follows, without any loss of
generality let us consider the case when ωj,1 6= ω∗j,1 is valid. However, in this case
there are different elements ωj,1, ω

∗
j,1, in Ω1 such that (π1(ωj,1))j = (π1(ω∗j,1))j = 1

holds, so that Ij(π1) = Π1
j (Ω1 − {ωj,1}) = 1 follows. The case with (π2(ωj,2))j =

(π2(ω∗j,2))j = 1 is analogous, so that the proof is completed. 2

9. Conclusions

We have investigated, in the sections above, possibilistic distributions and measures
taking their values in the space of infinite sequences of real numbers from a finite
fixed set Q ⊂ [0, 1] equipped by the standard linear ordering ≤ . Introduced were
two orderings on Q∞, the Boolean partial ordering ≤ T and the lexicographic
ordering ≤L, which has been proved to be linear, i.e., for each x,y ∈ Q∞ either
x ≤L y or y ≤L x holds. Due to the strong assumptions imposed on T = 〈Q∞,≤T 〉
(= 〈x∞i=1Qi,≤T 〉) according to which all Qi are identical and finite, so that the
supremum of each A ⊂ Q is defined in A, we have deduced some nontrivial results
dealing with possibilistic distributions and measures taking their values in the
complete lattice T = 〈Q∞,≤T 〉.

As a matter of fact, both the complete lattices T = 〈Q∞,≤T 〉 and L = 〈Q∞,≤L〉
possess reasonable and interesting interpretations. In both cases the possibility
degrees ascribed to an element ω ∈ Ω of the basic space Ω are combined from
possibility degrees ascribed to various aspects from which the degree of possibility
of ω ∈ Ω may be evaluated. In the case of structure T , when the partial possibil-
ity degrees are combined by the partial ordering ≤T , these particular possibility
degrees are taken as rather independent of each other in the sense that the total
degree of possibility ascribed to some ω1 ∈ Ω is taken as greater than or equal
to the total degree of possibility ascribed to some ω2 ∈ Ω if and only if this in-
equality is valid for each particular aspect from which the degrees of possibility
of the elements of Ω are evaluated. On the other side, the lexicographic ordering
corresponds to the case when different aspects are ordered according to their de-
creasing importance or weight of these aspects when combining them together, so
that the ordering of the combined degrees of possibility for various ω ∈ Ω is de-
termined by the ordering with respect to the most important aspect in which the
possibility degrees for compared ω1 and ω2 differ form each other. A more detailed
analysis of possibilistic distributions and measures with values in the lexicographic
complete lattice 〈Q∞,≤L〉 = L seems to be useful and promising and should be
considered as a very intuitive first step when going on, in some future paper, with
the investigations presented here.

In this paper, we investigated possibilistic distributions and measures taking as
their values infinite sequences of real numbers, each of these numbers being taken
from the same, finite, and by the standard ordering over real numbers equipped
set Q ⊂ [0, 1]. Keeping in mind the character of the space Q∞ as the Cartesian
product X∞i=1Qi, what should be considered during a future analysis is the case
when Qi ⊂ [0, 1] are not identical, when these sets are perhaps infinite, and some
other generalizations of this kind. The achieved results should be compared with
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those obtained in the most simple case of identical and finite sets Qi as investigated
above. Let us hope we will be allowed to focus our attention on some of these
problems at an appropriate future occasion.
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