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Abstract: Patients suffering from Parkinson’s disease must periodically undergo
a series of tests, usually performed at medical facilities, to diagnose the current
state of the disease. Parkinson’s disease progression assessment is an important set
of procedures that supports the clinical diagnosis. A common part of the diagnos-
tic train is analysis of speech signal to identify the disease-specific communication
issues. This contribution describes two types of computational models that map
speech signal measurements to clinical outputs. Speech signal samples were ac-
quired through measurements from patients suffering from Parkinson’s disease. In
addition to direct mapping, the developed systems must be able of generaliza-
tion so that correct clinical scale values can be predicted from future, previously
unseen speech signals. Computational methods considered in this paper are arti-
ficial neural networks, particularly feedforward networks with several variants of
backpropagation learning algorithm, and adaptive network-based fuzzy inference
system (ANFIS). In order to speed up the learning process, some of the algorithms
were parallelized. Resulting diagnostic system could be implemented in an embed-
ded form to support individual assessment of Parkinson’s disease progression from
patients’ homes.
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1. Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disorder
after Alzheimer’s [8]. It particularly affects older people, after the age of 60. There-
fore, as the population in general grows older, new methods for early diagnosis are
crucial to monitor the progression of PD and allow intervention.
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At the present time, there is no cure for PD [25]. It is a chronic neurological
disease, defined by tremor, slow motion and stiffness. The neurons stop producing
neurotransmitter dopamine, or produce very low level of this chemical mediator
that facilitates movement coordination. In principle, PD symptoms begin to man-
ifest after the amount of dopamine drops below a certain threshold, usually 20%
of the original level [11]. Only 10% of cases are genetically based.

Individuals suffering from this disorder must regularly attend medical centers
to have the progression of their illness assessed. This assessment is important so
that the treatment can be modified in case of emerging complications. Hence, PD
assessment in the current form a priori involves increased costs related to medical
visits and other expenses. The solutions introduced in this contribution and other
related studies suggest to perform PD assessment from home using an embedded
device, avoiding aforementioned expenses.

This paper proposes PD assessment method based on methods of computational
intelligence, particularly artificial neural networks (ANN) and adaptive neuro-fuzzy
inference system (ANFIS). Neural networks can be used to develop accurate com-
putational models. They are easy to train and, after training, can perform required
mappings very fast. ANFIS requires more time for proper training, but is as fast as
neural networks in operation. Although it has a great potential for PD assessment
applications, it may require several implementation changes to improve its training
speed.

In comparison with the other recently introduced PD assessment system, mod-
els considered in this paper provide similar results in terms of error function values
and other statistical parameters. However, they can offer better operational per-
formance, especially if implemented in form of embedded devices. In the current
literature, there is only one alternative model that overcomes the methods proposed
in this paper: Least Squares Support Vector Machine (LS-SVM) described in [9].
However, it has several drawbacks, namely the need to reformulate the assessment
problem as a binary classification and long training times. In addition, SVM-based
systems require large amounts of memory to store the parameters of the trained
models and relatively powerful computing devices for their operational implemen-
tation. In contrast, models proposed in this contribution are easy to implement
as embedded systems. This makes them good candidates for practical realization
with a great potential for widespread applicability.

Solutions applied in our contribution, especially these based on neural networks,
are also characterized by simplicity of their training process. This make it easy to
train a large number of candidate systems and, in turn to increase the probability
of finding an near-optimal set of parameters for an effective model.

This paper is organized into six sections. Section 2 provides the background in-
formation, including an overview of current PD assessment procedures and descrip-
tion of relevant learning models. Section 3 then outlines other recent approaches
to PD assessment. Section 4 describes the data set used for model development
and detailed description of applied computational models in terms of data process-
ing and parameter optimization. Results of computational experiments designed
to evaluate the performance of the developed models are described and analyzed
in Section 5. Major conclusions are presented in Section 6, along with possible
direction of future work.
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2. Background

2.1 Parkinson’s disease progression assessment

PD manifests itself in many forms, for instance body tremor, muscle rigidity, severe
motor impairment, facial expression problems, unintelligible speech etc. Currently,
the assessment of PD is performed rather subjectively by specialists on neurode-
generative disorders at medical centers. The assessment itself consists of several
empirical tests [25] and the results are then mapped to the Unified Parkinson’s
Disease Rating Scale (UPDRS) designed to indicate the severity of the disease.

For untreated patients, the UPDRS, also referred to as “Total UPDRS”, values
range from 0 to 176, where 0 means a healthy state and 176 represents complete
disability of a patient. “Total UPDRS” comprises three categories:

1. Mentation, behavior, and mood,

2. Activities of daily living,

3. Motor abilities.

Only the third category, also referred to as “Motor UPDRS”, ranging from 0 to
108, is considered in this study. In particular, we address the speech disorder that
is assessed between 0 (normal) and 8 (unintelligible) [9]. This aspect of the disease
is suitable for non-invasive telemonitoring, which is an emerging option for PD
assessment [25].

Recently, there have been introduced several approaches to Parkinson’s disease
progression assessment (PDPA) that are based on various computational meth-
ods. Some of these approaches are based on speech signal analysis. One of such
approaches, developed in collaboration with Intel, takes the form of an embed-
ded system called at-home testing device (AHTD). It is composed of loudspeakers,
a high-end microphone, a display, and a number of motor impairment assessment
devices [12]. Over the last few years, AHTD was distributed to a number of PD pa-
tients enrolled in a research project to develop novel PD assessment methods. The
use of AHTD yielded a number of valuable data sets, including the speech signal
data set used in this study. This data set is described in detail in Section 4.1.

2.2 Computational models

Computational models considered in this contribution include ANNs and ANFIS.
They both implement learning methods capable of finding nonlinear mappings.
This capability is important for the intended application, since the speech signal
measurements used for PD progression assessment include a number of nonlinear
patterns.

2.2.1 Artificial neural networks

Artificial neural networks represent a broad class of computational models inspired
by operation of biological networks found the central nervous systems and brains
of animals. They can be used to approximate unknown mappings of large number
of inputs, such as the speech signals considered in this study. They are usually
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presented as an interconnected system of simple information processing elements
called neurons. Due to their adaptive nature, neurons can learn to recognize input
patterns and assign them appropriate values in the output space.

The neural networks applied in this study are feed-forward multilayer neural
networks with error backpropagation learning. They consist of one or more hidden
layers of nonlinear neurons along with a linear output layer [10]. In the standard
backpropagation learning algorithm, weights and biases in the network are adjusted
by following the negative direction of the gradient of the sum of squared errors
(SSE) with respect to the weight variables. The update equation can be represented
as

wt+1 = wt − η
1

2

∂ete

∂x
, (1)

where η is learning rate parameter, x is the input vector, and e = o − od is the
error calculated as the difference between network’s output o and desired output
od.

One of the most effective neural network learning procedures is the Levenberg-
Marquardt (L-M) algorithm [23]. This algorithm provided the best performance
for training neural networks considered in this study. It can be thought of as a
combination of the steepest descent and Gauss-Newton method. When the current
solution is far from a local minimum, the algorithm behaves like the steepest descent
method that is slow, but has guaranteed convergence. When the solution is close
to the local minimum, it becomes the Gauss-Newton method and exhibits fast
convergence [17].

Using L-M algorithm, weights are updated as follows:

wn+1 = wn −
(
JT
nJn + µI

)−1
JT
nen, (2)

where J is the Jacobi matrix [23]. Marquardt parameter, µ, ensures that the (local)
minimum will always be found [14]. When µ is very large, the produced direction
is close to that of the steepest descent. When µ = 0, search for the minimum of
error function is reduced to the Gauss-Newton direction [7].

Another powerful procedure is called resilient backpropagation (commonly de-
noted as RPROP). In contrast to other gradient descent algorithms, RPROP does
not use the magnitude of the gradient ∂E/∂w, but only its sign [3]. When the
gradient has the same sign for two successive iterations, the update factor is in-
creased. If the gradient changes the sign, the update factor is decreased [10]. This
algorithm ranked second (not considering cascade modification of L-M) in terms
of error and correlation for the problem of mapping speech signal measurements to
the motor UPDRS.

2.2.2 Adaptive neuro-fuzzy inference system (ANFIS)

ANFIS integrates the layered distributed structure of neural networks with the
principles of Takagi-Sugeno fuzzy inference systems. It combines the benefits of
both approaches in a single learning system capable of approximating complex
nonlinear relationships [19]. ANFIS inference can be described by a set of n fuzzy
IF-THEN rules

IF x is Ai AND y is Bi, THEN fi = pix+ qiy + ri, i = 1, . . . , n,
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where x and y are the inputs, Ai and Bi are the fuzzy sets, fi are the outputs
within the fuzzy region specified by the fuzzy rules, and pi, qi and ri are adjustable
parameters determined during training [1]. The training process is facilitated by
algorithms similar to procedures used for training of neural networks.
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Fig. 1 ANFIS structure [21].

The architecture of the ANFIS model is illustrated in figure 1. It is com-
posed of five layers that subsequently process inputs of the system. The fuzzi-
fication layer converts crisp input variables to membership values of predefined
linguistic variables. Each node in this layer has adaptive parameters that de-
termine the shape of fuzzy sets corresponding to the individual linguistic terms,
e.g. parameters {ai, bi, ci} of the generalized bell membership function µA(x) =
1/(1 + |(x − ci)/ai|2bi). The product layer contains fixed nodes that combine the
incoming signals, wi = µAi

(x) · µBi
(y). The nodes of the normalization layer are

also fixed. They form so called normalized firing strengths wi = wi/
∑
wj , where

index j is taken over all terms corresponding to rule i. The defuzzification layer
has adaptive nodes with consequent parameters {pi, qi, ri} that determine one crisp
output value for each rule, wifi = wi (pix+ qiy + ri). Contributions of individual
rules are finally combined in the output layer to form the net output of the model

f =
∑
i

wifi =

∑
i wifi∑
i wi

=
w1f1 + w2f2
w1 + w2

, i = 1, 2.

ANFIS uses a hybrid learning algorithm that combines gradient descent and
least squares estimation (LSE) methods to identify linear and nonlinear parameters
of the system [6]. The algorithm performs two passes: a forward pass that considers
the premise parameter fixed and adapts the consequent parameters using LSE
method, and a backward pass that propagates the error signals backward to update
the premise parameters using the gradient descent method [15].
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3. Related work

One of the first studies on the use of speech signal measurements for telemonitoring
of PD was published in 2009 [20]. In 2010, a study by Tsanas et al. [25] implemented
several methods for mapping the results of speech signal analysis (obtained via
AHTD) to the UPDRS clinical scale: least squares (LS), iteratively reweighted
least squares (IRLS), least absolute shrinkage and selection operator (LASSO) and
classification and regression trees (CART). The best models predict the value of
Motor UPDRS with mean absolute error (MAE) of 6.80± 0.17 (for IRLS method)
and 5.95 ± 0.19 (for CART). The values of mean squared error (MSE) have not
been disclosed. The article also includes correlation analysis suggesting that it is
not necessary to use all data set speech signal features to be able to map the UPDRS
values accurately [25]. This work was later extended, resulting in an improvement
of mapping motor UPDRS values with MAE of 6.57± 0.16 (for LASSO) [26].

Several new methods for PD assessment were introduced in 2012. Least Squares
Support Vector Machine (LS-SVM) with the UPDRS mapping errors of 4.96 (MAE),
39.47 (MSE) and correlation coefficient 0.63. This is, at the present time, the best
performing model (in terms of accuracy). Other introduced methods include Gen-
eral Regression Neural Network (GRNN) with MAE of 6.36 and standard Support
Vector Machine (SVM) model (MAE 5.46) [9]. All these methods were later slightly
improved using a logarithmic transformation [26, 9].

Application of data set restricted using feature selection resulted in UPDRS val-
ues of 5.81 and 5.66 respectively (MAE). Feature selection was based on evaluation
of several SVM models where individual speech signal features were subsequently
added to the training data set, in order to detect their contribution to model ac-
curacy [2].

Parallel neural networks can be applied for PD assessment as well. In such sys-
tems, each network is presented with the full training set and as training progresses
the first network propagates the data samples which it could not accurately predict
to the second network. The second network, connected to the first one in parallel,
is now trained with the full training data set and the additional data samples prop-
agated from the first network; and so on. The best outputs are then selected using
a rule-based system. With the increasing number of neural networks connected in
parallel, the MSE value is decreasing, until a certain threshold is reached [24].

Other possible solution regarding vocal tract diagnosis is presented in [4] and
is based on artificial neural network version of Linear Prediction Coder. As for the
speech recognition in general, the modern attitudes tend to apply deep bidirectional
Long Short–Term Memory recurrent neural networks and deep neural networks [13,
18].

4. Development of new PDPA models

4.1 Data description

Speech samples used in this study were extracted from the “Parkinsons Telemon-
itoring Data Set” [25] that is currently the most comprehensive database of such
measurements. As the research was conducted in the US, the speech samples are in
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English language. The generalization of the solution proposed in our paper would
require to take into account the particularities of the national languages.

The speech signal measurements were recorded using high-end microphones
connected to AHTD, sampled at 24 KHz with 16-bit resolution.

The original data set is a matrix 5875 × 16 containing 5875 measurements
composed of 16 speech signal parameters, including 13 linear and 3 nonlinear signal
characteristics. The linear characteristics include shimmer representing variance of
consecutive speech signal amplitudes, and jitter describing variance of speech signal
fundamental frequencies. The nonlinear speech signal parameters represent the rate
of vibration of vocal chords. The data set also contains patient identification, such
as ID, age, sex etc. The identification data is not explicitly used in this study and
are omitted in calculations.

The original data set was divided into two groups. The first group contains
85% of the original data set and is used to train, validate and test the models of
neural networks in order to adjust their structure and parameters. The second
group, 15% of the original data set, is intended for an independent test used as
an objective model comparison criterion to compare computational models based
on various adaptation methods. The data division is performed on both inputs
and targets. Targets are separate from inputs to emphasize that they were linearly
interpolated before preprocessing performed in our research.

Both training and independent test data sets have very similar shapes of distri-
bution functions and histograms. As a result, the independent test subsets capture
all important features of the original data set, such as minimum and maximum
values, variation etc.
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Fig. 2 Parkinson’s telemonitoring data set partition.

There is a set of static indices defined to prevent random data division for the
needs of cross-validation. This assures that the computational models always have
the same initial conditions. However, these indices do not divide the data equally
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Parameter Description

Jitter [%] Average absolute difference between consecutive periods,
divided by the average period.

Jitter [Abs] Average absolute difference between consecutive periods, in
seconds.

Jitter:RAP Relative Average Perturbation, the average absolute differ-
ence between a period and the average of it and its two
neighbors, divided by the average period.

Jitter (PPQ5) Five-point Period Perturbation Quotient, the average ab-
solute difference between a period and the average of it and
its four closest neighbours.

Jitter (DPP) Average absolute difference between consecutive differences
between consecutive periods, divided by the average period.

Shimmer Average absolute difference between the amplitudes of con-
secutive periods, divided by the average amplitude.

Shimmer [dB] Average absolute base-10 logarithm of the difference be-
tween the amplitudes of consecutive periods, multiplied by
20.

Shimmer:APQ3 Three-point Amplitude Perturbation Quotient, the average
absolute difference between the amplitude of a period and
the average of the amplitudes of its neighbours, divided by
the average amplitude.

Shimmer:APQ5 Similar to APQ3 (five-point).
Shimmer:APQ11 Similar to APQ3 (eleven-point).
Shimmer:DDA Average absolute difference between consecutive differences

between the amplitudes of consecutive periods.
NHR Noise-to-harmonics ratio.
HNR Harmonics-to-noise ratio.
RPDE Recurrence Period Density Entropy - determines the repet-

itive signal.
DFA Detrended Fluctuation Analysis - signal fractal scaling ex-

ponent.
PPE A nonlinear measure of fundamental frequency variation.

Tab. I Description of speech signal parameters [5].

in terms of matrix size. Therefore, some cross-validation iterations contain slightly
different number of data points than others. The relative sizes of the subsets are
70% for training, 10% for validation and 20% for testing.

4.2 PDPA models based on artificial neural networks

The topology and parameters of neural networks have significant impact on their
learning and on the performance of the resulting models. However, there are no
clear guidelines or rules for their selection. One approach is to execute a number of
trials with different topologies and parameter values, and select the most effective
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configurations based on their relative comparison. In this work, this approach
is implemented through a systematic variation of selected network and learning
parameters within predetermined ranges.

Learning parameters of feed-forward multilayer neural networks depend on the
selected learning algorithm. For instance, in Levenberg-Marquardt algorithm, the
parameter set consists of the size of the Marquardt parameter, its maximum value,
and its increasing and decreasing ratio, while the learning rate parameter, typical
for heuristic algorithms, is not used. Other learning algorithms may have entirely
different sets of parameters.

Network topology is defined by the number of hidden layers, number of neu-
rons in the layers and activation function(s) of the neurons. Ranges of network
parameters used in this study are described in Section 5.1.

In general, neural networks are very sensitive to the initial values of weights
and biases. As these values are usually assigned randomly, learning often produces
disparate results even when the same settings and training data are used. To in-
crease the chance of finding a (near) optimal solution, neural networks should be
trained several times with different random initializations. To perform a large num-
ber of learning runs, it is advantageous to perform them in parallel on a powerful
computing cluster. The scheduling algorithm implemented in this study is based
on a modified mpiexec library. Majority of performed simulations were run on a
3-node cluster with 16 processors per node. This configuration allows to execute
48 concurrent training runs in parallel.

The data processing chain of the main neural network training program consists
of five functional blocks shown in Fig. 3. Block ‘Data preprocessing’ defines all
required and optional input arguments, checks the input vectors and matrices, and
reshapes them as necessary. In addition, it removes any redundant matrix rows
and normalizes the data to the range [0, 1].
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Fig. 3 Neural network data flow.

‘Data division and cross-validation’ block prepares data subsets for 10-fold
cross-validation. Data is selected according to predefined indices to ensure that
all folds have comparable initial conditions, including the training data. Block
‘Specification of tuning parameters’ provides definition of the neural network set-
tings, such as the number of training epochs, the default Marquardt parameter and
its increase/decrease ratio, or the resilient backpropagation update factor.

The next functional block performs training, validation and testing. The last
block then implements independent testing that allows comparison of different
network topologies and learning algorithms. Only data set aside for independent
testing are used at this step, as explained in Section 4.1.
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4.3 PDPA models based on ANFIS

As mentioned earlier, ANFIS model is a very powerful tool for signal processing
applications. However, before applying ANFIS to speech signal measurements,
they must be processed and refined in a number of functional blocks, as shown in
Fig. 4.
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Fig. 4 ANFIS data flow.

In block ‘Data preprocessing’, the speech signal data set enters the processing
stream and training parameters are set. These parameters include the number
of training epochs and the type and number of membership functions (to adjust
the granularity of the system). Optionally, a set of speech signal values for an
independent test can be provided as well.

The number of fuzzy rules, NFR, can be represented as

NFR = (NMF)
NIN , (3)

where NMF is the number of fuzzy membership functions and NIN is the number
of input elements (input vectors). The default maximum number of fuzzy rules is
restricted to NFR = 256 to limit the computational burden caused by the curse of
dimensionality [16]. For illustration, ANFIS model with 256 rules requires approx-
imately 17 hours of training.

Block ‘Initialization of FIS structure’ creates the fuzzy inference system (FIS).
This system is then adapted in the training process described earlier. The default
logical operator is AND, implemented in the product layer of the ANFIS model.
Block ‘Training and testing’ performs adaptation of system parameters using the
hybrid algorithm described in Section 2.2.2. The best FIS representing the most
effective ANFIS model is exported into a file for future use. Finally, block ‘System’s
outputs calculations’ determines the outputs of the system for the training and
testing data sets. Detailed description of application and training settings of the
ANFIS model can be found in Section 5.2.

5. Results and analysis

The new computational models designed to assess Parkinson’s Disease progression
were tested on the speech signal measurements data set described in Section 4.1.

5.1 Artificial neural networks testing

The developed artificial neural networks models were tested using an iterative ap-
proach and cross-validation. These two training procedures allow, respectively, to
execute a large number of simulations with different architecture parameters and
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to reduce the influence of initial weights and biases on network performance. The
transfer functions used in the first layer of neurons were logarithmic sigmoid (ls),
hyperbolic tangent (ts) and radial basis (rb). The outputs of the second (output)
layer were calculated using linear transfer function.

The ratio between the numbers of neurons in the first and the second hidden
layer (input layer is labeled as ‘0’) was iteratively decreased as follows: 1/0, 1/2,
1/3 and 1/4, where 0 means that the second layer of neurons was not implemented.
Thus, neural network architectures having one hidden layer, two and both layers
were simulated. The number of neurons in the first hidden layer was varied within
the range of 8−96 in increments of 8 neurons. Therefore, each combination of neural
network parameters was simulated 48 times, with 12 combinations of number of
neurons for each ratio.

In total, approximately 70000 neural networks simulation runs were executed.
Most configurations were evaluated using the three-fold cross-validation. The five-
fold cross-validation was used only with Levenberg-Marquardt training algorithm,
and ten-fold cross-validation only for the final validation of the best performing
computational models (i.e. the models listed in Tab. II).

All neural networks simulations were performed in a batch mode, i.e. using cu-
mulative weight updates after presenting all data samples. Tuning parameters were
adjusted for each implemented training algorithm. As an example, for Levenberg-
Marquardt numeric method, the Marquardt parameter was defined in each simu-
lation and incremented or decremented afterwards, as well as the value of incre-
ment/decrement; this way, it was possible to find the optimal network that would
reach the minimum of an error function (mean squared error, MSE ). Each training
algorithm uses its own parameters that are selected by the assessment software.

Algorithm Layers Fcn Epch Time MSE MAE Corr

Conjugate-Beale 80/27 rb/rb 152 24 47.40 5.61 0.57
Conjugate-Fletch. 48/16 rb/rb 178 17 47.72 5.65 0.57
Conjugate-Polak 48/12 rb/ls 217 22 48.14 5.67 0.56
Scale conjugate 80/27 rb/ls 222 16 47.63 5.65 0.57

Resilient BP 96/24 ts/ls 230 11 46.55 5.55 0.58
Var. learn. rate 40/14 rb/ts 93 2 63.47 6.76 0.33

Momentum 40/14 rb/ls 241 5 58.50 6.41 0.42
Rate and mom. 80/20 rb/rb 108 4 56.56 6.23 0.45
One-step secant 80/40 rb/rb 156 38 49.83 5.83 0.54
Levenberg-Marq. 16/6 ls/ls 58 18 44.69 5.33 0.61
Cascade L.-M. 32 ts 54 29 46.23 5.49 0.59
Rapidminer BP 24/8 ls/ls 500 580 48.78 5.68 0.57

Tab. II Mapping speech signal measurements to Motor UPDRS: neural net-
works (Algorithm: algorithm used for training, Layers: number of neurons in the
first/second layer, Fcn: type of transfer function in the first/second layer, Epch:
number of training epochs, Time: training time in seconds, Results of indepen-
dent tests in terms of mean square error (MSE), mean absolute error (MAE) and
correlation coefficient (Corr)).
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Results of the best models of neural networks trained by different training
algorithms are shown in Tab. II. It can be seen that the best results were obtained
by a neural network trained with Levenberg-Marquardt (L-M) algorithm. This
network had 16 neurons in the first layer and 6 in the second (in total 381 adjustable
parameters including neurons’ weights and biases), both with logarithmic sigmoid
transfer functions. L-M is not the fastest training algorithm, but in this particular
application speed is not essential. The value of MAE is 5.326, better than most
other published results.

An alternative to L-M is the neural network trained with Resilient backprop-
agation with 3985 adjustable parameters, having 96 neurons in the first layer and
24 in the second. This neural network does not require as much computational
power and memory as L-M, but still provides satisfactory results, very close to
the best performer. Neural network designed in data mining SW Rapidminer 5
provides only average results, although compared to L-M and Resilient BP the
training itself is significantly slower and less flexible in terms of tuning parameters
adjustments.

The results presented in Tab. II also confirm that heuristic training algorithms
(such as the variable learning rate or momentum) and conjugate gradient algo-
rithms work well with radial basis transfer function, while L-M and Resilient BP
provide the best results for networks with sigmoidal transfer functions.

5.2 ANFIS testing

Compared to a typical neural network, ANFIS is based on a different type of infor-
mation processing calculations that require more computing resources. In addition,
in the current implementation, these calculations cannot be parallelized and thus
the training of ANFIS models requires significantly more time. Furthermore, the
processing model of ANFIS had to be simplified: while neural networks use 16 or
more inputs, ANFIS models were limited to 8 inputs. Such simplification caused
loss of information included in a speech signal data set and, therefore, the ANFIS
models were not able to learn all patterns present in the training data. However,
accepting this compromise was the only way to include ANFIS in this study while
keeping training times at acceptable levels: neural networks used in this project
typically required training time at the order of 1–10 seconds, but corresponding
ANFIS models required up to 17 hours to train the models with required accuracy.

The following two sets of experiments were performed using ANFIS model:

• 5 inputs (elements) of speech signal:

– 3 membership functions for each input,

– 243 fuzzy rules,

– adjustable parameters: 1503 (45 antecedent and 1458 consequent),

– selected elements: Shimmer, NHR, HNR, DFA and PPE.

• 8 inputs (elements) of speech signal:

– 2 membership functions for each input,

– 256 fuzzy rules,
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– adjustable parameters: 2352 (48 antecedent and 2304 consequent),

– selected elements: Jitter(abs), Shimmer, Shimmer:DDA, NHR, RPDE,
DFA and PPE.

The maximum number of training epochs was set to 40. Two types of member-
ship functions were considered: Generalized bell-shaped (described in Section 2.2.2)
and Gaussian. However, the second type did not provide satisfactory results.

Inputs Rules Oper. MF Epch Time MSE MAE Corr

8 256 prod gbellmf 40 58355 53.30 5.90 0.50
8 256 min gbellmf 40 55189 54.11 6.10 0.49
5 243 min gbellmf 40 19956 58.66 6.15 0.44

Tab. III Mapping speech signal measurements to Motor UPDRS: ANFIS.

It can be seen from Tab. III that the best results were obtained by ANFIS
models with 8 inputs and 256 fuzzy rules. In particular, these models have higher
correlation coefficient and lower values of error measures. However, this config-
uration required approximately three times more training time compared to the
models with 5 inputs and 243 rules.

It is also evident that the number of membership functions per input is not as
important as the overall number of inputs. The Number of membership functions
generally improves resolution of the system. However, given the high computational
demands of ANFIS training, the use of larger number of inputs with lower resolution
is a better choice.

5.3 Comparison of neural networks and ANFIS

Results presented in Tabs. II and III show that neural networks perform rela-
tively better that the current implementation of ANFIS. However, due their nature,
ANFIS-based models have a considerable potential to achieve better accuracy. Af-
ter training the implementation of both types of models is comparable (depending
on the number of parameters in a particular case). Nevertheless, ANFIS requires
only implementation of simple arithmetic and logical operations (addition, mul-
tiplication, minimum, maximum) while neural network requires additional imple-
mentation of nonlinear transfer function. In both cases, the compiled system can
be implemented in form of a look-up table, further reducing the computational
requirements [22].

Results of regression and correlation analysis of selected models are shown in
Fig. 5. The plots represent the dependencies of target values and actual outputs of
the models. The best fit (correlation coefficient R = 0.6109) was obtained using the
neural network model trained with Levenberg-Marquardt optimization algorithm.
Networks trained using Resilient backpropagation and conjugate gradient methods
have correlation coefficients of 0.5840 and 0.5734, respectively.

The ANFIS model maps the speech signal measurements with less accuracy
compared to the three selected neural network models. In addition to the lower
value of correlation coefficient, this model produces several more significant outliers
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(a) Levenberg-Marquardt
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(b) Resilient backpropagation
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(c) Conjugate gradient-Beale
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Fig. 5 Correlation analysis of the most effective models.

clearly visible in Fig. 5d. However, as mentioned earlier, the extent of training of
ANFIS model was limited to avoid excessive training times. It is expected that with
more comprehensive training, facilitated by future improvements of the efficiency
of its implementation, ANFIS will provide results with accuracy comparable or
exceeding that of the neural network models.

Fig. 6 displays box plots of absolute error values for the same computational
models. Neural network with Levenberg-Marquardt algorithm performs estima-
tions with considerably lower value of Interquartile Range (IQR) in comparison to
other models. Regarding the number of its outliers, however, is the highest of all
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presented models. IQR of the model trained with the resilient backpropagation
reaches higher value compared to the previous model, while the number of outliers
is reduced substantially. Although, the range between the upper and lower adja-
cent values (ends of whiskers) is significantly higher than the foregoing one. Box
plot of the neural network model with conjugate gradient training shows that the
median reaches the highest value of all models but generates only one outlier. AN-
FIS model follows a similar trend as model with Resilient backpropagation, with
slightly higher value of IQR.

Overall, Figs. 5 and 6 show that although the four best-performing computa-
tional models were developed using different approaches, the results of their inde-
pendent testing are fairly similar.
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Fig. 6 Box plots depicting absolute errors.

6. Conclusions and future work

This study describes a system for mapping speech signal measurements to UPDRS
values that represent the severity of the Parkinson’s disease. A number of compu-
tational models were designed to carry out this task, and their performance was
analyzed. In particular, models based on ANNs and ANFIS were implemented and
evaluated.

All considered models perform the desired mapping with a reasonable accuracy.
Presently, there is only one related model [9] that produces better results than the
best model of neural network with Levenberg-Marquardt algorithm presented in
this paper. The Least Squares Support Vector Machine (LS-SVM) [9] has errors
MAE = 4.96, MSE = 39.47 and correlation coefficient R = 0.63. The best model
presented in this paper produces MAE = 5.33, MSE = 44.69 and R = 0.61. All
other mapping models presented in the current literature provide worse results.
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To further improve the accuracy of models based on neural networks, the val-
ues of error function could be further lowered by prolonging the training process.
However, due to overfitting, the networks could loose their ability to generalize and
exhibit large errors for validation and testing data. Another alternative would be
to provide a larger data set to train, validate and test the neural networks models.
However, this would require expansion of current speech telemonitoring research
studies by recruiting more PD patients - clearly a formidable task on its own.
Finally, the available data could be preprocessed to remove outliers and thus to
improve the consistency of the data set used for network training and validation.

The ANFIS model has a great potential to perform better, should all available
data be used to adapt the model more effectively. However, this is not possible
using the the current ANFIS implementation that makes the adaptation process
very time consuming. Training of a single model using all data would require
hundreds of hours. Future implementation will concentrate on parallelization of
ANFIS model so that individual nodes can operate simultaneously. This will speed
up the adaptation process and, consequently, it will be possible to use the entire
available data set for training, significantly improving the accuracy of the resulting
model.
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