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Abstract: This paper investigates the stochastic stability of fuzzy neural net-
works with Markovian jumping parameters and mixed delays under impulsive per-
turbations in mean square. The mixed delays consist of time-varying delay and
continuously distributed delay. By employing a new Lyapunov-Krasovskii func-
tional, linear convex combination technique, a novel reciprocal convex lemma and
the free-weight matrix method, two novel sufficient conditions are derived to en-
sure the stochastic asymptotic stability of the equilibrium point of the considered
networks in mean square. The proposed results, which are expressed in terms of
linear matrix inequalities, can be easily checked via Matlab LMI Toolbox. Fi-
nally, two numerical examples are given to demonstrate the effectiveness and less
conservativeness of our theoretical results over existing literature.
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1. Introduction

In the last decades, cellular neural networks have been extensively studied and
applied in many different fields such as associative memory, signal processing and
some optimization problems. In such applications, it is of prime importance to
ensure that the designed neural networks are stable. In practice, due to the finite
speeds of the switching and transmission of signals, time delays do exist in a working
network and thus should be incorporated into the model equation. In recent years,
the dynamical behaviors of cellular neural networks with constant delays or time-
varying delays or distributed delays have been studied by many researchers; see,
for example, [7, 9, 10,18,19,23,24,28,30] and the references therein.

Nevertheless, besides delay effects, impulsive effects likewise exist in a wide
variety of evolutionary processes in which states are changed abruptly at certain
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moments of time, involving such fields as medicine and biology, economics, mechan-
ics, etc. There are many interesting results about impulsive neural networks up to
date, e.g., Ref. [3, 21, 26, 31]. Since impulsive perturbations can affect dynamical
behaviors of the system just as time delays, it is meaningful to consider both time
delays and impulsive effects of neural networks.

Fuzzy logic theory has been shown to be an appealing and efficient approach for
dealing with the analysis and synthesis problems of complex nonlinear systems. In
1996, based on traditional cellular neural networks, Yang et al. introduced fuzzy
cellular neural networks [22,25,27], which combine fuzzy logic with the structure of
traditional cellular neural networks and maintain local connectedness among cells.
Unlike previous cellular neural network structures, fuzzy cellular neural networks
have fuzzy logic between its template and input and/or output besides the sum of
product operation, which allows us to combine the low of fuzzy systems. Fuzzy
cellular neural network is a useful paradigm for image processing problems and
Euclidean distance transformation. In addition, fuzzy cellular neural network has
inherent connection to mathematical morphology, which is a cornerstone in image
processing and pattern recognition. Recently, various interesting results on the
stability and other behaviors of fuzzy cellular neural network have been reported
[6, 11].

On the other hand, systems with Marvokian jumps have been attracting in-
creasing research attention. This class of systems are the hybrid ones with two
components in the state. The first one refers to the mode, which is described by
a continuous-time finite-state Markovian process, and the second one refers to the
state which is represented by a system of differential equations. The Markovian
jump systems have the advantage of modeling the dynamic systems subject to
abrupt variation in their structures, such as component failures or repairs, sudden
environmental disturbance, changing subsystem interconnections, and operating in
different points of a nonlinear plant. Recently, there has been a growing interest in
the study of neural networks with Markovian jumping parameters [12, 20, 29, 35].
However, to the best of our knowledge, there are few results reported about the
stochastic stability of fuzzy neural networks with Markovian jumping parameters
and mixed delays under impulsive perturbations up to today.

Motivated by above discussion, this paper discusses the stochastic stability
of fuzzy neural networks with Markovian jumping parameters and mixed delays
under impulsive perturbations in mean square. The mixed delays consist of time-
varying delay and continuously distributed delay. By employing a new Lyapunov-
Krasovskii functional, linear convex combination technique, a novel reciprocal con-
vex lemma and the free-weight matrix method, two novel sufficient conditions are
derived to ensure the stochastic asymptotic stability of the equilibrium point of the
considered networks in mean square. The proposed results, which are expressed in
terms of linear matrix inequalities, can be easily checked via Matlab LMI Toolbox.
Finally, two numerical examples shall be given to demonstrate the effectiveness and
less conservativeness of our theoretical results over existing literature.

Notation: Throughout this paper, let Z+ denote the set of positive integers,
WT ,W−1 denote the transpose and the inverse of a square matrix W, respectively.
W > 0(< 0) denotes a positive (negative) definite symmetric matrix, I denotes the
identity matrix with compatible dimension, 0m×n denotes the m× n zero matrix,
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the symbol “*” denotes a block that is readily inferred by symmetry. The shorthand
col{M1,M2, . . . ,Mk} denotes a column matrix with the matrices M1,M2, . . . ,Mk.
diag{·} stands for a diagonal or block-diagonal matrix, N = {1, 2, . . . , n}. For
τ > 0, C

(
[−τ, 0];Rn

)
denotes the family of continuous functions φ from [−τ, 0]

to Rn with the norm ||φ|| = sup−τ≤s≤0 |φ(s)|. Moreover, let (Ω,F,P) be a com-
plete probability space with a filtration {Ft}t≥0 satisfying the usual conditions
and E{·} representing the mathematical expectation. Denote by CpF0

(
[−τ, 0];Rn

)
the family of all bounded, F0-measurable, C

(
[−τ, 0];Rn

)
-valued random variables

ξ = {ξ(s) : −τ ≤ s ≤ 0} such that sup−τ≤s≤0 E|ξ(s)|p < ∞. || · || stands for the
Euclidean norm; matrices, if not explicitly stated, are assumed to have compatible
dimensions.

2. Problem description and preliminaries

Fuzzy Markovian jumping recurrent neural network model with mixed delays under
impulsive perturbations can be described by the following model:

ẋi(t) = −di(η(t))xi(t) +
n∑
j=1

aij(η(t))fj(xj(t)) +
n∑
j=1

bij(η(t))fj(xj(t− τ(t, η(t))))

+
n∑
j=1

cij%j + χi +
n∧
j=1

αij
∫ t
−∞ kj(t− s)fj(xj(s))ds

+
n∨
j=1

βij
∫ t
−∞ kj(t− s)fj(xj(s))ds+

n∧
j=1

σij%j +
n∨
j=1

δij%j , t 6= tk,

∆xi(tk) = xi(tk)− xi(t−k ) = Jik
(
xi(t

−
k )
)
, k ∈ Z+,

xi(s) = ϕi(s), s ∈ (−∞, 0] , i ∈ N,
(1)

where αij , βij , σij and δij are elements of fuzzy feedback MIN template, fuzzy
feedback MAX template, fuzzy feed-forward MIN template and fuzzy feed-forward
MAX template, respectively. aij(η(t)) and bij(η(t)) are elements of feedback tem-
plate and cij are elements of feed-forward template.

∧
and

∨
denote the fuzzy

AND and fuzzy OR operations, respectively. xi(t), %j and χi denote state, input
and bias of the i-th neurons respectively, di(η(t)) ≥ 0 is a constant. {η(t), t ≥ 0} is
a homogeneous, finite-state Markovian process with right continuous trajectories
and taking values in finite set N = {1, 2, . . . , N} based on given probability space
(Ω,F,P) and the initial model η0. Let Π = [πij ]N×N denote the transition rate
matrix with transition probability:

P(η(t+ δ) = j|η(t) = i) =

{
πijδ + o(δ), i 6= j,

1 + πiiδ + o(δ), i = j,

where δ > 0, limδ→0+
o(δ)
δ = 0 and πij is the transition rate from mode i to mode

j satisfying πij ≥ 0 for i 6= j with

πii = −
N∑

j=1,j 6=i

πij , i, j ∈ N .
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fi(·) is the activation function, τ(t, η(t)) is the transmission delay. kj(s) ≥ 0 is
the feedback kernel and satisfies∫ ∞

0

kj(s)ds = 1, j ∈ N. (2)

Function ϕi(s)(i ∈ N) is continuous on (−∞, 0] , the norm is defined by

‖ϕ‖∞ = max
{

sup
−∞≤s≤0

‖ϕ(s)‖ , sup
−∞≤s≤0

‖ϕ̇(s)‖
}
.

In this paper, we make the following assumptions

(H1) The transmission delay τ(t, η(t)) is time-varying and satisfies 0 ≤ τ(t, η(t)) ≤
τ̄(η(t)) ≤ τ̄ , τ̇(t, η(t)) ≤ µ(η(t)) < 1, where τ̄(η(t)), τ̄ , µ(η(t)) are known constants.

(H2) The activation function f(x(t)) = (f1(x1(t)), f2(x2(t)), . . . , fn(xn(t)))T ∈ Rn
is bounded and satisfies the following condition

λ−j ≤
fj(ξ)− fj(ζ)

ξ − ζ
≤ λ+

j , ∀ ξ, ζ ∈ R, ξ 6= ζ,

where λ−j , λ
+
j are known real constants.

For simplicity, we denote Λ1 = diag
{
λ−1 λ

+
1 , λ

−
2 λ

+
2 , · · · , λ−n λ+

n

}
, Λ2 = 1

2diag
{
λ−1

+λ+
1 , λ

−
2 + λ+

2 , · · · , λ−n + λ+
n } , Λ3 = diag

{
λ−1 , λ

−
2 , · · · , λ−n

}
, Λ4 = diag {λ1, λ2,

· · · , λn} , where λi = max{|λ−i |, |λ
+
i |}, i = 1, . . . , n.

(H3) Every function Jk(x(t)) = [J1k(x1(t)), J2k(x2(t)), . . . , Jnk(xn(t))]T : Rn →
Rn is continuous for any x(t) = (x1(t), x2(t), . . . , xn(t))T ∈ Rn, k ∈ Z+.

(H4) The impulsive time instants tk satisfy 0 = t0 < t1 < · · · < tk < · · · → ∞
and infk∈Z+ {tk − tk−1} > 0.

For convenience, each possible value of η(t) is denoted by m(m ∈ N ) in the
sequel. Then we have

dim = di(η(t)), aijm = aij(η(t)), bijm = bij(η(t)), τm(t) = τ(t, η(t)),

τ̄m = τ̄(η(t)), µm = µ(η(t)).

In addition, we use the following lemmas:
Lemma 1 (see [16]). Let X,Y and P be real matrices of appropriate dimensions

with P > 0. Then for any positive scalar ε the following matrix inequality holds:

XTY + Y TX ≤ ε−1XTP−1X + εY TPY.

Lemma 2 (see [22]). Let x and y be two states of system (1), then we have∣∣∣∣ n∧
j=1

αijfj(xj)−
n∧
j=1

αijfj(yj)

∣∣∣∣ ≤ n∑
j=1

|αij | |fj(xj)− fj(yj)| ,

∣∣∣∣ n∨
j=1

βijfj(xj)−
n∨
j=1

βijfj(yj)

∣∣∣∣ ≤ n∑
j=1

|βij | |fj(xj)− fj(yj)|.
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Lemma 3 (see [11]). For any x ∈ Rn, any constant matrix A = [aij ]n×n with
aij ≥ 0, the following matrix inequality holds:

xTATAx ≤ nxTATs Asx,

where As = diag
{ n∑
i=1

ai1,
n∑
i=1

ai2, . . . ,
n∑
i=1

ain

}
.

Lemma 4 (see [8]). Let z(t) ∈ Rn have continuous derived function ż(t) on
interval [a, a+ω], then for any n×n−matrix Θ > 0, the following inequality holds:

−
∫ a+ω

a

żT (s)Θż(s)ds ≤− 2

ω

(
1

ω

∫ a+ω

a

z(s)ds− z(a)

)T
Θ

(
1

ω

∫ a+ω

a

z(s)ds− z(a)

)
.

Lemma 5 (see [34]). Assume that ν, µ, ϑ, ϑ̄ are real scalars such that ν ≤
1, ν + µ ≤ 4, and ϑ < ϑ̄. Let ϑ : R → (ϑ, ϑ̄) be a real function. Then for any
non-negative scalars a, b, the following inequality holds

− a

ϑ(t)− ϑ
− b

ϑ̄− ϑ(t)
≤ 1

ϑ̄− ϑ
max{−νa− µb,−µa− νb}.

Remark 1. If we set ν = 1, µ = 3, then we get Lemma 3 of [33] from Lemma 5.
Thus, based on Lemma 5, we can get some sufficient conditions of stochastic sta-
bility problem with less conservativeness.

3. Main result

As usual, a vector x∗ = (x∗1, x
∗
2, . . . , x

∗
n)T is said to be an equilibrium point of

system (1) if it satisfies

0 =− dimxi∗ +

n∑
j=1

aijmfj(xj
∗) +

n∑
j=1

bijmfj(xj
∗) +

n∑
j=1

cij%j + χi

+

n∧
j=1

αij

∫ t

−∞
kj(t− s)fj(xj∗)ds+

n∨
j=1

βij

∫ t

−∞
kj(t− s)fj(xj∗)ds+

+

n∧
j=1

σij%j +

n∨
j=1

δij%j .

Here, it is assumed that the impulse functions satisfy Jik (x∗i ) = 0, k ∈ Z+, i ∈
N.

In this paper, we always assume that some conditions are satisfied so that
system (1) has a unique equilibrium point. To investigate the global asymptotic
stability of the unique equilibrium point, we further assume that the impulsive
function Jk(·) satisfies the following assumption

(H5) Jk
(
x(t−k )

)
= −Γk

{
x(t−k )− x∗

}
, Γk = diag{γ1k, γ2k, · · · , γnk}.

11
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For the purpose of simplicity, we shift the intended equilibrium x∗ to the origin
by letting yi(t) = xi(t)− x∗i , and then the system (1) can be transformed into:



ẏi(t) = − dimyi(t) +
n∑
j=1

aijmgj(yj(t)) +
n∑
j=1

bijmgj(yj(t− τm(t)))

+
n∧
j=1

αij
∫ t
−∞ kj(t− s)fj(yj(s) + x∗j )ds−

n∧
j=1

αij
∫ t
−∞ kj(t− s)fj(x∗j )ds

+
n∨
j=1

βij
∫ t
−∞ kj(t− s)fj(yj(s) + x∗j )ds−

n∨
j=1

βij
∫ t
−∞ kj(t− s)fj(x∗j )ds,

t 6= tk,
∆yi(tk) = Jik(yi(t

−
k )) = −γikyi(t−k ), k ∈ Z+,

yi(s) = ψi(s) := ϕi(s)− x∗i , s ∈ (−∞, 0] ,

(3)

where gj(yj(·)) = fj(yj(·) + x∗j )− fj(x∗j ).
For convenience, we denote

Am = (aijm)n×n, Bm = (bijm)n×n,

Dm = diag{d1m, d2m, . . . , dnm}, y(t) = (y1(t), y2(t), . . . , yn(t))T .

Before presenting the main results, for simplicity, we introduce a new vectors
as

ζ(t) = col

{
y(t), y(t− τm(t)), y(t− τ̄m), g(y(t)), g(y(t− τm(t))),∫ t

−∞
K(t− s)g(y(s))ds, ẏ(t), ζ1(t), ζ2(t)

}
,

let $i (i = 1, 2, . . . , 9) be row vectors with block matrix entries, i.e., the i-th block
is an identity matrix and the others are zero blocks, such that y(t) = $1ζ(t), y(t−
τm(t)) = $2ζ(t), and so on.

Now for system (3), we give our main result about the stability of the equilib-
rium point.

Theorem 1 (See Appendix I for a proof). Assume that (H1)–(H5) hold.
Then the unique equilibrium point of model (3) is globally asymptotically stable in
mean square if there exist positive definite matrices Qm, Rm, Sm,Wi(i = 1, . . . , 5)
and positive diagonal matrices G,H,U, Pm, Lm, Tm, Zm of appropriate dimensions
such that

N∑
j=1

π′mj(Qj +W5) < W1, (4)

N∑
j=1

π′mj(Rj) < W2, (5)

12
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N∑
j=1

π′mj(τ̄jSj) < W3, (6)[
Pm (I − Γk)Pm
∗ Pm

]
≥ 0, k ∈ Z+, (7)

(I − Γk)Pm(I − Γk) ≤ Pl, l 6= m, l,m ∈ N , (8)

 Φm − 4Sjm −Wν nPm nZm
∗ −nH 0
∗ 0 −nG

 < 0, j, ν = 1, 2, (9)

where

S1
m =($8 −$2)TSm($8 −$2), S2

m = ($9 −$3)TSm($9 −$3),

W1 =− ($1 −$2)
T
W4 ($1 −$2) , W2 = − ($2 −$3)

T
W4 ($2 −$3)

Pm =col{ PmΥ 08n×n }, Zm = col{ 06n×n ZmΥ 02n×n },
$i =

[
0(i−1)n×n I 0(9−i)n×n

]
, i = 1, 2, . . . , 9,

with

Φm = [ Φij ]9×9 ,

Φ11 = −2PmDm +Qm + τ̄W1 −W4 +W5 − LmΛ1 +
∑N

j=1
πmjPj ,

Φ12 = W4, Φ14 = PmAm + LmΛ2, Φ15 = PmBm, Φ17 = −DmZm,

Φ22 = −(1− µm)Qm − 2Sm − 2W4 − TmΛ1,

Φ23 = W4, Φ25 = TmΛ2, Φ28 = 2Sm, Φ33 = −2Sm −W4 −W5, Φ39 = 2Sm,

Φ44 = Rm + τ̄W2 + U − Lm, Φ47 = ATmZm, Φ55 = −(1− µm)Rm − Tm,

Φ57 = BTmZm, Φ66 = H − U +G, Φ77 = τ̄2
mSm + τ̄2

(1

2
W3 +W4

)
− 2Zm,

Φ88 = Φ99 = −2Sm,

other parameters Φij(1 ≤ i < j ≤ 9) are all equal to zeros, π′mj = max{0, πmj} and

α = (αij)n×n , β = (βij)n×n , |α|s = diag

{ n∑
i=1

|αi1|,
n∑
i=1

|αi2|, . . . ,
n∑
i=1

|αin|
}
,

Υ = |α|s + |β|s.

Remark 2. When τ̇m(t) is unknown or τm(t) is non-differentiable, we can
verify the stability of model (3) by setting Qm = Rm = 0 in Theorem 1.

Remark 3. Theorem 1 provides an LMI-based sufficient condition for the
stability of the neural network (4). One advantage of the LMI approach is that the
LMI condition can be checked numerically very efficiently by using the interior-
point algorithms, which have been developed in solving LMIs by employing the
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Matlab LMI Toolbox. While the other conditions, which are based on the theory
of M-matrix, matrix norm or algebraic inequality, ignore the signs of the weights,
the neuron’s excitatory and inhibitory effects, hence they result in conservativeness
than LMI-based criteria.

If there is no Markovian jumping in system (3), similar to Theorem 1, we have
the following result

Theorem 2 (See Appendix II for a proof). Assume that (H1)–(H5) hold.
Then the unique equilibrium point of model (3) with N = 1 is globally asymptoti-
cally stable if there exist positive definite matrices Q,R, S,W4,W5, positive diagonal
matrices E,G,H,U, P, L, T, Z, any real matrix X of appropriate dimensions such
that [

Q X
∗ R

]
> 0, (10)[

P (I − Γk)P
∗ P

]
≥ 0, k ∈ Z+, (11) Φ− 4Sj −Wν nP nZ

∗ −nH 0
∗ 0 −nG

 < 0, j, ν = 1, 2, (12)

where

S1 =($8 −$2)TS($8 −$2), S2 = ($9 −$3)TS($9 −$3),

W1 =− ($1 −$2)
T
W4 ($1 −$2) , W2 = − ($2 −$3)

T
W4 ($2 −$3)

P =col{ PΥ 08n×n }, Z = col{ 06n×n ZΥ 02n×n },

with

Φ = [ Φij ]9×9 ,

Φ11 = Λ4EΛ4 + Λ3RΛ3 − 2PD +Q−W4 +W5 − LΛ1 −XΛ3 − Λ3X
T ,

Φ12 = W4, Φ14 = PA+ LΛ2 +X − Λ3R, Φ15 = PB, Φ17 = −DZ,
Φ22 = −(1− µ)(Q+ Λ4EΛ4 + Λ3RΛ3 −XΛ3 − Λ3X

T )− 2S − 2W4 − TΛ1,

Φ23 = W4, Φ25 = TΛ2 − (1− µ)(X − Λ3R), Φ28 = 2S, Φ33 = −2S −W4 −W5,

Φ39 = 2S, Φ44 = R+ U − L− E, Φ47 = ATZ, Φ55 = −(1− µ)(R− E)− T,
Φ57 = BTZ, Φ66 = H − U +G, Φ77 = τ̄2(S +W4)− 2Z, Φ88 = Φ99 = −2S.

Remark 4. When τ̇(t) is unknown or τ(t) is non-differentiable, we can verify
the stability of model (3) with N = 1 by setting Q = R = 0 in Theorem 2.

4. Illustrative examples

In this section, we provide two numerical examples to demonstrate the effectiveness
of our delay-dependent stability criteria.
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Example 1. Consider system (3) with n = N = 2 and

D1 =

[
3.1 0
0 3.4

]
, D2 =

[
3.0 0
0 3.3

]
, A1 =

[
1.1 −0.7
0.9 1.2

]
,

A2 =

[
−0.8 −1.1
0.9 0.8

]
, B1 =

[
1.2 0.6
0.8 1

]
, B2 =

[
−0.6 −0.7
0.7 0.6

]
,

α =
1

32

[
1 −1
1 1

]
, β =

1

32

[
1 1
−1 1

]
, τ1(t) = 0.2 + 0.2 sin(t),

τ2(t) = 0.29 + 0.15 cos(2t), fi(x) = tanh(x), ki(s) = exp(−s), i = 1, 2.

It is easy to see that assumptions (H1), (H2) are satisfied with τ̄1 = 0.4, τ̄ = τ̄2 =
0.44, τ ′1 = 0.2, τ ′2 = 0.3, Λ1 = 0, Λ2 = 0.5I. Furthermore, we set tk = 0.4k and
Γk = 0.4I in assumptions (H4),(H5), k ∈ Z+, then assumption (H3) is satisfied. In
addition, we set π11 = −0.6, π12 = 0.6, π21 = 0.4, π22 = −0.4, by using the Matlab
LMI Toolbox, the LMIs (4)–(9) are feasible. Thus the unique equilibrium point of
model (3) is globally asymptotically stable. One solution is as follows:

P1 = diag{0.7598, 0.1359}, P2 = diag{0.2745, 0.1344},

Q1 =

(
0.0259 −0.0056
−0.0056 0.0077

)
, Q2 =

(
0.0218 −0.0026
−0.0026 0.0049

)
,

R1 =

(
0.7583 0.3465
0.3465 0.1612

)
, R2 =

(
0.7678 0.3408
0.3408 0.1629

)
,

S1 =

(
0.0492 −0.0114
−0.0114 0.0094

)
, S2 =

(
0.0201 −0.0141
−0.0141 0.0178

)
,

W1 =

(
0.0058 −0.0028
−0.0028 0.0024

)
, W2 =

(
0.0090 −0.0043
−0.0043 0.0033

)
,

W3 =

(
0.0146 −0.0066
−0.0066 0.0060

)
, W4 =

(
0.0063 −0.0028
−0.0028 0.0025

)
,

W4 =

(
0.1115 0.0303
0.0303 0.1397

)
, U = diag{0.1466, 0.0338},

G = diag{0.0098, 0.0079}, H = diag{0.1340, 0.0248},
L1 = diag{4.7068, 0.5806}, L2 = diag{3.3288, 0.7443},
T1 = diag{0.2415, 0.2287}, T2 = diag{0.1233, 0.0903},
Z1 = diag{0.0466, 0.0307}, Z2 = diag{0.0308, 0.0341}.

For numerical simulation, we consider the initial state (0.4,−0.4)T in mode
1 and (−0.4, 0.4)T in mode 2. Fig. 1 and Fig. 2 depict the time responses of
state variables y1(t), y2(t) in mode 1 and mode 2 with step 0.01 respectively. It
confirms that the proposed condition in Theorem 1 leads to globally asymptotic
stable equilibrium point for the model (3).

However, it is verified that the LMIs of Theorem 1 in [1] admit no feasible
solutions, that is, for this example, the condition of Ref. [1] fails to assure the
stability. Therefore, we can say that for this system, the results in this paper are
much effective and less conservative than those in [1].
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Fig. 1 The state trajectory of the mode 1 with initial value (0.4,−0.4)T in Exam-
ple 1.
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Fig. 2 The state trajectory of the mode 2 with initial value (−0.4, 0.4)T in Exam-
ple 1.

Example 2. Consider system (3) with n = 2, N = 1 and

D =

[
2.7 0
0 2.5

]
, A =

[
1.8 −0.9
1.5 −0.8

]
, B =

[
−1.4 0.6
2.5 −0.8

]
,

α =
1

16

[
1 1
1 −1

]
, β =

1

16

[
1 −1
−1 1

]
, τ(t) = 0.2 + 0.2 sin(2t),

fi(x) =
1

2
(|x+ 1| − |x− 1|), ki(s) =

2

π

1

1 + s2
, i = 1, 2.

16
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It is easy to see that assumptions (H1) and (H2) are satisfied with τ = 0.4, τ ′ =
0.4, Λ1 = 0, Λ2 = 0.5I. Furthermore, we set tk = 0.5k and Γk = 0.4I in assump-
tions (H4),(H5), k ∈ Z+, then assumption (H3) is satisfied. By utilizing the Matlab
LMI Toolbox, the LMIs (11)–(12) are feasible. Thus from Theorem 2 we conclude
that the unique equilibrium point of model (3) is globally asymptotically stable.

However, it is easy to see that none of the conditions in [5, 11] can be applied
to verify the stability of this model. Therefore, we can say that for this system of
Example 2, the results in this paper are much effective and less conservative than
those in [5, 11].

5. Conclusions

This paper investigates the stochastic stability of fuzzy neural networks with Marko-
vian jumping parameters and mixed delays under impulsive perturbations in mean
square. The mixed delays consist of time-varying delay and continuously dis-
tributed delay. By employing a new Lyapunov-Krasovskii functional, linear convex
combination technique, a novel reciprocal convex lemma and the free-weight matrix
method, two novel sufficient conditions are derived to ensure the stochastic asymp-
totic stability of the equilibrium point of the considered networks in mean square.
The proposed results, which are expressed in terms of linear matrix inequalities,
can be easily checked via Matlab LMI Toolbox. One of the future research topics
would be an extension of the present results to other systems, for example, syn-
chronization of Markovian coupled neural networks, stochastic fuzzy Markovian
jumping neural networks with leakage delay under impulsive perturbations, etc.

6. Appendix I
Proof of Theorem 1

Construct a Lyapunov-Krasovskii functional in the following form

Vm(t, yt) =

6∑
i=1

Vim(t, yt),

where

V1m(t, yt) =y(t)TPmy(t),

V2m(t, yt) =

∫ t

t−τm(t)

[
y(s)TQmy(s) + g(y(s))TRmg(y(s))

]
ds,

V3m(t, yt) =τ̄m

∫ t

t−τ̄m

∫ t

θ

ẏ(s)TSmẏ(s)dsdθ,

V4m(t, yt) =

∫ t

t−τ̄

∫ t

θ

[
y(s)TW1y(s) + g(y(s))TW2g(y(s))

]
dsdθ

+

∫ t

t−τ̄

∫ t

θ

∫ t

η

ẏ(s)TW3ẏ(s)dsdηdθ,

17
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V5m(t, yt) =τ̄

∫ t

t−τ̄

∫ t

θ

ẏ(s)TW4ẏ(s)dsdθ +

∫ t

t−τ̄m
y(s)TW5y(s)ds,

V6m(t, yt) =

n∑
j=1

uj

∫ ∞
0

kj(θ)

∫ t

t−θ
g2
j (yj(s))dsdθ.

Denoting by L the weak infinitesimal generator of the random process {y(t),
η(t)}t≥0

LV (yt, t,m) := lim
δ→0+

1

δ
sup
[
E
{
V (yt+δ, t+ δ, η(t+ δ))

∣∣yt, η(t) = m
}
−

− V (yt, t, η(t) = m)
]
,

calculating the weak infinitesimal operator along the system (3) gives

LVm(t, yt) =

6∑
i=1

LVim(t, yt), (13)

where

LV1m(t, yt) = 2y(t)TPmẏ(t) +

N∑
j=1

πmjy(t)TPjy(t)

= 2y(t)TPm
{
−Dmy(t) +Amg(y(t)) +Bmg(y(t− τm(t)))

}
+

+

N∑
j=1

πmjy(t)TPjy(t)

+ 2

n∑
i=1

pimyi(t)

( n∧
j=1

αij

∫ t

−∞
kj(t− s)fj(yj(s) + x∗j )ds

−
n∧
j=1

αijfj(x
∗
j ) +

n∨
j=1

βij

∫ t

−∞
kj(t− s)fj(yj(s) + x∗j )ds−

−
n∨
j=1

βijfj(x
∗
j )

)
, (14)

LV2m(t, yt) = y(t)TQmy(t)− (1− τ̇m(t))y(t− τm(t))TQmy(t− τm(t))

+ g(y(t))TRmg(y(t))−(1− τ̇m(t))g(y(t− τm(t)))TRmg(y(t− τm(t)))

+

N∑
j=1

πmj

∫ t

t−τj(t)

[
y(s)TQjy(s) + g(y(s))TRjg(y(s))

]
ds

≤y(t)TQmy(t)− (1− µm)y(t− τm(t))TQmy(t− τm(t))

+ g(y(t))TRmg(y(t))−(1− µm)g(y(t− τm(t)))TRmg(y(t− τm(t)))

+

N∑
j=1

π′mj

∫ t

t−τ̄

[
y(s)T (Qj)y(s) + g(y(s))T (Rj)g(y(s))

]
ds, (15)

18
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LV3m(t, yt) =τ̄2
mẏ(t)TSmẏ(t) +

N∑
j=1

πmj τ̄j

∫ t

t−τ̄j

∫ t

θ

ẏ(s)TSj ẏ(s)dsdθ

− τ̄m
∫ t

t−τ̄m
ẏ(s)TSmẏ(s)ds

≤τ̄2
mẏ(t)TSmẏ(t)− τ̄m

∫ t

t−τ̄m
ẏ(s)TSmẏ(s)ds

+

N∑
j=1

π′mj

∫ t

t−τ̄

∫ t

θ

ẏ(s)T (τ̄jSj)ẏ(s)dsdθ, (16)

LV4m(t, yt) = τ̄
[
y(t)TW1y(t) + g(y(t))TW2g(y(t))

]
−
∫ t

t−τ̄

[
y(s)TW1y(s) + g(y(s))TW2g(y(s))

]
ds

+
τ̄2

2
ẏ(t)TW3ẏ(t)−

∫ t

t−τ̄

∫ t

θ

ẏ(s)TW3ẏ(s)dsdθ, (17)

LV5m(t, yt) = τ̄2ẏ(t)TW4ẏ(t)− τ̄
∫ t

t−τ̄
ẏ(s)TW4ẏ(s)ds+ y(t)TW5y(t)

− y(t− τ̄m)TW5y(t− τ̄m) +

N∑
j=1

πmj

∫ t

t−τj(t)

y(s)TW5y(s)ds

≤τ̄2ẏ(t)TW4ẏ(t)− τ̄m
∫ t

t−τ̄m
ẏ(s)TW4ẏ(s)ds+ y(t)TW5y(t)

− y(t− τ̄m)TW5y(t− τ̄m) +

N∑
j=1

π′mj

∫ t

t−τ̄
y(s)TW5y(s)ds, (18)

LV6m(t, yt) =

n∑
j=1

uj

∫ ∞
0

kj(θ)g
2
j (yj(t))dθ −

n∑
j=1

uj

∫ ∞
0

kj(θ)g
2
j (yj(t− θ))dθ, (19)

with Pm = diag{p1m, p2m, . . . , pnm}.
In order to get stability result expressed in terms of linear matrix inequalities,

we need to handle the terms with fuzzy logic in LV1m(t, y(t)). Based on Lemma 2,
the following inequalities hold

∣∣∣∣ n∧
j=1

αij

∫ t

−∞
kj(t− s)fj(yj(s) + x∗j )ds−

n∧
j=1

αij

∫ t

−∞
kj(t− s)fj(x∗j )ds

∣∣∣∣
≤

n∑
j=1

|αij | ×
∣∣∣∣∫ t

−∞
kj(t− s)fj(yj(s) + x∗j )ds−

∫ t

−∞
kj(t− s)fj(x∗j )ds

∣∣∣∣
19
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=

n∑
j=1

|αij | ×
∣∣∣∣∫ t

−∞
kj(t− s)gj(yj(s))ds

∣∣∣∣ ,∣∣∣∣ n∨
j=1

βij

∫ t

−∞
kj(t− s)fj(yj(s) + x∗j )ds−

n∨
j=1

βij

∫ t

−∞
kj(t− s)fj(x∗j )ds

∣∣∣∣
≤

n∑
j=1

|βij | ×
∣∣∣∣∫ t

−∞
kj(t− s)fj(yj(s) + x∗j )ds−

∫ t

−∞
kj(t− s)fj(x∗j )ds

∣∣∣∣
=

n∑
j=1

|βij | ×
∣∣∣∣∫ t

−∞
kj(t− s)gj(yj(s))ds

∣∣∣∣ .
Lemmas 1 and 3 play an important role in establishing LMI-based stability

conditions for fuzzy neural networks. By applying Lemmas 1 and 3, we obtain the
following inequalities for any positive diagonal matrix H

2

n∑
i=1

pimyi(t)

( n∧
j=1

αij

∫ t

−∞
kj(t− s)fj(yj(s) + x∗j )ds−

−
n∧
j=1

αij

∫ t

−∞
kj(t− s)fj(x∗j )ds+

n∨
j=1

βij

∫ t

−∞
kj(t− s)fj(yj(s) + x∗j )ds−

−
n∨
j=1

βij

∫ t

−∞
kj(t− s)fj(x∗j )ds

)

≤ 2

n∑
i=1

pim|yi(t)|
(∣∣∣∣ n∧

j=1

αij

∫ t

−∞
kj(t− s)fj(yj(s) + x∗j )ds−

−
n∧
j=1

αij

∫ t

−∞
kj(t− s)fj(x∗j )ds

∣∣∣∣+

∣∣∣∣ n∨
j=1

βij

∫ t

−∞
kj(t− s)fj(yj(s) + x∗j )ds−

n∨
j=1

βij

∫ t

−∞
kj(t− s)fj(x∗j )ds

∣∣∣∣)

≤ 2|y(t)|TPm (|α|+ |β|)
∣∣∣∣∫ t

−∞
k(t− s)g(y(s))ds

∣∣∣∣
≤ |y(t)|TPm (|α|+ |β|)H−1 (|α|+ |β|)Pm|y(t)|

+

∣∣∣∣∫ t

−∞
k(t− s)g(y(s))ds

∣∣∣∣T H ∣∣∣∣∫ t

−∞
k(t− s)g(y(s))ds

∣∣∣∣
≤ ny(t)TPmΥH−1ΥPmy(t) +

(∫ t

−∞
k(t− s)g(y(s))ds

)T
H

(∫ t

−∞
k(t− s)g(y(s))ds

)
. (20)

Lemmas 1, 4 and the Leibniz-Newton formulae are important tools for our
obtaining less conservative stability criteria by means of linear matrix inequalities.

20
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For 0 < τm(t) ≤ τ̄m, define ζ1(t) = 1
τm(t)

∫ t
t−τm(t)

y(s)ds. It is easy to see

that ζ1(t) → y(t) while τm(t) → 0. Therefore we can define ζ1(t) = y(t) when

τm(t) = 0. Similarly, for 0 ≤ τm(t) < τ̄m, define ζ2(t) = 1
τ̄m−τm(t)

∫ t−τm(t)

t−τ̄m y(s)ds;

when τm(t) = τ̄m, define ζ2(t) = y(t− τ̄m).

For 0 < τm(t) < τ̄m, utilizing Lemma 4 gives

−
∫ t

t−τ̄m
ẏ(s)TSmẏ(s)ds

=−
∫ t

t−τm(t)

ẏ(s)TSmẏ(s)ds−
∫ t−τm(t)

t−τ̄m
ẏ(s)TSmẏ(s)ds

≤− 2

τm(t)
[ζ1(t)− y(t− τm(t))]

T
Sm [ζ1(t)− y(t− τm(t))]

− 2

τ̄m − τm(t)
[ζ2(t)− y(t− τ̄m)]

T
Sm [ζ2(t)− y(t− τ̄m)] . (21)

Defining

Ξ1 = [ζ1(t)− y(t− τm(t))]
T
Sm [ζ1(t)− y(t− τm(t))] ,

Ξ2 = [ζ2(t)− y(t− τ̄m)]
T
Sm [ζ2(t)− y(t− τ̄m)] ,

we get the following inequality from inequality (21) and Lemma 5 with ν = 1, µ = 3

−τ̄m
∫ t

t−τ̄m
ẏ(s)TSmẏ(s)ds ≤2 max

{
− Ξ1 − 3Ξ2, −3Ξ1 − Ξ2

}
. (22)

It is easy to see that inequality (22) holds for any t > 0 with τm(t) = 0 or
τm(t) = τ̄m.

On the other hand, by using the well-known Jensen integral inequality and the
Leibniz-Newton formulae, we derive

− τ̄m
∫ t

t−τ̄m
ẏ(s)TW4ẏ(s)ds

=− τ̄m
∫ t

t−τm(t)

ẏ(s)TW4ẏ(s)ds− τ̄m
∫ t−τm(t)

t−τ̄m
ẏ(s)TW4ẏ(s)ds

=− [τm(t) + (τ̄m − τm(t))]

∫ t

t−τm(t)

ẏ(s)TW4ẏ(s)ds

− [(τ̄m − τm(t)) + τm(t)]

∫ t−τm(t)

t−τ̄m
ẏ(s)TW4ẏ(s)ds.

≤−
[
1 +

τ̄m − τm(t)

τ̄m

]
τm(t)

∫ t

t−τm(t)

ẏ(s)TW4ẏ(s)ds

21



Neural Network World 1/2016, 7–28

−
[
1 +

τm(t)

τ̄m

]
(τ̄m − τm(t))

∫ t−τm(t)

t−τm
ẏ(s)TW4ẏ(s)ds

≤−
[
1 +

τ̄m − τm(t)

τ̄m

](∫ t

t−τm(t)

ẏ(s)ds

)T
W4

(∫ t

t−τm(t)

ẏ(s)ds

)
−
[
1 +

τm(t)

τ̄m

](∫ t−τm(t)

t−τ̄m
ẏ(s)ds

)T
W4

(∫ t−τm(t)

t−τ̄m
ẏ(s)ds

)
=− ζ(t)T

{[
1 +

τ̄m − τm(t)

τ̄m

]
($1 −$2)

T
W4 ($1 −$2)

+
[
1 +

τm(t)

τ̄m

]
($2 −$3)

T
W4 ($2 −$3)

}
ζ(t). (23)

Cauchy-Schwarz inequality is an effective tool for neural networks with un-
bounded continuously distributed delay to derive LMI-based stability condition.
From Eq. (2) and Cauchy-Schwarz inequality, we get the following inequality

LV6m(t, yt) = g(y(t))TUg(y(t))−
n∑
j=1

uj

∫ ∞
0

kj(θ)dθ

∫ ∞
0

kj(θ)g
2
j (yj(t− θ))dθ

≤ g(y(t))TUg(y(t))−
n∑
j=1

uj

(∫ ∞
0

kj(θ)gj(yj(t− θ))dθ
)2

= g(y(t))TUg(y(t))−
(∫ t

−∞
K(t− s)g(y(s))ds

)T
U

(∫ t

−∞
K(t− s)g(y(s))ds

)
, (24)

with U = diag
{
u1, u2, . . . , un}, K(t−s) = diag

{
k1(t−s), k2(t−s), . . . , kn(t−s)}.

Moreover, in order to propose feasible LMI-based stability condition, we must
rely on assumption (H2) about neural activation functions. Based on (H2), the
following matrix inequalities hold for any positive diagonal matrices Lm, Tm

0 ≤− y(t)TLmΛ1y(t) + 2y(t)TLmΛ2g(y(t))− g(y(t))TLmg(y(t)), (25)

0 ≤− y(t− τm(t))TTmΛ1y(t− τm(t))

+ 2y(t− τm(t))TTmΛ2g(y(t− τm(t)))− g(y(t− τm(t)))TTmg(y(t− τm(t))).
(26)

Furthermore, the zero equality (3) also plays an important role in derive feasible
stability criterion expressed in terms of linear matrix inequalities. From Eq. (3),
the following equality is true for any positive diagonal matrix Zm = diag{z1m,
z2m, · · · , znm}

22
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0 = 2

n∑
i=1

ẏi(t)zim

[
− ẏi(t)− dimyi(t) +

n∑
j=1

aijmgj(yj(t)) +

n∑
j=1

bijmgj(yj(t− τm(t)))

+

n∧
j=1

αij

∫ t

−∞
kj(t− s)fj(yj(s) + x∗j )ds−

n∧
j=1

αij

∫ t

−∞
kj(t− s)fj(x∗j )ds

+

n∨
j=1

βij

∫ t

−∞
kj(t− s)fj(yj(s) + x∗j )ds−

n∨
j=1

βij

∫ t

−∞
kj(t− s)fj(x∗j )ds

]
= 2ẏ(t)TZm

{
− ẏ(t)−Dmy(t) +Amg(y(t)) +Bmg(y(t− τm(t)))

}
+ 2

n∑
i=1

zimẏi(t)

( n∧
j=1

αij

∫ t

−∞
kj(t− s)fj(yj(s) + x∗j )ds

−
n∧
j=1

αijfj(x
∗
j ) +

n∨
j=1

βij

∫ t

−∞
kj(t− s)fj(yj(s) + x∗j )ds−

n∨
j=1

βijfj(x
∗
j )

)
.

(27)

Similar to (20), we obtain the following inequalities for any positive diagonal
matrix G

2

n∑
i=1

zimẏi(t)

( n∧
j=1

αij

∫ t

−∞
kj(t− s)fj(yj(s) + x∗j )ds−

n∧
j=1

αij

∫ t

−∞
kj(t− s)fj(x∗j )ds

+

n∨
j=1

βij

∫ t

−∞
kj(t− s)fj(yj(s) + x∗j )ds−

−
n∨
j=1

βij

∫ t

−∞
kj(t− s)fj(x∗j )ds

)

≤ nẏ(t)TZmΥG−1ΥZmẏ(t) +

(∫ t

−∞
k(t− s)g(y(s))ds

)T
G

(∫ t

−∞
k(t− s)g(y(s))ds

)
. (28)

Based on LVim(t, y(t))(i = 1, . . . , 6) and aforementioned inequalities, we can
derive a less conservative stability conditions expressed by means of matrix in-
equalities. Substituting (15)–(28) into (13) and taking mathematical expectation
gives that

ELVm(t, yt) = ζ(t)TΦmζ(t), t ∈ [tk−1, tk), k ∈ Z+. (29)

where

Φm =Φm + n$T
1 PmΥH−1ΥPm$1 + n$T

7 ZmΥG−1ΥZm$7

+ 4 max
{
−($8 −$2)TSm($8 −$2), −($9 −$3)TSm($9 −$3)

}
− τ̄m − τm(t)

τ̄m
($1 −$2)

T
W4 ($1 −$2)− τm(t)

τ̄m
($2 −$3)

T
W4 ($2 −$3) .
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As Φm is a linear convex function of variable τm(t), inequality Φm < 0 is difficult
to be verified by Matlab LMI software. Therefore we must derive an inequality of
constant matrix. Based on the linear convex combination technique [32], inequality
Φm < 0 is true if and only if the following two inequalities hold simultaneously

Φm + n$T
1 PmΥH−1ΥPm$1 + n$T

7 ZmΥG−1ΥZm$7 − ($1 −$2)
T
W4 ($1 −$2)

+ 4 max
{
−($8 −$2)TSm($8 −$2), −($9 −$3)TSm($9 −$3)

}
< 0,

(30)

Φm + n$T
1 PmΥH−1ΥPm$1 + n$T

7 ZmΥG−1ΥZm$7 − ($2 −$3)
T
W4 ($2 −$3)

+ 4 max
{
−($8 −$2)TSm($8 −$2), −($9 −$3)TSm($9 −$3)

}
< 0.

(31)

As inequalities (30) and (31) are forms with the inverses of matrices G,H, they
are infeasible with Matlab LMI software. The Schur complement plays an impor-
tant role in changing inequality with the inverses of matrices into linear matrix
inequalities. From the well known Schur complement, we deduce that inequality
Φm < 0 is equivalent to inequalities (9) with j, ν = 1, 2. Therefore, if inequalities
(9)(j, ν = 1, 2) hold, then from (29) we derive that

ELVm(t, yt) < 0, ∀ t ∈ [tk−1, tk), k ∈ Z+. (32)

Inequality (32) implies that the mathematical expectation of the Lyapunov-
Krasovskii functional Vm(t, yt) decreases at any continuous time t ∈ [tk−1, tk), k ∈
Z+. Next, we will prove that Vm(t, yt) decreases at any discontinuous time t =
tk, k ∈ Z+, that is Vm(tk, y(tk)) < Vm(t−k , y(t−k )). When t = tk, from the condition
(H5), we have

Vm(tk, y(tk)) =Vm(t−k , y(t−k )) + y(t−k )T
[
(I − Γk)TPm(I − Γk)− Pm

]
y(t−k ). (33)

From Eq. (33), in order to derive that Vm(t, yt) decreases at t = tk, it is sufficient
to prove (I − Γk)TPm(I−Γk)−Pm > 0. Considering inequality (7), it follows that(

I 0
0 P−1

m

)(
Pm (I − Γk)Pm
∗ Pm

)(
I 0
0 P−1

m

)
≥ 0,

that is (
Pm I − Γk
∗ P−1

m

)
≥ 0.

From the Schur complement, we have

Pm − (I − Γk)TPm(I − Γk) ≥ 0. (34)

Combining (33) with (34), we can deduce that

Vm(tk, y(tk)) ≤ Vm(t−k , y(t−k )), k ∈ Z+.
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In order to prove that the Lyapunov-Krasovskii functional Vm(t, yt) decreases
at any discontinuous time t = tk for different modes, we must depend on inequality
(8). By simple calculation, it can be verified from (8) that

Vm(tk, y(tk)) ≤ Vl(t−k , y(t−k )). (35)

For t ∈ [tk−1, tk], k ∈ Z+, in view of (32) and (35), we have

Vm(tk, y(tk)) ≤ Vl(t−k , y(t−k )) ≤ Vl(tk−1, y(tk−1)). (36)

By the similar proof and Mathematical induction, we can derive that (36) is
true for any m, l, η(0) = η0 ∈ N , k ∈ Z+

Vm(tk, y(tk)) ≤ Vl(t−k , y(t−k )) ≤ Vl(tk−1, y(tk−1)) ≤ · · · ≤ Vη0(t0, y(t0)). (37)

Inequality (37) implies that the Lyapunov-Krasovskii functional decreases at
any continuous or discontinuous time for the same or different modes. Therefore,
the system (3) is asymptotically stable in mean square. This completes the proof
of Theorem 1.

7. Appendix II
Proof of Theorem 2

Inspired by [4,36], we construct a Lyapunov-Krasovskii functional in the following
form

V (t, yt) = y(t)TPy(t) +

4∑
i=1

Vi(t, yt),

where

V1(t, yt) =

∫ t

t−τ(t)

[
y(s)TΛ4EΛ4y(s)− g(y(s))TEg(y(s))

]
ds,

V2(t, yt) =

∫ t

t−τ(t)

[
y(s)

g(y(s))− Λ3y(s)

]T[
Q X
∗ R

][
y(s)

g(y(s))− Λ3y(s)

]
ds,

V3(t, yt) =τ̄

∫ t

t−τ̄

∫ t

θ

ẏ(s)T (S +W4)ẏ(s)dsdθ +

∫ t

t−τ̄
y(s)TW5y(s)ds,

V4(t, yt) =

n∑
j=1

uj

∫ ∞
0

kj(θ)

∫ t

t−θ
g2
j (yj(s))dsdθ.

Note that

V̇1(t, yt) = y(t)TΛ4EΛ4y(t)− g(y(t))TEg(y(t))

− [1− τ̇(t)]
[
y(t− τ(t))TΛ4EΛ4y(t− τ(t))− g(y(t− τ(t)))T

Eg(y(t− τ(t)))] ,
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V̇2(t, yt) =

[
y(t)

g(y(t))− Λ3y(t)

]T[
Q X
∗ R

][
y(t)

g(y(t))− Λ3y(t)

]
− [1− τ̇(t)]

×
[

y(t− τ(t))
g(y(t− τ(t)))− Λ3y(t− τ(t))

]T[
Q X
∗ R

]
[

y(t− τ(t))
g(y(t− τ(t)))− Λ3y(t− τ(t))

]
,

following the same line as in Theorem 1, we can complete the proof of Theorem 2.
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