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Abstract: This paper investigates the stochastic stability of fuzzy neural net-
works with Markovian jumping parameters and mixed delays under impulsive per-
turbations in mean square. The mixed delays consist of time-varying delay and
continuously distributed delay. By employing a new Lyapunov-Krasovskii func-
tional, linear convex combination technique, a novel reciprocal convex lemma and
the free-weight matrix method, two novel sufficient conditions are derived to en-
sure the stochastic asymptotic stability of the equilibrium point of the considered
networks in mean square. The proposed results, which are expressed in terms of
linear matrix inequalities, can be easily checked via Matlab LMI Toolbox. Fi-
nally, two numerical examples are given to demonstrate the effectiveness and less
conservativeness of our theoretical results over existing literature.
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1. Introduction

In the last decades, cellular neural networks have been extensively studied and
applied in many different fields such as associative memory, signal processing and
some optimization problems. In such applications, it is of prime importance to
ensure that the designed neural networks are stable. In practice, due to the finite
speeds of the switching and transmission of signals, time delays do exist in a working
network and thus should be incorporated into the model equation. In recent years,
the dynamical behaviors of cellular neural networks with constant delays or time-
varying delays or distributed delays have been studied by many researchers; see,
for example, [7,9,10,18,19,23,24,28,30] and the references therein.

Nevertheless, besides delay effects, impulsive effects likewise exist in a wide
variety of evolutionary processes in which states are changed abruptly at certain
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moments of time, involving such fields as medicine and biology, economics, mechan-
ics, etc. There are many interesting results about impulsive neural networks up to
date, e.g., Ref. [3,21,26,31]. Since impulsive perturbations can affect dynamical
behaviors of the system just as time delays, it is meaningful to consider both time
delays and impulsive effects of neural networks.

Fuzzy logic theory has been shown to be an appealing and efficient approach for
dealing with the analysis and synthesis problems of complex nonlinear systems. In
1996, based on traditional cellular neural networks, Yang et al. introduced fuzzy
cellular neural networks [22,25,27], which combine fuzzy logic with the structure of
traditional cellular neural networks and maintain local connectedness among cells.
Unlike previous cellular neural network structures, fuzzy cellular neural networks
have fuzzy logic between its template and input and/or output besides the sum of
product operation, which allows us to combine the low of fuzzy systems. Fuzzy
cellular neural network is a useful paradigm for image processing problems and
Euclidean distance transformation. In addition, fuzzy cellular neural network has
inherent connection to mathematical morphology, which is a cornerstone in image
processing and pattern recognition. Recently, various interesting results on the
stability and other behaviors of fuzzy cellular neural network have been reported
[6,11].

On the other hand, systems with Marvokian jumps have been attracting in-
creasing research attention. This class of systems are the hybrid ones with two
components in the state. The first one refers to the mode, which is described by
a continuous-time finite-state Markovian process, and the second one refers to the
state which is represented by a system of differential equations. The Markovian
jump systems have the advantage of modeling the dynamic systems subject to
abrupt variation in their structures, such as component failures or repairs, sudden
environmental disturbance, changing subsystem interconnections, and operating in
different points of a nonlinear plant. Recently, there has been a growing interest in
the study of neural networks with Markovian jumping parameters [12, 20, 29, 35].
However, to the best of our knowledge, there are few results reported about the
stochastic stability of fuzzy neural networks with Markovian jumping parameters
and mixed delays under impulsive perturbations up to today.

Motivated by above discussion, this paper discusses the stochastic stability
of fuzzy neural networks with Markovian jumping parameters and mixed delays
under impulsive perturbations in mean square. The mixed delays consist of time-
varying delay and continuously distributed delay. By employing a new Lyapunov-
Krasovskii functional, linear convex combination technique, a novel reciprocal con-
vex lemma and the free-weight matrix method, two novel sufficient conditions are
derived to ensure the stochastic asymptotic stability of the equilibrium point of the
considered networks in mean square. The proposed results, which are expressed in
terms of linear matrix inequalities, can be easily checked via Matlab LMI Toolbox.
Finally, two numerical examples shall be given to demonstrate the effectiveness and
less conservativeness of our theoretical results over existing literature.

Notation: Throughout this paper, let Z, denote the set of positive integers,
WT W1 denote the transpose and the inverse of a square matrix W, respectively.
W > 0(< 0) denotes a positive (negative) definite symmetric matrix, I denotes the
identity matrix with compatible dimension, 0,,x, denotes the m X n zero matrix,
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the symbol “*” denotes a block that is readily inferred by symmetry. The shorthand
col{ My, My, ..., My} denotes a column matrix with the matrices My, Ms, ..., My.
diag{-} stands for a diagonal or block-diagonal matrix, N = {1,2,...,n}. For
T > 0,C ([—7’, O];R”) denotes the family of continuous functions ¢ from [—7,0]
to R™ with the norm ||¢|| = sup_,<,<o |¢(s)|. Moreover, let (2,F,P) be a com-
plete probability space with a filtration {F;}+>0 satisfying the usual conditions
and E{-} representing the mathematical expectation. Denote by Cy_ ([~7,0; R™)
the family of all bounded, Fy-measurable, C’([—T7 0J; R”)—Valued random variables
& ={&(s) : =7 < s < 0} such that sup_, ., E[¢(s)]? < oo. || - || stands for the
Euclidean norm; matrices, if not explicitly stated, are assumed to have compatible
dimensions.

2. Problem description and preliminaries

Fuzzy Markovian jumping recurrent neural network model with mixed delays under
impulsive perturbations can be described by the following model:

s

2 (t) = —di(n(t))zi(t) + i:l aij(n(t)) fi(z;(t)) + 1bz‘j(77(t))fj(ﬂfj(t —7(t,n(t))))
£ 3 et A g JL k(= 9)fy(a(s))ds

+ V Bij [Lo kit — s)f(w(s))ds + _/\1 oijoj + _\/1 8ij 05, t # tr,
J= J=

Az;(ty) = x]i(tk) —zi(ty) = Jur (2i(ty)) 5 ke,
x;(s) = pi(s), s€(—00,0], i €N,

(1)

where o;j,Bi;,0;; and 0;; are elements of fuzzy feedback MIN template, fuzzy
feedback MAX template, fuzzy feed-forward MIN template and fuzzy feed-forward
MAX template, respectively. a;;(n(t)) and b;;(n(¢)) are elements of feedback tem-
plate and ¢;; are elements of feed-forward template. A and \/ denote the fuzzy
AND and fuzzy OR operations, respectively. x;(t), o; and x; denote state, input
and bias of the i-th neurons respectively, d;(n(t)) > 0 is a constant. {n(t),t > 0} is
a homogeneous, finite-state Markovian process with right continuous trajectories
and taking values in finite set N' = {1,2,..., N} based on given probability space
(Q,F,P) and the initial model ny. Let II = [m;;]nxn denote the transition rate
matrix with transition probability:

P(n(t+5):jln(t)=i):{ 11;6;?(225) zi;

where § > 0,limg_,q+ @ = 0 and 7;; is the transition rate from mode ¢ to mode

J satisfying 7;; > 0 for i # j with

N
Tis = — Z Tij, i,jEN.

j=1.j#i
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fi(+) is the activation function, 7(¢,7(t)) is the transmission delay. k;(s) > 0 is
the feedback kernel and satisfies

/ kij(s)ds =1, jeN. (2)
0
Function ¢;(s)(i € N) is continuous on (—oo, 0], the norm is defined by

lelloe =max{ sw_lle(s)ll, swp_ o)}

—00<s<0 —o00<s<

In this paper, we make the following assumptions

(H1) The transmission delay 7(t,n(t)) is time-varying and satisfies 0 < 7(¢,7(¢)) <
T(n()) <7, 7(t,nt)) < pn(t)) <1, where 7(n(t)), 7, u(n(t)) are known constants.

(H2) The activation function f(z(t)) = (fi(x1(t)), fa(x2(t)),. .., falza(t)))? € R?
is bounded and satisfies the following condition

- _ i€ - £i(¢
i L0 o vecer e4¢
where A, )\j are known real constants.
For simplicity, we denote Ay = diag {A\7 AT, A3 AL, -+ A AT}, Ay = Ldiag {AT
AT AT, AL ALY, Ay =diag {ATL A, n} Ay = diag {1, Ao,

,An}, where \; = max{|\] |, [A\f|}, i=1,...,n.

(H3) Every function Jy (z(t)) = [Jix(x1(t)), Jor(z2(t)), - - -, Juk (2 ()] : R® —
R" is continuous for any z(t) = (z1(t), 22(t),...,z,(t))T € R", k € Z,.

(H4) The impulsive time instants ¢y satisfy 0 =g < t1 < -+ <t < -+ = ©
and infkeZJr {tk — tkfl} > 0.

For convenience, each possible value of 7n(t) is denoted by m(m € N) in the
sequel. Then we have

dim = di(n(t)), aijm = aij(n(t)), bijm = bij(n(t)), T (t) = 7(t, (1)),
Tm = 77—(77(t))a,um = ( (t))
In addition, we use the following lemmas:

Lemma 1 (see [16]). Let X,Y and P be real matrices of appropriate dimensions
with P > 0. Then for any positive scalar € the following matriz inequality holds:

XTY +VTX <& ' XTP X + YT PY.

Lemma 2 (see [22]). Let x and y be two states of system (1), then we have

n

() /\ ij fi(y;)

< Z|O‘lj| |fi () = fi (5l

n

vﬁijfj(xj) \/ Bij fi ;)

=1 =1

Zwm fi () = £yl

10
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Lemma 3 (see [11]). For any x € R", any constant matriz A = [ag], . with
ai; > 0, the following matriz inequality holds:

T AT Az < naT AT Aga,

where Ay = diag{ Z a1, Z Aidyeeny am}.
i=1

Lemma 4 (see [8]) Let z(t) € R"™ have continuous derived function £(t) on
interval [a, a+w], then for any n X n—matriz © > 0, the following inequality holds:

_ /aw T ()0%(s)ds < — ZC} /aw 2(s)ds — z(a)>T @(i /:W 2(s)ds — z(a)).

Lemma 5 (see [34]). Assume that V,u,_ﬁ,@ are real scalars such that v <
Lv+pu <4 andd < 9. Let ¥ : R — (9,9) be a real function. Then for any
non-negative scalars a,b, the following inequality holds

b 1
v < 5 max{—va — pb, —pa — vb}.

Remark 1. If we set v = 1, 4 = 3, then we get Lemma 3 of [33] from Lemma 5.
Thus, based on Lemma 5, we can get some sufficient conditions of stochastic sta-
bility problem with less conservativeness.

3. Main result

*)T

As usual, a vector z* = (z7,z5,...,25)" is said to be an equilibrium point of

system (1) if it satisfies
n n
Ojfdimxi*‘i’zaijmfj(xj*) Z ’ijf] -T] +ZC7JQJ + Xi
j=1 Jj=1 Jj=1
t

+ /\a”/ 8) fi(z;*)ds + \/@J/ ki (t — ) f;(x;)ds+
Jj=1

oo
+ /\ 0ij05 + \/ 0i50;-
j=1 j=1

Here, it is assumed that the impulse functions satisfy J (x) =0, k € Z4, i €
N.

In this paper, we always assume that some conditions are satisfied so that
system (1) has a unique equilibrium point. To investigate the global asymptotic
stability of the unique equilibrium point, we further assume that the impulsive
function Ji(-) satisfies the following assumption

(H5)  Ji (z(ty)) = -Ti{z(t;) —2*}, Tk =diag{vir, vor, > Ynk}-

11
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For the purpose of simplicity, we shift the intended equilibrium z* to the origin
by letting y;(t) = x;(t) — «}, and then the system (1) can be transformed into:

n

Yi(t) = — dimyi(t) + an aijm; (Y5 () + 22 bijmg; (y; (t — T (1))

Jj= j=1

+/\ O‘z7f kit —s)f(y;(s) + dS_ A O‘Uf s)fj(x )

+ V /B’L] f_ S)fj(yj<s) +xj)d3 - '\:/1 ﬂij f—oo j( - S)fj(l';)ds

t 7£ Tk,
Ayi(tr) = Jik(vi(ty,)) = —vireyi(ty ), k€ Zy,
Yi(s) = i(s) == pi(s) — 27, s € (—00,0],

where gj(yj(')) = f](yj() + x;‘) - fJ(x;)

For convenience, we denote

Am = (aijm)nxn, Bm - (bijm)nxna

Dm :diag{d1m7 d2m7 ey dn’ﬂl}a y(t) = (yl(t)7 y?(t>7 (RS yn(t))T

Before presenting the main results, for simplicity, we introduce a new vectors

as
6(0) = ot 4050 (), 9t = 7). 9000 a0t = 7 (0)
/ K(t = 9g(9)ds, 100 (0G0}
let w; (i = 1,2,...,9) be row vectors with block matrix entries, i.e., the i-th block

is an identity matrix and the others are zero blocks, such that y(t) = w1 ((¢t), y(t —
Tm(t)) = wa((t), and so on.

Now for system (3), we give our main result about the stability of the equilib-
rium point.

Theorem 1 (See Appendix I for a proof). Assume that (H1)-(H5) hold.
Then the unique equilibrium point of model (3) is globally asymptotically stable in
mean square if there exist positive definite matrices Qu, R, Sm, Wi(i = 1,...,5)
and positive diagonal matrices G, H,U, Py, Ly, Ty, Zim of appropriate dimensions
such that

N

ZW:nj(Qj +Ws) < Wh, (4)
"y
> i (Ry) < Wa, (5)
j=1

12
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N
> w0 (75S5) < W, (6)
j=1
P, (I-T3)P,
[ A TS ™)

®,, —4S8), —W, nP, nZ,
* —nH 0 <0, jv=12, (9)
* 0 —nG

where

Sy, =(ws — @2)" S (ws — w2), Sh, = (w9 — @s)" Sy (w9 — w3),

Wi = — (=1 — wz)T Wy (wy —w2), Wa=— (w2 — w3)T Wy (w2 — w3)

P :COI{ PmT 08nxn }7 Zm :COI{ O6nxn ZmT O2nxn }’

wj :[ O(i—l)nxn I 0(9—i)"><” ]’ i=12,...,9,

with
Dy = [ ®ij lguo >
N
@11 = 72PmDm + Qm + 'T__Wl - W4 + W5 - LmAl + Zj:l Trmjpj
@12 = W4; q)14 = PmAm + LmA27 (1)15 = PmBTTM (1)17 = 7DmZm’
Pog = —(1 = pm)Qm — 28y — 2Wy — T Aq,
oz = Wy, Po5 =Ty, Pog =25m, P3g =25, — Wy — W5, P39 =25,
iy = Ry + TWo + U = L, ®ay = A} Z, P55 = —(1 = i) Ry — Tom,
1

P57 = Bl Zm, Poe=H — U+ G, $77 =70 5m + 77'2(§W3 + W4) —2Zm,
Pgg = Pgg = —25,,,

other parameters ®;;(1 < i < j <9) are all equal to zeros, m,,; = max{0, Tm;} and

n n n
a = (ij) s B=(Bij)pn s lals = diag{ PILEIDBILEIESS am|}’
=1 =1 =1

T = |als +18ls-

Remark 2. When 7,,(t) is unknown or 7,,(t) is non-differentiable, we can
verify the stability of model (3) by setting @, = R,, = 0 in Theorem 1.

Remark 3. Theorem 1 provides an LMI-based sufficient condition for the
stability of the neural network (4). One advantage of the LMI approach is that the
LMI condition can be checked numerically very efficiently by using the interior-
point algorithms, which have been developed in solving LMIs by employing the

13
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Matlab LMI Toolbox. While the other conditions, which are based on the theory
of M-matrix, matrix norm or algebraic inequality, ignore the signs of the weights,
the neuron’s excitatory and inhibitory effects, hence they result in conservativeness
than LMI-based criteria.

If there is no Markovian jumping in system (3), similar to Theorem 1, we have
the following result

Theorem 2 (See Appendix II for a proof). Assume that (H1)-(H5) hold.
Then the unique equilibrium point of model (3) with N = 1 is globally asymptoti-
cally stable if there exist positive definite matrices Q, R, S, Wy, Wi, positive diagonal
matrices E,G,H,U, P,L, T, Z, any real matriz X of appropriate dimensions such
that

0 X
{ M (10)
P (I-Ty)P
[ * | pk) } 20, keZy, (11)
®—4S5; -W, nP nZ
* —nH 0 |<0, jv=12, (12)
* 0 —nG

Sl :(’Wg — ’WQ)TS(’Wg — ’WQ), 82 = (Tﬂg — ’W3)TS(TD9 — ’(Dg,)7
Wl = - (W1 - WQ)T W4 (w1 — WQ) s W2 = — (WQ — W3)T W4 (WQ — w?,)

P:COI{ PYT Oann }, Z:COI{ OGan 7Y Oann },
with

®=[; L)XQ7

By = AyEAy + AsRA3 —2PD + Q — Wy + Wy — LAy — XAz — A3 X 7T,

By =Wy, &4 = PA+ LAy + X — A3R, &5 = PB, &7 = —-DZ,

Py = —(1 — pu)(Q + AyEA, + AsRAs — XAz — AsXT) — 28 — 2W, — TA4,

oz = Wy, Bos = TAy — (1 — p)(X — A3R), Pog =285, P33 = —25 — Wy — W,
P39 =25, Oy =R+U—-L—FE, &y =ATZ, 55 =—(1—p)(R—FE)-T,
®s57=BZ, @5 =H —U + G, $77 =7°(S + Wy) — 22, Pgg = Pgg = —25.

Remark 4. When 7(¢) is unknown or 7(t) is non-differentiable, we can verify
the stability of model (3) with N =1 by setting @ = R =0 in Theorem 2.

4. Illustrative examples

In this section, we provide two numerical examples to demonstrate the effectiveness
of our delay-dependent stability criteria.

14
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Example 1. Consider system (3) with n = N =2 and

Dl[?).l 0 ],DQ{&O 0 }’Al[l.l —0.7]’

0 34 0 33 0.9 1.2
0.8 -1.1 12 0.6 —-0.6 —0.7
AQ_[O.Q 0.8}’B1_[0.8 1}’32_{0.7 0.6}’

T2(t) = 0.29 4+ 0.15 cos(2t), f;(x) = tanh(z), ki(s) = exp(—s), i =1,2.

11 -1 11 1 _
@ { 1 }7 5232{1 1], 71(t) = 0.2 4+ 0.2 sin(t),

It is easy to see that assumptions (H1), (H2) are satisfied with 7y = 0.4,7 = 7 =
0.44, 71 = 0.2, 75, = 0.3, Ay =0, Ay = 0.5]. Furthermore, we set t;, = 0.4k and
Iy, = 0.41 in assumptions (H4),(H5), k € Z,, then assumption (H3) is satisfied. In
addition, we set w17 = —0.6, 712 = 0.6, 121 = 0.4, w92 = —0.4, by using the Matlab
LMI Toolbox, the LMIs (4)—(9) are feasible. Thus the unique equilibrium point of
model (3) is globally asymptotically stable. One solution is as follows:

Py = diag{0.7598, 0.1359}, P, = diag{0.2745, 0.1344},
0.0259  —0.0056 ) Qs = ( 0.0218  —0.0026 )
) 2 = )

—0.0056  0.0077 —0.0026  0.0049

0.7583 0.3465 R, — 0.7678 0.3408
0.3465 0.1612 J* "2 \ 0.3408 0.1629 )’

( 0.0492 —0.0114> g < 0.0201 —0.0141 )
s P2 = ;

0.0058  —0.0028 W, — 0.0090 —0.0043
—0.0028  0.0024 » 727\ —0.0043  0.0033 ’

Q1

Ry

St=1{ _00114 0.0004 —0.0141  0.0178

Wi

W 0.0146  —0.0066 ) W,y = < 0.0063 —0.0028 )

—0.0066  0.0060 —0.0028  0.0025

w, — (01115 0.0303
47\ 0.0303 0.1397

G = diag{0.0098, 0.0079}, H = diag{0.1340, 0.0248},

Ly = diag{4.7068, 0.5806}, L, = diag{3.3288, 0.7443},
Ty = diag{0.2415, 0.2287}, T, = diag{0.1233, 0.0903},
7, = diag{0.0466, 0.0307}, Z, = diag{0.0308, 0.0341}.

> , U = diag{0.1466, 0.0338},

For numerical simulation, we consider the initial state (0.4,—0.4)7 in mode
1 and (—0.4,0.4)7 in mode 2. Fig. 1 and Fig. 2 depict the time responses of
state variables yi(t),y2(t) in mode 1 and mode 2 with step 0.01 respectively. It
confirms that the proposed condition in Theorem 1 leads to globally asymptotic
stable equilibrium point for the model (3).

However, it is verified that the LMIs of Theorem 1 in [1] admit no feasible
solutions, that is, for this example, the condition of Ref. [1] fails to assure the
stability. Therefore, we can say that for this system, the results in this paper are
much effective and less conservative than those in [1].

15
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0.6

I\\\ - =yl
1 —y2
0.4} 1

Fig. 1 The state trajectory of the mode 1 with initial value (0.4,—0.4)T in Ezam-
ple 1.

0.6 T

0.4} 1

0.2 b

Fig. 2 The state trajectory of the mode 2 with initial value (—0.4,0.4)T in Ezam-
ple 1.

Example 2. Consider system (3) with n =2, N =1 and

27 0 1.8 -0.9 —-14 0.6
S B e B A e

2 1

(Jo + 1] =z = 1), ki(s) = P14 s

0
1 1 1 1 1 -1 .
a:[l _1}7 ﬁ_[_l 1 ], 7(t) = 0.2 4+ 0.2sin(2t),
1 F— 1.9
Z i=1,2.
2 )

16
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It is easy to see that assumptions (H1) and (H2) are satisfied with 7 = 0.4, 7/ =
0.4, Ay =0, Ay = 0.5]. Furthermore, we set t;, = 0.5k and I'y = 0.4] in assump-
tions (H4),(H5), k € Z, then assumption (H3) is satisfied. By utilizing the Matlab
LMI Toolbox, the LMIs (11)—(12) are feasible. Thus from Theorem 2 we conclude
that the unique equilibrium point of model (3) is globally asymptotically stable.

However, it is easy to see that none of the conditions in [5,11] can be applied
to verify the stability of this model. Therefore, we can say that for this system of
Example 2, the results in this paper are much effective and less conservative than
those in [5,11].

5. Conclusions

This paper investigates the stochastic stability of fuzzy neural networks with Marko-
vian jumping parameters and mixed delays under impulsive perturbations in mean
square. The mixed delays consist of time-varying delay and continuously dis-
tributed delay. By employing a new Lyapunov-Krasovskii functional, linear convex
combination technique, a novel reciprocal convex lemma and the free-weight matrix
method, two novel sufficient conditions are derived to ensure the stochastic asymp-
totic stability of the equilibrium point of the considered networks in mean square.
The proposed results, which are expressed in terms of linear matrix inequalities,
can be easily checked via Matlab LMI Toolbox. One of the future research topics
would be an extension of the present results to other systems, for example, syn-
chronization of Markovian coupled neural networks, stochastic fuzzy Markovian
jumping neural networks with leakage delay under impulsive perturbations, etc.

6. Appendix I
Proof of Theorem 1

Construct a Lyapunov-Krasovskii functional in the following form

6

Vm(ta yt) - Z ‘/zm(tv yt)a

=1

where
Vim(t,ye) =y Pry(t),

Vo (1) = / 7@yl + g9 Rmgly()] s,

VE%m t yt —Tm/ / )dsd9
t—Tm

Vinlto) = [ [ 16 Wants) + 906D Wagl(s)] st

/ / / (5)TWay(s)dsdndé,

17
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t
Vot 1) =7 / / (7 Wai(s)dsdd + [ o) Way(s)ds,
t—T t 77—771,

Vo (t, 1) Zug/ /_ g3 (y;(s))dsde.

Denoting by £ the weak infinitesimal generator of the random process {y(t),
n(t)}>0
.1
'gv(ytv t7 m) = 51—1>%1+ g sup [E {V(yt+5a t+ 57 77(t + 5))|yt7 77(75) = m} -
- V(yta tv n(t) = m)] )
calculating the weak infinitesimal operator along the system (3) gives
6
SVt 9) = Y LV (b, 1), (13)
i=1

where
1:Vvlm(t yt) = 23/ TPmy + Z’”mgy

= 2y( TPm{ Dmy( )+ Amg(y(t)) + Brng(y(t — Tm(t)))}+

N
+ Zﬂmjy(t)TPjy(t)
- 2szmyz ( N @i / kit =) fi(y;(s) + zj)ds
j=1 I
- /\ ausfi(ep) + V By [ (= s)05(6) + x})ds—

~__
—
—
o
N

- \/ Bij fi (@)
j=1

LV (t,yr) = y(t)Tme(t) = (L= 7m()y(t - Tm(t))Tme(t — Tm(t))
+9(y(®) Ring(y(t)) = (1 = 7 (£))g(y(t — T (1)) "Ring (y(t — T (1))

3 mms [ ) Qunto) + 9wl Rigly(o)] s

<y(t)" Qmy(t) = (1 = pm)y(t — T (1)) Quuy(t — T (1))
+ 9(y) " Rng(y()) — (1 = ) g(y(t — 7o (£))) "R g (y(t — 7 (1))

N t
+ Zﬂinj/t [y()"(Q)y(s) + g(y(s))" (R;)g(y(s))] ds, (15)

18
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LV (t,y1) =T 9(0) " Sy (t +Z7rmm/ / (5)"8;9(s)dsdd

A / J(5)T Sy(s)ds

—Tm

<72 ()7 S (1) — 7 / () Smi(s)ds

T /77/ )y(s)dsdd, (16)

Vit ye) = 7 [y(0)T Way(t) + g(y ()" Wag(y(t))]
—/t [y(s) T Wry(s) + g(u(s)) Wag(y(s))] ds

+%2~ VI W (t) / / (5)TW3y(s)dsde, (17)
Vo (t,ye) = T29(1) " Wag(t) — /t B §(s)" Wag(s)ds + y(t)" Wsy(t)

N t
— gt = ) Wyt = 7o) + Yy [ Wyl
t—Tj t

=1

<TEHOTWai(0) =7 [ 0T Waie)ds +y() Wa(t)

N t
—y(t — 7o) T Way(t — 7n) + Y _ 7, J/ y(s)" Wsy(s)ds (18)

j= t—T7
uj/o k;(6 g] (y;(t —0))de, (19)

1
n

LVem(t, yt) ZU;/ g] (y;(t))do —

j=1

with P, = diag{p1m7 P2my .-+ pnm}~
In order to get stability result expressed in terms of linear matrix inequalities,
we need to handle the terms with fuzzy logic in £V1,,, (¢, y(t)). Based on Lemma 2,

the following inequalities hold

s) fi(y;(s) +x7)ds — /\a”/ fi(z})ds

/ kit —s)fi(y;(s) + x})ds — / kj(t —s)fj(z})ds

—0o0
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)

/ it — 9)g;(y;())ds

— 00

ﬂz‘j/ kj(t —s)fi(y;(s) +2)ds — \/513/ ki(t —s)f(x})ds

Jj=1 >

/ kit —s)fi(y;(s) + x})ds — / kj(t —s)fj(z})ds

— 00 —0o0

15! / iyt — )5 (5(s))ds

Lemmas 1 and 3 play an important role in establishing LMI-based stability
conditions for fuzzy neural networks. By applying Lemmas 1 and 3, we obtain the
following inequalities for any positive diagonal matrix H

2szmyz (/\ azg/ fJ yj( )—&-x;‘)ds—
i=1

/ 5(5)ds + \/ Pij / kit —s)fi(y;(s) +2})ds—
/

ij ki(t —s)fi(x
o s)fj<:c;f>ds)

)£y (s )+x )ds—

\/ ,BU/ kit — 5) £ (y3(5) + 2 ds—

,

_/"\a
j=1
_\/5
j=1

< 2szzmlyz (
— /\ aij[ ( fJ dS

e}
e}
Q5

t

< 2y()[ P (Ja] + 181) ] [ = tutsnas

ly(®)" P (Ja] +18) H~ (laf 4 [8]) Pmly(t)]
k(t — s)g(y(s))ds

| s o[

H
< ny(t)T Py, YH 'Y Py(t) (/ k(t —s)g(y(s))d >T

([ ; klt = () ) (20)

Lemmas 1, 4 and the Leibniz-Newton formulae are important tools for our
obtaining less conservative stability criteria by means of linear matrix inequalities.

IN
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For 0 < 7p,(t) < T, define (i (t) = ﬁ(t)f:_m(t)y(s)ds. It is easy to see
that ¢;(t) — y(t) while 7,,,(t) — 0. Therefore we can deﬁne Gi(t) = y(t) when
Tm(t) = 0. Similarly, for 0 < 7,,(t) < 7, define (o(t) = =——— oy 31 ft T"’(t s)ds;
when 7,,(t) = T, define (o(t) = y(t — 7).

For 0 < 7, (t) < T, utilizing Lemma 4 gives

[ Suias

Tm

t tf‘rm(t)
. / 3()T Sy (5)ds — / 3()" Sy (s)ds
t—Tm (£) t

—Tm

Defining

(1]

1 =[G (#) =yt — T ()] S [C1(1) — y(t — T (1))]
2 = [Ca(t) —y(t — 77'17%)]T S [G2(t) — y(t — T,

(1]

we get the following inequality from inequality (21) and Lemma 5 with v = 1, u = 3

t
—?,,L/ 7(s)T Spmy(s)ds <2 max { — Z; — 35, —32; — B2 }. (22)
t7

Tm

It is easy to see that inequality (22) holds for any ¢ > 0 with 7,,(¢) = 0 or
T (t) = Tn-

On the other hand, by using the well-known Jensen integral inequality and the
Leibniz-Newton formulae, we derive

. / 3(5) T Wag(s)ds

—Tm

t—7Tm (t)
=)+l [ i Wai(s)ds
<_ |:1 " Tm %Tm(t)]Tm@) /t_ . y(S)TW4y(S)dS
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t—Tm (1)

— [1 + T”f—(t)} (T — Tm(t))/t §(s)" Wag(s)ds

T"‘ﬂ,

B o) (o)
o) [

qN{P+ﬁn7“@MwlamTWmmwﬂ

Tm

+ [1 + L(t)] (w2 — w3)T Wy (g — w3)} C(t). (23)

Cauchy-Schwarz inequality is an effective tool for neural networks with un-
bounded continuously distributed delay to derive LMI-based stability condition.
From Eq. (2) and Cauchy-Schwarz inequality, we get the following inequality

n

Vit 0) = s 0O V(o) ~ Y5 [ k(0000 [ k01200~ 610

Jj=1

X ORZC fﬁ(Am@ (0)g; (5t mwf

=1

<.

: T
[ K= 9tu(e)s)

U([;Ku—@mM$m§, (24)

with U = diag{u1, us,...,u,}, K(t—s) = diag{ki(t—s), ka(t—s),..., kn(t—5)}.

~ o) Uatuto) - ( |

Moreover, in order to propose feasible LMI-based stability condition, we must
rely on assumption (H2) about neural activation functions. Based on (H2), the
following matrix inequalities hold for any positive diagonal matrices L,,, T,

0 < —y(t)" LnAry(t) + 2y(t)" Lin A2g(y(t) — g(y(t)" Limg(y(t)), (25)
0< =yt — 7)) TAry(t — T (t))

+2y(t = 7 () T A2g (y(t = T (1)) = 9(y(t = 7 (£)" Trng (y(t — Tm(t)())- |
26

Furthermore, the zero equality (3) also plays an important role in derive feasible
stability criterion expressed in terms of linear matrix inequalities. From Eq. (3),
the following equality is true for any positive diagonal matrix Z,, = diag{z1m,

22my 5 Rnm
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0=2 Zyz(t)zzm |: - yz(t) - dimyz +Z Aijm3;j y] +Z bzymgj y] Tm(t)))

+ N\ aig [ kit —s)f5(y; fi(a5)ds
A [[_bte=n5) spis = A [t
+\/ Bij ki(t — ) f5(y; fi(z})ds
Vs [kt 9s Jy T |
= 29(t)" Zn{ — 9(t) — Diny(t) + Amg(y(t)) + Bimg(y(t — mm (1))}

+2;zimyi(t)(/\1aij /_Ook‘ ( —s)fj(yj(s)+x;f)ds

_/\O‘z]fj +\/6U/ k t—Sf] y] +‘r \/Bljfj )
(27)

Similar to (20), we obtain the following inequalities for any positive diagonal
matrix G

2izimyZ (/\am/ i(t—s)f(y;(s) /\Oézg/ —s)fj(a})ds

+ \/Bw/ kj(t —s)fi(y;(s) +x})ds—

- \z/lﬁij /_OO kj(t — S)fj($§)d8>

t

< i) 2, 0G0 Z500 + ([ - s)g(y(s))ds)T

— 00

G ([ ra-satutsnas). (28)

— 00

Based on £V, (t,y(t))(i = 1,...,6) and aforementioned inequalities, we can
derive a less conservative stability conditions expressed by means of matrix in-
equalities. Substituting (15)—(28) into (13) and taking mathematical expectation
gives that

ELV,, (t,y:) = ()T ®,,( (1), t € [te1,tr), k € Z. (29)
where
o, =, + nwi P,YH 'YP,w +nwt 2, YG 'Y Z,,w;
+ 4max {—(ws — @2)" S (ws — w2), —(wo — w3)" S (e — ws) }

_ %m;iﬂn(t) (w1 —w2)" Wy (w1 — ws) — ﬂ;(t)

(w — w3)" Wi (s — w3).
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As ®,, is a linear convex function of variable 7,,(t), inequality ®,, < 0 is difficult
to be verified by Matlab LMI software. Therefore we must derive an inequality of
constant matrix. Based on the linear convex combination technique [32], inequality

®,,, < 0 is true if and only if the following two inequalities hold simultaneously

®,, +nwi P, YH 'Y P, @ +nw’ Z,YG Y Zywr — (w1 — wz)T Wy (w1 — w2)
+ 4 max {—(ws — 2) T8, (ws — @s), —(wg — w3)T S (w9 — w;;)} <0,

(30)

®,, + nwl P, YH 'YP,w, + nw?Z,,LTGflTZWW7 — (g — w?,)T Wy (g — w3)

+ 4 max {—(w8 - wz)TSm(w8 — wy), —(wy — ?DS)TSm(WQ - WB)} <0.
(31)

As inequalities (30) and (31) are forms with the inverses of matrices G, H, they
are infeasible with Matlab LMI software. The Schur complement plays an impor-
tant role in changing inequality with the inverses of matrices into linear matrix
inequalities. From the well known Schur complement, we deduce that inequality
®,, < 0 is equivalent to inequalities (9) with j,v = 1,2. Therefore, if inequalities
(9)(4,v = 1,2) hold, then from (29) we derive that

ELVn(t,ye) <0, VUEE [tk tk), k € Zy. (32)

Inequality (32) implies that the mathematical expectation of the Lyapunov-

Krasovskii functional V,, (¢, y;) decreases at any continuous time ¢ € [ty_1,tx), k €

Z,. Next, we will prove that V;,(¢,y;) decreases at any discontinuous time t =

ti, k € Zy, that is Vi, (t, y(tr)) < Vin(t, ,y(t, ). When t = t;, from the condition
(H5), we have

Vin (b y(tx)) =Vin (£ y(t) +y (1) [(1 = L) Pu(I = Ti) = Pr] y(ty,)- (33)

From Eq. (33), in order to derive that V, (¢, y;) decreases at t = ¢y, it is sufficient
to prove (I — ') P, (I —T})— P,, > 0. Considering inequality (7), it follows that

I 0 Pn (I-T})P, I
0 Pt * P, 0 Pt )=

P, I-Ty
(15 )20

From the Schur complement, we have

that is

Py — (I =Tp) Py (I —T%) > 0. (34)
Combining (33) with (34), we can deduce that

Vin(tes y(te)) < Vi (81, y(ty)), k€ Zs.
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In order to prove that the Lyapunov-Krasovskii functional V,,,(¢,y:) decreases
at any discontinuous time ¢t = ¢, for different modes, we must depend on inequality
(8). By simple calculation, it can be verified from (8) that

Vi (i, y(tr)) < Vilty, y(ty)- (35)
For t € [tx—1,tk], k € Z, in view of (32) and (35), we have
Vin(te, y(te)) < Vilty,y(ty,)) < Vilte—1,y(te—1))- (36)

By the similar proof and Mathematical induction, we can derive that (36) is
true for any m,l,n(0) =ny e N,k € Z,

Vin (e, y (k) < Vit y(t)) < Vilte—1,y(tk-1)) < -+ < Vi (o, y(to))-  (37)

Inequality (37) implies that the Lyapunov-Krasovskii functional decreases at
any continuous or discontinuous time for the same or different modes. Therefore,
the system (3) is asymptotically stable in mean square. This completes the proof
of Theorem 1.

7. Appendix 11
Proof of Theorem 2

Inspired by [4,36], we construct a Lyapunov-Krasovskii functional in the following
form

4
V(t7 yt) = y(t)TPy(t) + Z ‘/i(t? yt>7
=1
where
- / )T A EAsy(s) — g(y(s)” Eg(y(s))] ds,

tyt
tyt

/ttf(t) [ gy Agy( ) }T[ g } [ g(y(S):)y(—S)Ag,y(S) ds,

X
R
t
3(t, yt) / / 9(s)T (S 4+ Wy)y(s )dsd9+/ y(s)T Wiy(s)ds,
t—7 J O t—T

Vit = [0 [ us(easas

j=1 0

3

Note that

Vi(t,ye) = y()TAsEAsy(t) — g(y(1) " Egly(t))
— 1 —7(t)] [y(t — 7)) AsEAgy(t — 7(t)) — g(y(t — 7(t)))"
Eg(y(t— (1)),
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9600 = g0 nte ] [ 1 soto] Ot ] -1 70
T
s ey N Y
sttt Nante oy |

following the same line as in Theorem 1, we can complete the proof of Theorem 2.

Acknowledgement

This work was supported by the National Natural Science Foundation of China

No

. 61273022.

References

(1]

(2]

(3]

(4]

[7]

(8]

[9]

(10]

(11]

26

BALASUBRAMANIAM P., VEMBARASAN V. Robust stability of uncertain fuzzy BAM
neural networks of neutral-type with Markovian jumping parameters and impulses. Comput.
Math. Applic. 2011, 62(4), pp. 1838-1861, doi: 10.1016/j.camwa.2011.06.027.

CHEN Y., ZHENG W.X. Stability analysis of time-delay neural networks subject to stochas-
tic perturbations. IEEE Trans. Systems Man Cyber., B, Cyber. 2013, 43(6), pp. 2122-2134,
doi: 10.1109/TCYB.2013.2240451.

DONG M., ZHANG H., WANG Y. Dynamics analysis of impulsive stochastic Cohen-
Grossberg neural networks with Markovian jumping and mixed time delays. Neurocomputing.
2009, 72(7-9), pp. 1999-2004, doi: 10.1016/j.neucom.2008.12.007.

GE C., HUA C., GUAN X. New delay-dependent stability criteria for neural networks with
time-varying delay using delay-decomposition approach. IEEE Trans. Neural Netw. Learn.
Syst. 2014, 25(7), pp. 1378-1383, doi: 10.1109/TNNLS.2013.2285564.

HAN W., LIU Y., WANG L. Global exponential stability of delayed fuzzy cellular neural
networks with Markovian jumping parameters. Neural Comput. & Applic. 2012, 21(1), pp.
67-72, doi: 10.1007/s00521-011-0685-4.

HUANG T., HUANG Y., LI C. Stability of periodic solution in fuzzy BAM neural networks
with finite distributed delays. Neurocomputing. 2008, 71(16-18), pp. 3064-3069, doi: 10.
1016/j.neucom.2008.04.021.

KWON O.M., PARK J.H., LEE S.M., CHA E.J. Analysis on delay-dependent stability for
neural networks with time-varying delays. Neurocomputing. 2013, 103, pp. 114-120, doi: 10.
1016/j.neucom.2012.09.012.

LIU Z., YU J., XU D. Vector Wirtinger-type inequality and the stability analysis of de-
layed neural network. Commun. Nonlinear Sci. Numer. Simulat. 2013, 18(5), pp. 1246-1257,
doi: 10.1016/j.cnsns.2012.09.027.

LIU Z., YU J., XU D., PENG D. Triple-integral method for the stability analysis of delayed
neural networks. Neurocomputing. 2013, 99, pp. 283-289, doi: 10.1016/j.neucom.2012.07.
005.

LIU Z., ZHANG H., ZHANG Q. Novel stability analysis for recurrent neural networks with
multiple delays via line integral-type L-K functional. IEEE Trans. Neural Netw. 2010, 21(11),
pp. 1710-1718, doi: 10.1109/TNN.2010.2054107.

LIU Z., ZHANG H., WANG Z. Novel stability criterions of a new fuzzy cellular neural
networks with time-varying delays. Neurocomputing. 2009, 72(4-6), pp. 1056-1064, doi: 10.
1016/j.neucom.2008.04.001.


http://dx.doi.org/10.1016/j.camwa.2011.06.027
http://dx.doi.org/10.1109/TCYB.2013.2240451
http://dx.doi.org/10.1016/j.neucom.2008.12.007
http://dx.doi.org/10.1109/TNNLS.2013.2285564
http://dx.doi.org/ 10.1007/s00521-011-0685-4
http://dx.doi.org/10.1016/j.neucom.2008.04.021
http://dx.doi.org/10.1016/j.neucom.2008.04.021
http://dx.doi.org/10.1016/j.neucom.2012.09.012
http://dx.doi.org/10.1016/j.neucom.2012.09.012
http://dx.doi.org/10.1016/j.cnsns.2012.09.027
http://dx.doi.org/10.1016/j.neucom.2012.07.005
http://dx.doi.org/10.1016/j.neucom.2012.07.005
http://dx.doi.org/10.1109 /TNN.2010.2054107
http://dx.doi.org/10.1016/j.neucom.2008.04.001
http://dx.doi.org/10.1016/j.neucom.2008.04.001

(12]

(13]

(14]

(15]
(16]

(17]

(18]

(19]

20]

21]

(22]

23]

[24]

[25]

[26]

27]

(28]

29]

Zhang Y., Zheng C.-D.: Novel stochastic stability conditions of fuzzy. ..

LOU X., CUI B. Delay-dependent stochastic stability of delayed Hopfield neural networks
with Markovian jump parameters. J. Math. Anal. Appl. 2007, 328(1), pp. 316-326, doi: 10.
1016/j.jmaa.2006.05.041.

LU R., LI H., ZHU Y. Quantized H filtering for singular time-varying delay systems with
unreliable communication channel. Circuits Syst. Signal Process. 2012, 31(2), pp. 521-538,
doi: 10.1007/s00034-011-9333-6.

LU R., WU H., BAI J. New delay-dependent robust stability criteria for uncertain neutral
systems with mixed delays. J. Franklin Inst. 2014, 351(3), pp. 1386-1399, doi: 10.1016/j.
jfranklin.2013.11.001.

LU R., XU Y., XUE A. H filtering for singular systems with communication delays. Signal
Process. 2010, 90(4), pp. 1240-1248, doi: 10.1016/j.sigpro.2009.10.007.

POZNYAK A.S., SANCHEZ E.N. Nonlinear systems approximation by neural networks:
Error stability analysis. Intell. Automat. Soft Compt. Int. J. 1995, 1(1), pp. 247-258.

SUN J., LIU G.P., CHEN J., REES D. Improved delay-range-dependent stability criteria
for linear systems with time-varying delays. Automatica. 2010, 46(2), pp. 466-470, doi: 10.
1016/j.automatica.2009.11.002.

WANG Z., ZHANG H., JIANG B. LMI-based approach for global asymptotic stability anal-
ysis of recurrent neural networks with various delays and structures. JEEE Trans. Neural
Netw. 2011, 22(7), pp. 1032-1045, doi: 10.1109/TNN.2011.2131679.

WANG Z., ZHANG H., LI P. An LMI approach to stability analysis of reaction-diffusion
Cohen-Grossberg neural networks concerning Dirichlet boundary conditions and distributed
delays. IEEE Trans. Systems Man Cyber., B, Cyber. 2010, 40(6), pp. 1596-1606, doi: 10.
1109/TSMCB.2010.2043095.

WANG Z., LIU Y., YU L., LIU X. Exponential stability of delayed recurrent neural networks
with Markovian jumping parameters. Phys. Lett. A. 2006, 356(4-5), pp. 346-352, doi: 10.
1016/j.physleta.2006.03.078.

XU D., YANG Z. Impulsive delay differential inequality and stability of neural networks. J.
Math. Anal. Appl. 2005, 305(1), pp. 107-120, doi: 10.1016/j. jmaa.2004.10.040.

YANG T., YANG L. The global stability of fuzzy cellular neural networks. IEEE Trans.
Clircuits Syst. 1. 1996, 43(10), pp. 880-883, doi: 10.1109/81.538999.

ZHANG H., LIU Z., HUANG G.B. Novel delay-dependent robust stability analysis for
switched neutral-type neural networks with time-varying delays via SC technique. IEEE
Trans. Systems Man Cyber., B, Cyber. 2010, 40(6), pp. 1480-1491, doi: 10.1109/TSMCB.
2010.2040274.

ZHANG H., LIU Z., HUANG G.B., WANG Z. Novel weighting-delay-based stability criteria
for recurrent neural networks with time-varying delay. IEEE Trans. Neural Netw. 2010,
21(1), pp. 91-106, doi: 10.1109/TNN.2009.2034742.

ZHANG H., LUN S., LIU D. Fuzzy Hoo filter design for a class of nonlinear discrete-time
systems with multiple time delay’s. IEEE Trans. Fuzzy Syst. 2007, 15(3), pp. 453-469,
doi: 10.1109/TFUZZ.2006.889841.

ZHANG H., MA T., HUANG G. B., WANG Z. Robust global exponential synchronization
of uncertain chaotic delayed neural networks via dual-stage impulsive control. IEEE Trans.
Systems Man Cyber., B, Cyber. 2010, 40(3), pp. 831-844, doi: 10.1109/TSMCB. 2009 .2030506.

ZHANG H., CAI L., BIEN Z. A fuzzy basis function vector-based multivariable adaptive
controller for nonlinear systems. IEEE Trans. Systems Man Cyber., B, Cyber. 2000, 30(1),
pp. 210217, doi: 10.1109/3477 .826963.

ZHANG H., YANG F., LIU X., ZHANG Q. Stability analysis for neural networks with time-
varying delay based on quadratic convex combination. IEEE Trans. Neural Netw. Learn.
Syst. 2013, 24(4), pp. 513-521, doi: 10.1109/TNNLS.2012.2236571.

ZHANG H., WANG Y. Stability analysis of Markovian jumping stochastic Cohen-Grossberg
neural networks with mixed time delays. IEEE Trans. Neural Netw. 2008, 19(2), pp. 366-370,
doi: 10.1109/TNN.2007.910738.

27


http://dx.doi.org/10.1016/j.jmaa.2006.05.041
http://dx.doi.org/10.1016/j.jmaa.2006.05.041
http://dx.doi.org/10.1007/s00034-011-9333-6
http://dx.doi.org/10.1016/j.jfranklin.2013.11.001
http://dx.doi.org/10.1016/j.jfranklin.2013.11.001
http://dx.doi.org/10.1016/j.sigpro.2009.10.007
http://dx.doi.org/10.1016/j.automatica.2009.11.002
http://dx.doi.org/10.1016/j.automatica.2009.11.002
http://dx.doi.org/10.1109/TNN.2011.2131679
http://dx.doi.org/10.1109/TSMCB.2010.2043095
http://dx.doi.org/10.1109/TSMCB.2010.2043095
http://dx.doi.org/10.1016/j.physleta.2006.03.078
http://dx.doi.org/10.1016/j.physleta.2006.03.078
http://dx.doi.org/10.1016/j.jmaa.2004.10.040
http://dx.doi.org/10.1109/81.538999
http://dx.doi.org/10.1109/TSMCB.2010.2040274
http://dx.doi.org/10.1109/TSMCB.2010.2040274
http://dx.doi.org/10.1109 /TNN.2009.2034742
http://dx.doi.org/10.1109/TFUZZ.2006.889841
http://dx.doi.org/10.1109/TSMCB.2009.2030506
http://dx.doi.org/10.1109 /3477.826963
http://dx.doi.org/10.1109/TNNLS.2012.2236571
http://dx.doi.org/10.1109/TNN. 2007.910738

(30]

(31]

(32]

(33]

(34]

(35]

(36]

28

Neural Network World 1/2016, 7—28

ZHANG H., WANG Z., LIU D. Global asymptotic stability of recurrent neural networks
with multiple time-varying delays. IEEE Trans. Neural Netw. 2008, 19(5), pp. 855-873,
doi: 10.1109/TNN.2007.912319.

ZHANG Y., SUN J. Stability of impulsive neural networks with time delays. Phys. Lett. A.
2005, 348(1), pp. 44-50, doi: 10.1016/j.physleta.2005.08.030.

ZHANG Y., YUE D., TIAN E. New stability criteria of neural networks with interval time-
varying delay: A piecewise delay method. Appl. Math. Comput. 2009, 208(1), pp. 249259,
doi: 10.1016/j.amc.2008.11.046.

ZHENG C.-D., SHAN Q.-H., WANG Z. Improved stability results for stochastic Cohen-
Grossberg neural networks with discrete and distributed delays. Neural Process. Lett. 2012,
35(2), pp. 103-129, doi: 10.1007/s11063-011-9206-9.

ZHENG C.-D., SHAN Q.-H., ZHANG H., WANG Z. On stabilization of stochastic Cohen-
Grossberg neural networks with mode-dependent mixed time-delays and markovian switch-
ing. IEEE Trans. Neural Netw. Learn. Syst. 2013, 24(5), pp. 800-811, doi: 10.1109/TNNLS.
2013.2244613.

ZHENG C.-D., ZHANG Y., WANG Z. Novel stability condition of stochastic fuzzy neural
networks with Markovian jumping under impulsive perturbations. Int. J. Mach. Learn. €
Cyber. 2014, pp. 1-9, doi: 10.1007/s13042-014-0298-1.

ZHOU X., TIAN J., MA H., ZHONG S. Improved delay-dependent stability criteria for
recurrent neural networks with time-varying delays. Neurocomputing. 2014, 129, pp. 401—
408, doi: 10.1016/j.neucom.2013.09.019.


http://dx.doi.org/10.1109/TNN.2007.912319
http://dx.doi.org/10.1016/j.physleta.2005.08.030
http://dx.doi.org/10.1016/j.amc.2008.11.046
http://dx.doi.org/ 10.1007 /s11063-011-9206-9
http://dx.doi.org/10.1109/TNNLS.2013.2244613
http://dx.doi.org/10.1109/TNNLS.2013.2244613
http://dx.doi.org/ 10.1007/s13042-014-0298-1
http://dx.doi.org/10.1016/j.neucom.2013. 09.019



