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Abstract: There is a growing interest of research being conducted on detecting eye
blink to assist physically impaired people for verbal communication and controlling
devices using electroencephalogram (EEG) signal. One particular eye blink can be
determined from use of peak points. Therefore, the purpose of peak detection algo-
rithm is to distinguish an actual peak location from a list of peak candidates. The
need of a good peak model is important in ensuring a satisfy classification perfor-
mance. In general, there are various peak models available in literature, which have
been tested in several peak detection algorithms. In this study, performance evalu-
ation of the existing peak models is conducted based on Artificial Neural Network
(ANN) with particle swarm optimization (PSO) as learning algorithm. This study
evaluates the performance of eye blink EEG signal peak detection algorithm for
four different peak models which are Dumpala’s, Acir’s, Liu’s, and Dingle’s peak
models. To generalize the performance evaluation, two case studies of eye blink
EEG signal are considered, which are single and double eye blink signals. It has
been observed that the best test performance, in average, is 91.94% and 87.47%
for single and double eye blink signals, respectively. These results indicate that
the Acir’s peak model offers high accuracy of peak detection for the two eye blink
EEG signals as compared to other peak models. The result of statistical analysis
also indicates that the Acir’s peak model is better than Dingle’s and Dumpala’s
peak models.
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1. Introduction

There is a growing interest of research being conducted in biological signals on
detecting eye blink to assist physically impaired people for verbal communication
and controlling devices. Healthy people also use this signal for vehicle accident
prevention. Biological signals are defined as an electrical signal that responses to
any biological activities in a human body. The biological signals that can be used to
measure eye blink are electrooculogram (EOG) and electroencephalogram (EEG)
signals.

To record an EOG signal, a number of electrode sensors are placed around the
eyes while, to record an EEG signal, a number of electrode sensors are placed on
the surface of the brain. The electrode sensors that are placed on the surface of the
brain are more relevant than the electrode sensors that are placed around the eyes
[12]. Based on a literature study, a number of EOG eye blink signals have widely
been proposed to control cursor movement [34], a robotic arm [35], and wheelchair
[9]. However, study’s on the EEG eye blink signals are still limited. According to
previous studies, the eye blink generated by EEG are considered as ocular artifacts
[37]. Several algorithms have been developed for removing the artifacts (see [16]
for review). However, the artifacts were found to be usable signals [43].

The observation of the eye blink of EEG signal indicates that the most observ-
able signal pattern exists is peak points which signify the vertical eye movement
response through the brain. A peak point is a point that holds the maximum
value located on a specific time and location on an EEG signal. The known peak
locations through the response of eye blink can be translated into an output, for
example, wheelchair movement. Therefore, this study utilizes the peak detection
algorithm to identify eye blinks on EEG signal.

A review of peak detection algorithms that is employed to the EEG signal is
presented in [46]. To date, various approaches of peak detection algorithms have
been proposed. These algorithms can be categorized into four main approaches
based on time [2, 3, 5, 10, 13, 14, 28, 30, 31, 47], frequency [24], time-frequency
[28, 38], and nonlinear [36] domains. In time domain approach, the peaks are
analyzed as temporal information. In frequency domain approach, the peaks are
analyzed as spectral information. Meanwhile, in time-frequency domain approach,
the peaks are analyzed simultaneously as temporal and spectral information. In
nonlinear domain approach, some statistical parameters of the peaks are analyzed.

The general peak detection algorithm usually involves several processes which
are signal pre-processing, peak candidate detection, feature extraction, and classi-
fication. Various signal pre-processing methods have been employed such as data
compression [11], wavelet transform [20], Kalman filter [33], and Hilbert transform
[31]. Two methods for peak candidate detection have been used which are three
point sliding window method [14] and k-point nonlinear energy operator (k-NEO)
method [29]. Various feature extraction techniques have been proposed which are
model-based [29], wavelet analysis [44], template matching [23], and power spectra
analysis [15]. Several classifiers have been used, which are rule-based [14, 15], arti-
ficial neural network (ANN) [1, 3, 22, 28], support vector machine (SVM) [2, 17],
and expert system [28].
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Based on the literature, most of the researchers focus on the problem of an
epileptic EEG signal when detecting peak. However, this study investigates the
peak detection problem on eye blink EEG signal. Moreover, in time domain ap-
proach, 14 different peak features are derived from different peak models [2, 13,
14, 28]. The peak model is a set of peak features that represents a peak by its am-
plitude, width, and slope. Most algorithms [2, 3, 13, 14, 28-30, 47] in time domain
approach consider different peak models and the different styles of algorithm. Note
that although different peak models have been employed for various algorithms,
there are not any peak detection algorithms that find the best peak model. The
use of the best peak detection model will give a chance for the algorithm to achieve
the best performance. On the other hand, the chosen peak model is not necessar-
ily suitable for different types of biological signal. Moreover, the best peak model
represents some meaningful information on the signal to be evaluated.

The main objective of this study is to evaluate the performance of eye blink
EEG signal peak detection algorithm on four different peak models in time domain
approach. This study also highlights the significance of the best peak model. In
this study, the peak detection involves the following processes: peak candidate
detection, feature extraction, and classification. The sliding three-point window is
a method in peak candidate detection where it is based on local maximizes to find
the peak candidates. For the feature extraction method, 14 different peak features
of peak candidate are calculated. The identified peak candidates are classified
between true peak point and true non-peak point using ANN classifier. The particle
swarm optimization (PSO) algorithm is employed as training ANN algorithm. To
evaluate the performance of the algorithm, four different sets of peak feature are
considered and the best peak model is suggested.

The next section briefly describes the existing peak models in time domain
analysis for peak detection algorithm. Section 3 explains in details the methodology
of the proposed peak detection algorithm. The experiment setup and experiment
protocols are introduced in Section 4. The experimental results and discussions are
presented in Section 5. Section 6 are conclusions.

1.1 Peak model in time domain analysis

The earliest peak model was introduced by Dumpala et al. in 1982 [14]. The peak
model comprises four features, which are (1) the amplitude between the magnitude
of peak point and the magnitude of valley point at the first half wave, (2) the width
between valley point of first half point and valley point at second half wave, (3)
and (4) two slopes between a peak point and valley point in the first half wave and
second half wave. A similar definition of the peak amplitude and slopes are also
been used in [2, 3, 47].

An additional feature of peak amplitude and two features of peak width have
been introduced by Acir et al. [2, 3]. The additional peak amplitude is the am-
plitude between the magnitude of peak point and the magnitude of valley point
of the second half wave. The peak widths are the width between peak point and
valley point of first half wave and second half wave. The total features that are
introduced by Acir et al. are six features. Acir et al. did not use the width feature
that was introduced by Dumpala et al. A similar definition of the peak amplitudes,
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widths, and slopes are also been used in [29]. In [29], an additional peak feature is
added with a set of feature that is introduced in [2, 3], which is the area of peak.
However, the definition of area integration is not presented in the paper.

In addition, Liu et al. [28] have introduced 11 peak features. The peak model
consists of four amplitudes: (1) the amplitude between the magnitude of peak point
and the magnitude of valley point at the first half wave; (2) the amplitude between
the magnitude of peak point and the magnitude of valley point of the second half
wave; (3) the amplitude between the magnitude of peak and the magnitude of
turning point at the first half wave, and (4) the amplitude between the magnitude
of peak and the magnitude of turning point at the second half wave. The turning
point is defined as the point where the slope decreases more than 50% as compared
to the slope of the preceding point. The model also consists of three widths: (1)
the width between valley point at first half point and valley point at second half
wave, (2) the width between turning point at first half wave and turning point at
second half wave, and (3) the width between half point at first half wave and half
point at second half wave. Four slopes are also measured: (1) and (2) two slopes
between a peak point and valley point in the first half wave and second half wave,
(3) and (4) two slopes between peak point and turning point at first half wave and
second half wave.

Another peak model consists of four features, which has been introduced by
Dingle et al. [13]. The peak amplitude is the difference between the peak point
and the floating mean. The floating mean is the average EEG which is centered at
the peak point that is also called moving average curve (MAC) [30]. The width is
calculated based on the difference between the valley point at the first half wave
and the valley point at the second half wave. The two slopes are the slopes between
a peak point and valley point in the first half wave and second half wave.

Generally, all the authors claimed that the selected peak features offer good
classification performance on the proposed algorithm. However, the previous works
did not provide the justification on the selected features.

1.2 Methodology

The EEG signals peak detection algorithm is shown in Fig. 1. In this algorithm, the
peak detection involves training and testing phases. Filtered training and testing
signals with known peak points is used in the training and testing phases. The
first stage in peak detection is the detection of peak candidate. The next stage is
extraction of the peak features based on the selected peak model. The numbers
of peak features are depend on the selected peak model. Peak features of all peak
candidates are extracted in this stage. Then, the peak features act as input to the
ANN classifier. In the training phase, the classifier is trained to achieve the highest
classification performance. During the training, the weights and threshold value in
the network are varied in order to find the optimal value using the PSO algorithm
approach. The optimal weights and decision threshold are then used during the
testing phase. The final output of the training and testing phase is the predicted
peak points and non-peak points of the identified peak candidates.
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Fig.~1 The eye blink EEG signal peak detection algorithm. 
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Fig. 1 The eye blink EEG signal peak detection algorithm.

1.3 Peak candidate detection

The first step to detect peaks is to find candidate peaks. Consider a discrete-
time signal, x (I), of L points. The i-th candidate peak point, PPi, are identified
using three-points sliding window method [14]. Those three-points are denoted as
x(I−1), x(I), and x(I+1) for I= 1, 2, . . . ,L. A candidate peak point is identified
when x(PPi − 1) < x(PPi) > x(PPi + 1) and two associated valley points, VP1i
and VP2i, are in between as shown in Fig. 2. Both valley points exist when
x(VP1i− 1) > x(VP1i) < x(VP1i + 1) and x(VP2i− 1) > x(VP2i) < x(VP2i + 1).
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Fig. 2 Peak model parameters.
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1.4 Feature extraction

Based on the existing peak models, the total peak features are 14. The peak
features of a peak candidate are calculated based on the eight parameters as shown
in Fig. 2. The parameters consist of the i-th candidate peak point (PPi), the
two associated valley points (VP1i) and (VP2i), the half point at first half wave
(HP1i), the half point at second half wave (HP2i), the turning point at first half
wave (TP1i), the turning point at second half wave (TP2i), and the moving average
curve (MAC(PPi)). The peak features can be categorized into three following
groups: amplitude, width, and slope. There are five different amplitudes, five
different widths, and four different slopes that can be calculated based on the
parameters. All equations and description of peak features are tabulated in Tab. I.
The list of different peak models and their sets of feature are tabulated in Tab. II.

1.5 Artificial neural network classifier

The architecture of a single layer feedforward ANN is shown in Fig. 3. In the
network architecture, the input weights wij are located on the connection between
the input layer and the hidden layer, while the output weights, wjk are located
on the link between the hidden layer and the output layer. The total number
of weights is dependent on the number of inputs, n, number of outputs, m, and
number of neurons, l, which can be calculated using the following equation:

total weights = (n× l) + (l ×m). (1)

As shown in Fig. 3, hyperbolic tangent (tanh) function is chosen for all neurons
at hidden and linear function for neuron in the output layer. The output of each
neuron at hidden layer is denoted as yj and the output of neuron at output layer
is denoted as yk. The output, y is a classifier output. The outputs, yj , yk, and y
can be defined as follows:

y =

{
0 if yk ≤ θ,
1 if yk > θ,

(2)

where

yk = tanh (netk) , (3)

yj = tanh (netj) , (4)

tanh(net) =
enet − e−net

enet + e−net
, (5)

netk =

l∑
j=1

yjwjk. (6)

Based on Eq. (2), the classifier can classify the output into two classes (output):
class 0 and class 1. The classifier produces 1 if yk is greater than the decision
threshold, θ. Otherwise, the classifier produces 0.
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Peak
feature

Feature name Equation Description
A

m
p

li
tu

d
es

Peak-to-peak ampli-
tude at the first half
wave

f1 = |x (PPi)− x (VP1i)| Amplitude between the magni-
tude of peak and the magnitude
of valley at the first half wave

Peak-to-peak ampli-
tude at the second
half wave

f2 = |x (PPi)− x (VP2i)| Amplitude between the magni-
tude of peak and the magnitude
of valley of the second half wave

Turning point ampli-
tude at the first half
wave

f3 = |x (PPi)− x (TP1i)| Amplitude between the magni-
tude of peak and the magnitude
of turning point at the first half
wave

Turning point ampli-
tude at the second
half wave

f4 = |x (PPi)− x (TP2i)| Amplitude between the magni-
tude of peak and the magnitude
of turning point at the second
half wave

Moving average am-
plitude

f5 = |x (PPi)−MAC (PPi)| Amplitude between the magni-
tude of peak and the magnitude
of moving average

W
id

th
s

Peak width f6 = |VP1i −VP2i| Width between valley point of
first half point and valley point
at second half wave

First half wave width f7 = |PPi −VP1i| Width between peak point and
valley point at first half wave

Second half wave
width

f8 = |PPi −VP2i| Width between peak point and
valley point of second half wave

Turning point width f9 = |TP1i − TP2i| Width between turning point at
first half wave and turning point
at the second half wave

Half point width f10 = |HP1i −HP2i| Width between half point of first
half wave and half point of sec-
ond half wave

S
lo

p
es

Peak slope at the first
half wave

f11 =
∣∣∣x(PPi)−x(VP1i)

PPi−VP1i

∣∣∣ Slope between a peak point and
valley point at the first half wave

Peak slope at the sec-
ond half wave

f12 =
∣∣∣x(PPi)−x(VP2i)

PPi−VP2i

∣∣∣ Slope between a peak point and
valley point at the second half
wave

Turning point slope
at the first half wave

f13 =
∣∣∣x(PPi)−x(TP1i)

PPi−TP1i

∣∣∣ The slope between peak point
and turning point at the first half
wave

Turning point slope
at the second half
wave

f14 =
∣∣∣x(PPi)−x(TP2i)

PPi−TP2i

∣∣∣ The slope between peak point
and turning point at the second
half wave

Tab. I Equations and descriptions of peak features.

1.6 Particle swarm optimization

PSO is a stochastic population-based optimization algorithm introduced by James
Kennedy and Russell Eberhart [25] in 1995. This algorithm is based on the move-
ment and information sharing of particles in a multi-dimensional search space. The
PSO algorithm has been numerously enhanced fundamentally [26, 32] and applied
in many fields [4, 8, 19]. A pseudo code of the PSO algorithm is described in
Algorithm 1.
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Peak model Set of feature No. of features

Dumpala et al. [14] f1, f6, f11, f12 4
Acir et al. [1-3] f1, f2, f7, f8, f11, f12 6
Liu et al. [28] f1, f2, f3, f4, f6, f9, f10, f11, f12, f13, f14 11
Dingle et al. [13] f5, f6, f11, f12 4

Tab. II List of different peak models and sets of feature.

 

ix

ix

ix
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jkw
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netk

net j
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Fig. 3 Architecture of a single layer feedforward ANN.

In the preliminary stage of the PSO algorithm, some parameters are initialized:
(1) PSO parameters, (2) position of particles, and (3) velocity of particles. PSO
parameters include the maximum number of particles, the inertia weight, ω, the
cognitive component, c1, the social component, c2, the random values r1 and r2,
and the maximum number of iterations, k. The position of particles is randomly
located in the search space, and the velocity of particles is set to zero.

Algorithm 1 The PSO algorithm.

1: Initialization
2: while not stopping criteria do
3: for each i-th particle in a population do
4: calculate fitness evaluation function
5: update Pbest and Gbest

6: end for
7: for each particle in a population do
8: update the i-th particle’s velocity and
9: update the i-th particle’s position

10: end for
11: end while

After the initialization stage is done, the fitness evaluation function is calcu-
lated. The fitness evaluation function is problem dependent. Then, the algorithm
follows by updating the personal best (Pbest) and the global best (Gbest). The
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Pbest is the best solution found by each particle, while Gbest is the best solution
among the Pbest.

After PSO algorithm progresses through the initialization and the fitness eval-
uation function calculation is used for updating Pbest and Gbest, the velocities and
the positions of each particle are calculated and updated. The velocity of a particle
is updated using the following equation:

vk+1
i = ωvki + c1r1(Pbest − ski ) + c2r2(Gbest − ski ), (7)

where vki is the velocity particle i at k-th iteration k, r1 and r2 are random numbers
[0, 1], and c1 and c2 denote the cognitive and social coefficients, respectively. The
particle’s new velocity is then used to update the particle’s position using following
equation:

sk+1
i = ski + vk+1

i , (8)

where ski is the position of particle i at k-th iteration. In this study, the linear
dynamic inertia weight [40, 41] is used and calculated as follows:

ω = ωmax −
ωmax − ωmin

kmax
× k, (9)

where ωmax and ωmin denote the maximum and minimum values of inertia weight,
respectively, and kmax is the maximum iteration. The linear dynamic inertia weight
takes a value between ωmax = 0.9 and ωmin = 0.4. Then, the PSO algorithm is
terminated based on a stopping criterion. For example, if the algorithm reaches
maximum iterations, then the algorithm is stopped.

The PSO algorithm adapts the neural network parameters during a training
process. The primary concern is to find, during the training process, the value of
the input and output weights and the decision threshold for producing the best
classification performance. A process flow of ANN with the PSO algorithm for
peak detection algorithm is schematically illustrated in Fig. 4.

Tab. III illustrates the representation of particle position, particle velocity,
Pbest, and Gbest. The position of particle i at iteration k is denoted as

ski =
{
wk

i,1, w
k
i,2, w

k
i,3, . . . , w

k
i,d, w

k
i,1, w

k
i,2, w

k
i,3, . . . , w

k
i,D, θ

k
i,e

}
,

while the velocity of particle i at iteration k is denoted as

vki =
{
vki,1, v

k
i,2, v

k
i,3, . . . , v

k
i,d, v

k
i,1, v

k
i,2, v

k
i,3, . . . , v

k
i,D, v

k
i,e

}
.

The Pbest of particle i is represented as

pbki =
{
pbki,1, pb

k
i,2, pb

k
i,3, . . . , pb

k
i,d, pb

k
i,1, pb

k
i,2, pb

k
i,3, . . . , pb

k
i,D, v

k
i,e

}
and the Gbest is denoted as

gbk =
{
gbk1 , gb

k
2 , gb

k
3 , . . . , gb

k
d, gb

k
1 , gb

k
2 , gb

k
3 , . . . , gb

k
D, gb

k
e

}
.

The d = 1, 2, 3, . . . , nl is a d-th dimension of input weights, the D = nl + 1, nl +
2, nl + 3, . . . , nl + lm is a D-th dimension of output weights, and the nl + lm + 1
is an e-th dimension of decision threshold. nl is the total number of input weights.
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Particle Notations
Neural network parameters

Input Output Decision
weights weights threshold

Dimension 1 2 . . . nl nl + 1 nl + 2 . . . nl + lm nl + lm+ 1

Position ski wk
i,1 wk

i,2 . . . wk
i,d wk

i,1 wk
i,2 . . . wk

i,D θki,e
Velocity vki vki,1 vki,2 . . . vki,d vki,1 vki,2 . . . vki,D vki,e
Pbest pbki pbki,1 pbki,2 . . . pbki,d pbki,1 pbki,2 . . . pbki,D pbki,e
Gbest gbk gbk1 gbk2 . . . gbkd gbk1 gbk2 . . . gbkD gbke

Tab. III Representation of Particle Position, Particle Velocity, Pbest, and Gbest.

lm is the total number of output weights. The total number of weight is denoted
as nl + lm. The total number of particle dimension is denoted as nl + lm+ 1.

The PSO fitness evaluation function is based on Gmean [18]. The Gmean is
calculated as follows:

TPR =
TP

TP + FN
, (10)

TNR =
TN

TN + FP
, (11)

Gmean =
√

TPR× TNR, (12)

where true peak (TP) is correctly detected peak point of peak candidate, true non-
peak (TN) is correctly detected non-peak point of peak candidate, false peak (FP)
is wrongly detected the non-peak point of peak candidate, false non-peak (FN) is
wrongly detected the peak point of peak candidate, TPR is a sensitivity or true
peak rate, and TNR is a specificity or a true non-peak rate.

2. Experimental setup

The experiment is conducted in 10 independent runs. The first 50% of the filtered
EEG signal is divided for training data, and the remaining 50% is for testing data.
For the ANN classifier, as shown in Tab. IV, the numbers of neurons are selected
using a trial and error method which is set to 10. The hyperbolic tangent [−1, 1]
is used as an activation function in the hidden layer for normalization, while a
linear function is located inside the neuron in the output layer. Other settings
for the ANN classifier, such as the number of neurons in the input layer and the
total number of weights, are dependent on the dataset as calculated using Eq. (1).
The PSO algorithm is employed as the learning algorithm which is to produce the
optimal weights and decision threshold value. The PSO parameter values are based
on the suggested values by Shi and Eberhart [42]. The parameters setting of PSO
are tabulated in Tab. V. For each run, 10 particles are used, and the maximum
iteration was set to 150.
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Fig. 4 ANN with the PSO algorithm for peak detection algorithm.

Parameters Value

Number of neuron at hidden layer 10
Activation function at hidden layer Hyperbolic tangent [−1, 1]
Activation function at output layer Linear function
Number of neurons in the input layer Depends on number of features
Total number of weights (n× l) + (l ×m)

Tab. IV Parameters setting of ANN.

2.1 Experimental protocols

This study uses two different set of eye blink EEG signals to evaluate the algorithm.
The observation of the eye blink EEG signal indicates that the most observable
signal pattern is the peak point which signifies the brain response on eye blink.

The experimental protocol to acquire this EEG signal was reviewed and ap-
proved by the Medical Ethic Committee (MEC) in the University of Malaya Medi-
cal Centre (UMMC). The subject gave a written consent prior to the data collection
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session. This EEG signal was acquired in the Applied Control and Robotic (ACR)
Laboratory, Department of Electrical Engineering, Faculty of Engineering, Univer-
sity of Malaya, Malaysia. 30 healthy subjects were involved voluntarily in these
data collection sessions who were undergraduate and postgraduate students in the
Faculty of Engineering.

The filtered EEG signal recording was conducted using the g.USBamp biological
signal acquisition system. The EEG sensors are a number of electrodes which are
placed using the 10–20 international electrode placement system. The EEG signal
was recorded from F9 channel. The reference electrode was located on the ear.
The ground electrode was located on channel AFz. The sampling frequency was
set to 256 Hz.

Fig. 5 shows two different filtered EEG signals that are named as single eye
blink signal, and double eye blink signal. The dotted-red vertical lines show the
actual peak point. The actual peak points have been identified by EEG expert.
The descriptions of both signals are tabulated in Tab. 6.

The single eye blink signal has 30 signals, 10-second length per signal, 2560
sampling points per signal, and each signal containing two known peak points
and some additional signal patterns. The additional signal patterns are the edge
transitions which represent the eye movements. The known peak pattern in this
signal represents a single eye blink. The peak pattern of a single eye blink is
useful as an additional feature for controlling an electric wheelchair [27]. The total
training and testing sampling points are 38400 and 38400, respectively. From the
total sampling points, 3238 sampling point locations are identified as the locations
of peak candidates, 60 sampling point locations are identified as the locations of
true peaks, and 3178 sampling point locations are identified as the locations of false
peaks.

The double eye blink signal has 5 signals, 80-second length per signal, 20480
sampling points per signal, and each signal containing 8 known peak points and
some additional signal patterns. The additional signal patterns are the edge transi-
tions which represent the eye movements. Sometimes the signals containing a peak
of the single eye blink. The peak pattern of the double eye blink is also useful as an
additional feature for controlling a wheelchair [6]. The total training and testing
sampling points are 51200 and 51200, respectively. From the total sampling points,
4662 sampling point locations are identified as the locations of peak candidates,
40 sampling point locations are identified as the locations of true peaks, and 4622
sampling point locations are identified as the locations of false peaks.

In general, the peak amplitude of EEG signal is different from one subject to
another where it can vary between 600 and 1100 µV [21]. Another research work by
Sovierzoski, M.A., et al. [45], have analyzed the electrical behavior of EEG eye blink
events. The research work has recorded the minimum, maximum, and the average
of peak amplitude. The minimum value of amplitude was 55 µV. The maximum
value of amplitude was 533 µV. The average of peak amplitude was 170 µV. These
findings showed that the peak amplitude can vary from 55 up to 533 µV and it is
depend on subjects. Sometimes, the amplitude is higher than usual due to various
noises.

In this study, the single and double eye blink signals that are shown in Figs. 5(a)
and 5(b) were recorded from different subjects. It is also shown that both figures
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consist of different baseline. Based on this reason, the peak amplitude of double
blink is much lower than the single eye blink. However, for one particular subject,
the same value of peak amplitude between double and single eye blinks can be
observed as shown in Fig. 5(b). Moreover, the peak amplitude can be measured
for both figures, where the values are approximately around 300 to 500 µV.
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Fig. 5 The filtered EEG signal: (a) single eye blink (2 peak points per signal) and
(b) double eye blink (8 peak points per signal).

3. Experimental results and discussions

Tab. 7 shows the performance of each peak model for a single eye blink signal.
For the single eye blink signal experiments, the best average test performance is
91.94%, which was obtained by Acir’s peak model. On the other hand, the worst
test performance is 73.86%, which was obtained by Dingle’s peak model. Based
on Acir’s peak model test performance, the maximum test performance reached
97.08%, the minimum test performance dropped to 85.26%, and the standard de-
viation value is 4.12%. The best and worst test performance is also highlighted
in the table. The sensitivity and specificity of Acir’s peak model are 94.91% and
89.38%, respectively. The whole sensitivity and specificity of test performance are
shown in Tab. 8.

Tab. 9 shows the performance of each peak model for the double eye blink signal.
Based on the end results in the Tab. 8, the best average test performance is 87.47%,
which was obtained by Acir’s peak model. The worst test performance is 75.79%,
which was obtained by Dingle’s peak model. Based on Acir’s peak model test
performance, the maximum test performance reached 92.10%, the minimum test
performance dropped to 82.72%, and the standard deviation value is 3.17%. The
best and worst test performance is also highlighted in the table. The sensitivity and
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specificity of Acir’s peak model are 88.74% and 86.33%, respectively. The whole
sensitivity and specificity of test performance for double eye blinking problem are
shown in Tab. X.

Overall, Acir’s peak model offers the highest classification performance rate on
the single eye blink and double eye blink signals. In general, it may due to the
small variation of peak width of Acir’s peak model. Therefore, the small variation
of peak width relaxes the learning process of the classifier in the algorithm.

Moreover, the main concern in developing any techniques resorts to the ability
of generalizing the model. The main index to measure the generalization capability
is best to indicate by minimum Gmean. Referring in Tab. VII and Tab. IX, Acir’s
peak model obtained the highest classification rate for minimum testing result on
the single eye blink (85.26%) and double eye blink (82.72%) as compared to the
Dumpala’s, Liu’s, and Dingle’s peak models. Therefore, based on these experimen-
tal results, Acir’s peak model provided a good generalized model on the single eye
blink and double eye blink signals.

Also, the comparison of the average test accuracy between the four peak models
is proved using Friedman’s test as statistical analysis. The analysis indicates that
there is a difference in test accuracies between the peak models with p-value is
lower than 0.01 for the two signals. The average ranking of Friedman’s test for
the two signals is tabulated in Tab. XI. The first ranked is Acir’s peak model,
then it is followed by Liu’s, Dumpala’s, and Dingle’s peak models. The post-
hoc analysis for Friedman’s test is then evaluated to find the relationship through
the comparison of the four peak models. The post-hoc analysis is based on Holm-
Bonferroni method using two difference confidence intervals, α = 0.05 and α = 0.10.
Both Friedman’ test and Holm-Bonferroni post-hoc analysis are carried out by using
KEEL software tool [7]. The results in Tab. XII show similar patterns for α = 0.05
and α = 0.10 for the two signals where Acir’s peak model offers significantly better
test accuracies than Dingle’s and Dumpala’s peak models. In addition, there is no
significant difference in test accuracies for Acir’s and Liu’s peak models, Dumpala’s
and Dingle’s peak models, and Dumpala’s and Liu’s peak models. In other words,
the Acir’s peak model is proved through statistical analysis to offer the highest
accuracy as compared to previous results tabulated in Tabs. VII, VIII, IX, and X.

In this study, the ratio between true peak and false peak is 60:3178 for single eye
blink signal and 40:4622 for double eye blink signal, respectively. That means both
signals have extremely imbalanced dataset ratio. In this case, the conventional
ANN learning algorithm such as levenberg marquart and gradient descent may
fail to offer high accuracy of performance for imbalanced dataset problem. Hence,
metaheuristic algorithms are more suitable to handle the training [48]. There are
several metaheuristic algorithms can be employed such as PSO, genetic algorithm
(GA), simulated annealing (SA), and Tabu search (TS) to train ANN for this type
of problem. The PSO algorithm is used in this study because it has proved to be
effective to train ANN for imbalanced dataset problem [39].

In utilizing PSO to train ANN for imbalanced dataset, the existing fitness eval-
uation function for balanced dataset need to be reformulated using Gmean. There-
fore, the key factor in solving the problem of extremely imbalanced dataset in this
study relies on the capability of Gmean as fitness evaluation function. In order to
maximize the Gmean, PSO provides the most appropriate ANN parameters and
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consequently balancing the detection rate between false peak and true peak rates
of the dataset.

Furthermore, three peak models, which are Acir’s, Liu’s, and Dingle’s, have
been successfully employed in EEG epilepsy application while Dumpala’s peak
model has successfully been used for Electric Control Activity (ECA) application
[3, 13, 14, 28]. The utilization of a particular peak model is to detect true peaks
in a particular application. For example in epilepsy detection application, when
a number of true peaks are detected within certain times, an epilepsy event may
occur. Similar approach is also used in eye blink detection application. When one
true peak or two true peaks are detected, a subject may has blinked his eyes once or
twice, respectively. This method has proved to achieve good detection performance
especially for epilepsy application. As pointed out by Dumpala et al. [14], Acir
et al. [3], Liu et al. [28], and Dingle et al. [13], their detection system with the
selected peak model and subsequent processes contributed to the good detection
performance. Although good detection performance has been achieved in [3, 13,
14, 28], yet there used various type of peak detection algorithms on different peak
models. Therefore, the need for further research on the evaluation of detection
performance using combination of different types of peak models in a common
platform such as ANN for fair evaluation.

Without precisely determines the peak model from the collection of features,
the best detection performance only depends on the design of subsequent processes,
for example, classification process. Therefore, in this study, with precisely deter-
mination of peak model, the peak detection algorithm with Acir’s peak model and
the subsequent processes (ANN with the PSO learning algorithm) offers good de-
tection performance on EEG eye blink detection. Additionally, the peak model
that gives the lowest detection performance can be determined as well.

This study may provide significant contribution in many applications. For
example, in medical diagnostic, human machine interface (HMI), brain computer
interface (BCI), and harmonic detection in digital and audio signal processing as
these applications share a common peak detection problem. In devising a common
platform for detecting the peak with various peak features, this study may offer
more generalized solution and avoid problem dependent solution.

4. Conclusions

In this study, ANN with the PSO learning algorithm has been employed as a
classifier for peak detection in eye blink EEG signals in order to evaluate the
performance of four different peak models. The eye blink EEG signals that were
collected from 30 healthy subjects were used in the investigation. From this, two
case studies of eye blink signal involving single and double eye blink signals were
considered for performance evaluation of all peak models. The finding of the both
performance evaluations indicates that the Acir’s peak model is the best peak
model for eye blink EEG signals peak detection. The results indicate the highest
average test performance of peak detection algorithm is 91.94% and 87.47% for
single and double eye blink signals, respectively. This is due to the small variation
of peak width of Acir’s model that relaxes the learning process of the classifier in
the algorithm. Furthermore, the results also indicate that the Acir’s peak model is
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capable to provide a good generalized model by measuring the highest classification
rate of minimum testing result. In statistical analysis by Friedman’s test, there is a
significant difference in test accuracies between the peak models for the two signals.
Also, the pos-hoc analysis indicates that the Acir’s peak model is better than
Dingle’s and Dumpala’s peak models. In general, from the experimental results, it
can be observed that the relevant peak model and the chosen Gmean function are
the main factors in achieving higher classification rate. The utilization of the PSO
learning algorithm with ANN for peak detection algorithm is to balance the ratio
between false peak and true peak detection rates. As there are various combinations
of peak features in the existing peak models, the use of feature selection will be
investigated in future to further increase the classification rate.
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