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inside of some interval of numbers with infinite fuzzy logic controllers. The results
are also true for local equilibriums, i.e. for some global non-equilibriums functions.

Key words: Fuzzy entropy, Landau damping, real-time control, steady state,
tokamak

Received: August 19, 2011
Revised and accepted: November 14, 2011

1. Introduction

Charged particle motion in a magnetic field configuration has been proved the-
oretically to give rise to chaotic dynamics. There are many situations in which
the existence of chaotic magnetic field lines has deep implications for the plasma
confinement in tokamaks (the plasma wall-interactions, the control of disruptive
instabilities).

Studies have been performed on the correlation between electrostatic and mag-
netic fluctuations. We need theoretical tools for describing the behavior of chaotic
field lines in tokamak plasmas. This knowledge can be crucial for controlling the
plasma stability when chaos is not desired.

The starting point of theoretical treatment of plasma confinement in tokamaks
is the equilibrium configuration. Seen from the Hamiltonian point of view, any
magnetostatic field that breaks the exact axisymmetric of the equilibrium tokamak
field is a non-integrable perturbation. If the strength of these perturbations is not
too high, it is possible to use standard result of Hamiltionian dynamics – like the
KAM theory – to predict the behavior of the field lines in the presence of such
almost-integrable magnetic systems.

Unperturbed flux surfaces will survive while others are destroyed, having in
their place tubular shaped structures called magnetic islands. The KAM theory
predicts that, for those irrational surfaces with safety factors sufficiently far from
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rational m/n, the topology is preserved and the surfaces are only slightly deformed
from the unperturbed tori (KAM surfaces). Similar effects can be obtained by the
theory of Landau damping.

The evolution of the poloidal flux in normalized cylindrical coordinates is given
by the magnetic diffusion equation
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where t is the time, ψ is the poloidal magnetic flux, η is the plasma resistivity, Te is
the plasma electron temperature, µ0 = 4π×10−7H/m is the vacuum permeability,
jNI is the non-inductive source of current density, B is the toroidal magnetic field
and 〈−〉 denotes flux-surface average, F,G, H are geometric factors, which are
functions of ρ [12].

The proposed closed-loop receding-horizon scheme shows potential for imple-
mentation in long-discharge tokamaks such as ITER. Future work towards reducing
the computation time includes strategies such as: (i) implementation of model re-
duction techniques to approximate the infinite – dimensional PDE model by a low
order finite – dimensional ODE model, (ii) approximation of the solution of the
nonlinear control problem by successive computation of linear control problems,
(iii) combination of off-line feed-forward and on-line feedback control strategies,
where the feedback controller is intended to track an off-line-computed trajectory
in the presence of disturbances and plant-model mismatches.

2. Real Time Control

As a first application of real-time density profiles, we performed feedback control of
the shape of our profile. For this purpose, an actuator was required that is capable
of modifying the spatial distribution of density. We have finally chosen central
electron cyclotron heating as actuator.

For a given number of particles and a given, centrally peaked temperature pro-
file, a fusion device yields higher fusion performance when the spatial distribution
of the plasma density is peaked in the center. On the other hand, a too strongly
peaked profile has negative effects for magneto-hydro-dynamical stability and cen-
tral impurity accumulation. The reconstruction of the density profile is therefore
an important step in the analysis of plasma discharges [10].

In the past few years, real-time diagnostics have been installed on many fusion
devices. This allows for access to advanced operation regimes, which can only be
established and sustained by feedback control. On ASDEX Upgrade, an equilibrium
obtained by numerically solving the Grad-Shafranov equation is available for off-
line data analysis, but could not yet be run in real-time during the last experimental
campaign, as it is still consumed too much computing power.

To meet the operation parameters for data processing and control must be
designed for both flexibility and performance, allowing easy integration of code
from several developers and to guarantee the desired time cycle. In particular, a
control cycle of 50 µs is needed for the vertical and horizontal positions control and
a 500 µs loop is required for the plasma current, equilibrium and shaping control.
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Although this approach has been successfully used in several tokamaks control-
ling on 50 µs cycles, it is not ITER-relevant given the long duration for the pulses,
and the ability to reconfigure parameters during the discharge is required.

Efficient systems for plasma position stabilization form one of the key elements
of tokamak operation, especially in case of increasing plasma performance. In
order to create an algorithm for plasma position determination a suitable set of
magnetic diagnostic coils must be selected. Selection was performed by computing
the magnetic field in all magnetic diagnostic coils from modeled plasma with various
parameters like plasma shape and plasma current profile. Control and calculation
of plasma position has to be performed in real-time [6].

TEXTOR is the Tokamak Experiment for Technology Oriented Research dedi-
cated to the field of plasma-wall interaction. A new real-time digital architecture
has been installed for the purpose of plasma control. Two systems have already
been successfully commissioned at TEXTOR. The first one is used to control the
plasma shape (1 ms) and to calculate the plasma vertical position (20 µs). The
second system is used to calculate in real-time the plasma density profile (10 ms),
and the plasma horizontal position (20 µs) [9].

As part of the KSTAR discharge control system the plasma control system
(PCS) provides real-time controllability, creating and sustaining plasma during the
experimental campaign [4]. The master node, named kstarpcs, contains the main
graphic user interface (GUI), application “Wave” communicates with the central
controller (CCS) and assigns control input to the real-time node for every shot. The
system has been used for simulation testing, poloidal field (PF) coil power supply
commissioning and first plasma control. The KSTAR real-time plasma control
system is based on a conceptual design and consists of a fast real-time computer
communication cluster and software.

The equilibrium code solves the Grad-Shafranov equation:

∆∗ψ = −µ0Rjϕ (2.1)

jϕ = −R
dp

dψ
− f

µ0R

df

dψ
, (2.2)

where ψ is the poloidal flux function, jϕ is the toroidal current density, p is the
pressure, and f = RBϕ is the toroidal field function.

It is important to check whether the target profile obtained from MHD sta-
bility analysis can be realized in terms of plasma transport. This will require a
time-dependent transport simulation of the plasma profiles evolution with realistic
models of anomalous transport coefficient, heating and current drive system, etc.

Measurements of integrated magnetic field from magnetic probes and flux loops
and measurements of the currents flowing in the poloidal and toroidal field coils
of ASDEX Upgrade make up the set of 100 measurements used as inputs to the
tokamak equilibrium code. This code reconstructs the magnetic flux surfaces in
ASDEX Upgrade and cannot be presently carried out in real time.

For the real-time control system, an algorithm of function parameters is used
to calculate the magnetic equilibrium. For NTM stabilization, the mirror has to
be set to the angle required to deposit Electron Cyclotron Current Drive (ECCD)
power on the rational flux surface. An overview of the new data acquisition system
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for real-time magnetic flux surfaces and the control system of ASDEX Upgrade is
shown.

3. Existence of Steady State

To begin let us consider a system which exchanges mass and energy with its en-
vironment. Let dSi be the entropy production in the system due to irreversible
processes and dSe be the entropy flux due to exchanges between the system and the
environment. The total entropy change in the system is given by dS = dSe + dSi.
The second law states that dSi ≥ 0. However, if sufficient low entropy flux enters
into the system then dSe ≤ 0, and it is possible that ‖ dSe ‖Â‖ dSi ‖, which
implies that dS < 0. If this is the case then the system will be driven away from
equilibrium. It is also possible for the system to eventually reach steady state and
the accompanying coherent behavior for which Prigogine has developed a theory,
for special cases.

We have for P =
dSi

dt
(3.1)

dP/dt < 0 away from steady-state (3.2)

dP/dt = 0 at a steady state. (3.3)

This is the famous Minimum Entropy Production rule which governs the be-
havior of dissipative structures in steady state. It can be easily shown that his
rule ensures the stability of steady non-equilibrium states. It has now been found
that this is only a sufficient condition, and not necessary. A general far-from-
equilibrium thermodynamics and the theory of self-organization does not exist. In
our approach this theory can be described inside of the concept of fuzzy entropies
for deterministic and stochastic case.

In the analogy with Prigogine’s non-equilibrium thermodynamics the so called
universal evolution criterion of Glansdorff-Prigogine is formulated for the celebrated
dynamical Lorentz system, generating the deterministic chaos. It is shown in detail
numerically that such a criterion of Glansdorff-Prigogine is not universal in this
sense.

Prigogine and coworkers have been attempting to develop a theory of non-
equilibrium thermo-dynamical phenomena which would be valid far from full equi-
librium, and which would apply both to the closed systems which asymptotically
approach equilibrium and to systems subject to inputs or constraints such that
these systems developed, asymptotically in time, steady states.

The paper [7] contains a regime of stable steady states for which the so-called
entropy production cannot demonstrate that it is stable. This result strongly em-
phasizes that the Glansdorff-Prigogine criterion for stability is, at best, only a
sufficient condition for stability, and so the violation of this criterion does not
necessarily imply lack of stability.

For general non-equilibrium states, the examples show that time derivative of
the second differential of entropy may be either positive or negative, and that a
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negative sign does not imply stability. The Glansdorf-Prigogine criterion for sta-
bility is based upon exhibiting a Liapunov function for the reaction. The methods
of artificial intelligence can be applied for the cases of modern chaos theory.

Entropy, entropy time derivatives, or nonlinear entropy variations are inade-
quate to specify the probability of occupation of one stable or meta-stable state
relative to another such state. The principle of minimum entropy generation is
limited to the role of a frequently useful approximation, rather than being a ba-
sic physical principle [8]. It can be interpreted inside the theory of fuzzy control
system.

Some steady-state systems, which permit more than one locally stable state, are
such that we can learn how to compute the relative probability of occupation of
such states. Steady state is frequently characterized as a state of minimum entropy
production. This principle can only be expected to apply for steady states which
are not too far from equilibrium. Without specifying the exact domain of validity of
minimal entropy production we simply point out that it is not a universal principle.

The main objects of our study are dissipative dynamic systems which arise in
various problems of kinetics. Non-equilibrium statistical physics is a collection of
ideas and methods to extract slow invariant manifolds. From initial conditions
the system goes quickly to a small neighborhood of the manifold, and after that
moves slowly along this manifold. Selection of the slow (stable) positively invariant
manifolds becomes an important problem [3].

Our collection of methods and algorithms can be incorporated into recently
developed technologies of computer-aided multi-scale analysis which enable the
“level jumping” between microscopic and macroscopic (system) levels.

The Kolmogorov spectrum is robust with respect to anisotropy of pumping.
We can be sure that weak-turbulent Kolmogorov spectra are actually adequate for
description of physical situations in situations where the kinetic equation actually
applies. If the pumping is an external force (instead of instability), non-resonant
spectra are just Kolmogorov- Arnold- Moser tori [13].

A different regime of turbulence occurs at higher levels of nonlinearity. It is
tempting to identify frozen turbulence with the KAM regime in Hamiltonian sys-
tems of many degrees of freedom. This comparison can be made only with caution
because many systems are not conservative and are pumped in a random way.

4. Landau Damping

The “standard model” of classical plasma physics is the Vlasov-Poisson-Fokker-
Planck equation, here written with periodic boundary conditions and in dimen-
sionless units:

∂f

∂t
+ v · ∇xf + F [f ] · ∇vf =

log Λ
2πΛ

QL(f, f), (4.1)

where f = f(t, x, v) is the electron distribution function (t ≥ 0, v ∈ R3, x ∈ T 3 =
R3/Z3)

F [f ] (t, x) = −
∫∫

∇W (x− y)f(t, y, w)dwdy (4.2)

is the self-induced force, W (x) = 1/|x| is the Coulomb interaction potential, and
QL is the Landau collision operator.

497



Neural Network World 6/11, 493-504

On very large time scales dissipative phenomena play a non-negligible role,
and entropy increase is supposed to force the (slow) convergence to a Maxwellian
distribution.

The nonlinear Landau damping for general interaction is obtained by C. Mouhot
and C. Villani [11]. The unique solution of the nonlinear Vlasov equation satifies

‖ ρ(t, ·)− ρ∞ ‖Cr(T d)≤ C · δ · e−2πλ′|t|, (4.3)

where

ρ(t, x) =
∫

f(t, x, v)dv, ρ∞ =
∫∫

fi(x, v)dvdx. (4.4)

Furthermore, there are analytic profiles f+∞(v), f−∞(v) such that f(t, ·) t→±∞→ f±∞
weakly

∫
f(t, x, ·)dx

t→±∞→ f±∞ strongly (in Cr(Rd
v)), these consequences being also

O(δe−2πλ′|t|). Large-time convergence is based on a reversible, purely determinis-
tic mechanism. This result can be interpreted in the spirit of the KAM theorem:
for the linear Vlasov equation convergence is forced by an infinity of invariant
subspaces, which make the model “completely integrable”; as soon as one adds a
nonlinear coupling, the invariance goes away but the convergence remains.

Let us define

σ(t, x) =

t∫

0

∫

Rd

F [f ] · ∇v

−
f (τ, x− v |t− τ | , v)dvdτ. (4.5)

It is the variation of density
∫

fdv caused by the reaction of
−
f on f . We show

that if
−
f has a high gliding regularity, then the regularity of σ in large time is better

than what would be expected. The regularity of σ is better than that of F [f ].
The originality of the physical picture of Landau damping proposed gives results

in agreement with sophisticated analytical analysis and Monte Carlo simulations.
For times comparable with the inverse Landau damping rate the reversible Vlasov
equation must be replaced by its irreversible linearized form for the perturbation,
together with the quasilinear kinetic equation for the background plasma. Finally,
it should go without mentioning that our considerations apply without restriction
only to stable plasmas.

Since its first derivation in 1946, Landau damping has been the object of much
discussion, aiming at understanding the “paradox” of an irreversible process being
predicted by a collisionless model, namely Vlasov equation. We address the physics
of Landau damping mechanism for the analysis of the steady state of externally
excited waves which propagate and are absorbed in fusion plasmas. The key of
argument is the observation that Vlasov equation is not an exact description of the
dynamics of charged particles in the plasma, but only holds for times shorter than
the collision relaxation time appropriate to the phenomena under consideration [1].
For slower phenomena, Fokker-Planck-Landau equation must be used. We describe
a physical picture, which also retains the main feature of the transition to nonlinear
Landau damping (vcoll ¿ vcrit) on one side, and to the collisional regime typical
for weakly ionized plasmas and gases (vcoll Â v) on the other.
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To understand the physical meaning of vcrit, we observe that the steady state
solution of the Fokker-Planck equation emerges from a balance between the trap-
ping of resonant particles in the wave electric field and collisions. The trapping in
the wave field of amplitude E0 tends to drive the distribution function away from
the thermal equilibrium in the velocity interval

|v − vph| ≺ δv ≡ (2eE0/(mk))1/2. (4.6)

Because of the random walk nature of collision diffusion in velocity space, the
characteristic detrapping time is

τdet r = τcoll(vph)
(

δv

vthe

)2

= τcoll

(
vph

vthe

)3
eϕ0

(m)v2
the/2

. (4.7)

If collisionality increases, the rate of detrapping increases, but the energy car-
ried away by each particle decreases, and vice versa. The result of this irreversible
process is Landau damping. Although collisions are essential to introduce irre-
versibility, the resulting damping rate is independent from the collision frequency.
This is a universal property of resonant phenomena. The order introduced by the
wave field (KAM surfaces) reduces diffusion in phase space.

Is Landau damping related to the more classical notion of stability in orbital
sense? Orbital stability means that the system, slightly perturbed at initial time
from an equilibrium distribution, will always remain close to this equilibrium.
There is a widespread agreement that Landau damping cannot be hoped for if
there is no orbital stability.

The equation is time-reversible, yet we are looking for an irreversible behavior
at t → +∞ or t → −∞.

The value of entropy does not change in time which, physically speaking, means
that there is no loss of information in the distribution function. In other words:
damped solutions do exist, but do we ever reach them? In particular the force
F = −∇W ∗ ρ converges exponentially fast to 0. The decay of the force field is the
experimentally measurable phenomenon which may be called Landau damping.

The damping phenomenon is reinterpreted in terms of transfer of regularity be-
tween kinetic and spatial variables, rather than exchanges of energy; phase mixing
is the driving mechanism. The analysis involves new families of analytic norms,
measuring regularities in comparison with solutions of the free transport equa-
tion; new functional inequalities; a control of nonlinear echoes; sharp scattering
estimates; and a Newton approximation scheme.

In contrast to models incorporating collisions, the Vlasov-Poisson equation is
time-reversible. However, in 1946 Landau stunned the physical community by
predicting an irreversible behavior on the basis of this equation. Landau concluded
that the electric field decays exponentially fast.

There the thermodynamical formalism is used to compute the amount of heat
Q which is dissipated when a (small) oscilating electric field E(t, x) = Eei(kx−ωt)

(k a wave vector, ω Â 0 a frequency) is applied to a plasma whose distribution f0

is homogeneous in space and isotropic in velocity space; the result is

Q = − |E|2 πme2ω

|k| |k| ϕ′(
ω

|k| ) (4.8)
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for ϕ(v1) =
∫

f0(v1, v2, v3)dv2dv3. In particular (4.8) is always positive, which
means that the system reacts against the perturbation, and thus possesses some
“active” stabilization mechanism.

5. Applications of Artificial Intelligence
for Achieving a Path Toward Steady States

The conventional proportional-integral-derivative (PID) algorithm is still widely
used in processing industries. The main reason is due to their simplicity of opera-
tion, ease of design, inexpensive maintenance, low cost, and effectiveness for most
linear systems. In fact, 95% of control loops use PID and the majority is PI control.

However, its performance may degrade when applied to highly nonlinear pro-
cesses. There is an important branch of adaptive control strategies using intelli-
gent control algorithms (that includes neural and fuzzy approaches). Stochastic
and heuristic optimization techniques such as evolutionary algorithms (EAs) have
emerged as efficient tools for global optimization and have been applied to a num-
ber of numerical optimization problems in diverse fields in recent years. EAs use a
population of structures (individuals) in which each one is a candidate solution for
the optimization problem. Since they are population-based methods, they make a
parallel search of the space of possible solutions, and are less susceptible to local
minima. Design with neural compensation can be presented.

The neural network offers a framework for nonlinear compensation because
they are simple topological structure and they can get a precise behavior in nonlin-
ear dynamics optimizations. Learning of the radial basis function-neural network
(RBF-NN) corresponds to determination of the centers ti, variance (spread) σ,
and the coefficients ωi. Since RBN-NN networks are linear-in-the-parameters for
fixed ti and σ, the coefficients ωi can be determined using the linear least-squares
method. The choice of the values of ti and ωi is crucial for the performance of the
neural compensation.

Optimization of controller design can be obtained using differential evolution
(DE) approach. DE is based on a mutation operator, which adds an amount
obtained by the difference of two randomly chosen individuals of the current pop-
ulation, in contrast to most EAs, in which the mutation operator is defined by a
probability function.

We consider a probabilistic fuzzy logic (PFL) system composed of a set of
following rules Rj : If x1 is Xh

1 . . .xi is Xh
i , . . . and xl is Xh

l , then y is a1 with a
probability of success of ρj1, . . . and an with a probability of success ρjn, where
Rj is the jth rule of the rule base, Xh

i is the h-th linguistic value for input i,
and h ∈ {1, 2, . . .qi}, where qi is the total number of membership functions for
the input xi. Variable y denotes the output of the system, and ak is a possible
value for y, with k ∈ {1, 2, . . ., n} being the action number and n being the total
number of possible actions that can be executed. The probability of this action to
be successful is ρjk. These success probabilities ρjk are defined by

ρjk(t) =
S [wjk(t)]∑n

k=1 S [wjk(t)]
, (5.1)
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where S is an s-shaped function given by

S [wjk(t)] =
1

1− e−wjk(t)
(5.2)

and wjk(t) is a real-valued weight that maps rule j with action k at time step t.
Our learning method is based on the searching for stationary values of entropy
functions.

Learning agents can tackle problems where preprogrammed solutions are dif-
ficult or impossible to design. The generalized probabilistic fuzzy reinforcement
learning (RL) (GPFRL) method is a modified version of the actor-critic (AC)
learning architecture, where uncertainty handling is enhanced by the introduction
of a probabilistic term into the actor and critic learning, enabling the actor to
effectively define an input-output mapping by learning the probabilities of success
of performing each of the possible output actions.

In addition, the final output of the system is evaluated considering a weighted
average of all possible actions and their probabilities [5]. Probabilistic modeling has
proven to be a useful tool in many engineering fields to handle random uncertainties,
such as in finance markets, astrophysics and in power systems.

For training the set of actions ai, over trees of events, it is good to use re-
current neural networks (RNNs). Recently, a class of discrete-time RNNs, called
echo state networks (ESNs) have been introduced, with the aim to reduce the
complexity of computation encountered by standard RNNs. The principle behind
ESNs is to separate the RNN architecture, called the “dynamical reservoir” or
“hidden layer”, and a memoryless output layer, called the “readout neuron”. The
recurrent architecture consists of a randomly generated group of hidden neurons
with a specified degree of recurrent connections, and should satisfy the so-called
“echo-state-property” to maintain stability [18].

The networks state at time instant k, denoted by q(k) is a concatenation of
the input u(k), internal state x(k) and delayed output y(k − 1), q(k) = [u(k), . . . ,
u(k −K + 1), x1(k), . . ., xN (k), y(k − 1)]T whereas the internal unit dynamics is
described by x(k) = f [Wipu(k)+Winx(k−1)+Wby(k−1)], where f(·) is a vector-
valued nonlinear activation function of the neurons within the reservoir. The echo
state property is provided by randomly choosing an internal weight matrix and
performing scaling to make the spectral radius ρ(Win) ≺ 1, thus ensuring that
the network is stable. The ESN is trained based on the cost function J(k) =
1/2 |e(k )| · |e(k )| = 1/2e(k)e∗(k), where e(k) is the instantaneous output error
e(k) = d(k)− y(k), and the d(k) is the desired (teaching) signal. It can be shown
that the maximum change in the cost function on the error surface occurs in the
direction of the conjugate gradient.

We have our own method for obtaining one stable steady state or several stable
steady states for different parameters. We use the technique of infinite fuzzy logic
controllers for deterministic and stochastic case inside the description of kinetic phe-
nomena. Let us assume that we deal with stochastic behavior. Controlled Markov
process is given by the following elements: The sets of the countable state spaces
xi, i = 0, 1, 2, . . ., the sets of the action spaces ai, i = 0, 1, 2, . . ., the probability
distribution called the transition functions and the probability distributions called
the initial distribution. Our aim is to find a control procedure under which the ap-
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propriate mathematical expectation of the appropriate path L = x0a0x1a1 . . . xnan

is as large as possible. We have the next theorem.
Theorem. Let X be a Markov process with control and non-stationary strategy.

Then, the stable steady state (or several such steady states) can be simulated
approximately with infinite fuzzy logic controller by Bayesian learning rules.

Proof. We define the information entropy

S = −
∞∑

i=0

∞∑

j=0

P∆
ij ln P∆

ij . (5.3)

The fuzzy distribution functions P∆
ij are considered as unknown variables still

to be determined. The constraints f(k, i) are measurements of some quantities and
can be seen as expectation values. This is done by means of the requirement that
(5.3) has a maximum value under given constraints

∞∑

j=0

P∆
ij f

(k)
ij = f(k, i) (5.4)

and

∞∑

j=0

P∆
ij = 1 (5.5)

for every time step i and index k. The maximization of (5.3) under the constraints
(5.4) and (5.5) can be performed by the use of Lagrange multipliers λki and λi− 1
(see [18]) for S(i) is a finite sum over index j in the expression for entropy. We
have that

δ


S(i)− (λi − 1)

∑

j

P∆
ij −

∑

j

∑

k

λkiP
∆
ij f

(k)
ij


 = 0 (5.6)

for every step i. Performing the variation of (5.6) by differentiating the bracket
with respect to p∆

ij and putting the result equal to zero, we obtain

− ln p∆
ij − 1− (λi − 1)−

∑

k

λkif
(k)
ij = 0 (5.7)

Or equivalently ln p∆
ij = −λi −

∑
k

λkif
(k)
ij which, after putting both sides into the

exponent of an exponential function, yields the required results

p∆
ij = exp

[
−λi −

∑

k

λkif
(k)
ij

]
. (5.8)

It should be noted that we must still determine the Lagrange multipliers and
that obtained probability depends crucially on the choice of constraints f(k, i)
which we chose since these, in turn, define the variable f

(k)
ij in terms of which
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the probability distribution is expressed, what actually depends on appropriate
actions. We arrive at maximum values of entropy or stationary values. If on each
i-th step the optimal result is obtained by maximum entropy method, then the
global maximum is obtained on the whole time scale. For controlled Markov chain
we use the following infinite fuzzy logic controller with the Bayesian learning rule

IF P∆(xi) is E1(i) AND P∆(xi+1/xi) is E2(i) THEN ai is U(i)(i = 0, 1, 2. . .).
(5.9)

It can be interpreted as obtaining the steady states [14].
The proper object of a theory of turbulence is the study of ensembles of so-

lutions, i.e. of collections of solutions with probability distributions that describe
the frequency of their occurrence. We describe turbulence in terms of a suitable
statistical equilibrium. As a simulation approach to study thermodynamics the
Monte Carlo histogram technique is usually used. In the case of infinite degrees of
freedom, obtaining the histogram corresponds to considering an appropriate prob-
abilistic distribution. By our method, from the pictures of entropies we can derive
the histograms of equilibriums or steady states.

For deterministic case, we must use the fuzzy Kolmogorov–Sinai entropy and
apply the same method. But in this case the equilibrium is at the point of the
minimum of the entropy [15]. Stability of the steady state could be obtained in
terms of Liapunov’s functionals [16], [17]. Same results could be applied to local
equilibriums.

Conclusions

There are many situations in which the existence of chaotic magnetic field lines
has deep implications for the plasma confinements in tokamaks. Besides active
control of the density profile, there are different applications. A general far-from-
equilibrium thermodynamics and the theory of self-organization does not exist.
The nonlinear Landau damping for general interaction is obtained by C. Mouhot
and C. Villani. For obtaining one or more stable states we used the method of
infinite fuzzy logic controllers and fuzzy entropies. Possible applications of our
theory could be found also for the problems of economy [2].
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