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Abstract: The present study devises two techniques for visualizing biological se-
quence data clusterings. The Sequence Data Density Display (SDDD) and Se-
quence Likelihood Projection (SLP) visualizations represent the input symbolical
sequences in a lower-dimensional space in such a way that the clusters and rela-
tions of data elements are preserved as faithfully as possible. The resulting unified
framework incorporates directly raw symbolical sequence data (without necessitat-
ing any preprocessing stage), and moreover, operates on a pure unsupervised basis
under complete absence of prior information and domain knowledge.
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1. Introduction

Deoxyribonucleic acid (DNA), ribonucleic acid (RNA) and chain molecules are
characteristic paradigms of sequence data which are intrinsically encoded in ei-
ther the four-letter alphabet of nucleotides or the twenty-letter alphabet of amino
acids. As a result, machine learning approaches that are in position to incorpo-
rate and process such symbolical sequence data have proven effective for modeling,
processing and analyzing biological molecules. On the contrary, machine learning
techniques that are able to process numerical data can be employed only after inter-
posing a preprocessing stage in order to transform symbolical sequences to numeri-
cal data spaces. Nevertheless, additional computational complexity, and frequently,
loss of information are inevitable aftereffects of such preprocessing transformations.

One common situation in early stages of bioinformatics projects is that the
only available information comes in the form of symbolical sequence data (viz.
DNA, RNA and protein sequences); any other kind of prior information or domain
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knowledge is, or is considered to be, inexistent. Clustering’s objective is to produce
simplified descriptions and summaries of large data sets by adopting primordial
exploration strategies which necessitate little or no prior knowledge. Clustering [5,
28] is one standard method that can create higher abstractions (symbolisms) from
raw data automatically; another alternative method is to project high-dimensional
data as points on a low-dimensional display. Because the Self-Organizing Map
(SOM) [14] is a combination of these two methods, it has great capabilities as a
data clustering, mapping and visualization algorithm.

In particular, the connectivity strength matrix visualization scheme [25] uses a
topology representing graph that projects local data distributions/distances within
receptive fields. These graphs are merged in subsequent stages so as to achieve
improved visualizations. The approach in [4] suggests an enhanced version of the
Clusot algorithm for automatic cluster detection on the SOM. In essence, the Clusot
[3] is a two-step procedure, where the computation of an appropriate surface is
used subsequently for cluster detection. The first phase of this procedure is a more
elaborate way to visualize the information which is captured by the SOM when
compared to other well-known approaches like the U-matrix [26]. Similarly, in
[16] the inter-point distances in the feature space between the SOM neurons are
used for presenting graphically the underlying structure of the data. A further
refinement of these approaches is the visualization-induced SOM [29] an algorithm
that regularizes and scales the inter-neuron distances so as to control the resolution
of the mappings.

The Self-Organizing Hidden Markov Model Map (SOHMMM) [8, 11] is a hy-
brid unsupervised approach that can process and analyze DNA, RNA [11], protein
chain molecules [7, 10], and generic sequences [9] of high dimensionality and variable
lengths encoded directly in non-numerical/symbolical alphabets. On the contrary,
various other models that extend the SOM for processing sequence data are in
position to incorporate and analyze symbolical sequences only after an interme-
diate preprocessing stage (e.g. orthogonal/Euclidean encoding, weighted Leven-
shtein/local feature distances, pairwise dissimilarities).

More specifically, the technique proposed in [12] combines the concept of the
generalized median with the batch computation of the SOM. The quadratic nature
of the algorithm cannot be avoided, essentially because the utilized dissimilarity
data are intrinsically described by a quadratic number of one-to-one similarities
based on weighted Levenshtein distances. The self-organizing mixture model intro-
duces an Expectation-Maximization (E-M) algorithm that yields topology preserv-
ing maps of data based on probabilistic mixture models, by assuming that there
are several sources which generate the data. The model in [18] is such an approach
that introduces a Bernoulli probabilistic SOM able to handle binary data by in-
corporating Hamming distances. An alternative approach so as to overcome the
obstacle of introducing algebraic correlations between the symbols when handling
symbolical sequences is orthogonal encoding [23]. This sparse encoding scheme has
the disadvantage of increasing substantially the length of biological sequences (e.g.
by a factor of 20 in the case of proteins). The merge SOM [24] devises a fusion of
arbitrary lattice topologies with a noise-tolerant learning architecture which pro-
vides large flexibility and capacity due to the explicit representation of context. In
this case, recursively computed Euclidean distances are used for realizing the learn-
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ing algorithm. Furthermore, the approaches that are contained in the generalized
taxonomy [2] and those that are described by the general framework for model-
ing recursive/recurrent SOMs [13] also depend on similar preprocessing stages for
being in position to incorporate/analyze symbolical sequence data.

2. Self-organizing Hidden Markov Model map

2.1 Hidden Markov Model

In essence, a Hidden Markov Model (HMM) is a stochastic process generated by
two interwoven probabilistic mechanisms, an underlying one (i.e. hidden) and an
observable one (which produces the symbolical sequences). Thereinafter, we may
denote each individual HMM as λ = (A,B, π), where A = [aij ], B = [bj(k)] and
π= [πj ] are the transition, emission and initial state probability stochastic matrices
respectively.

Let {qt}∞t=1 be a homogeneous Markov chain, where each random variable qt
assumes a value in the state space S = {s1, s2, . . . , sN}. The conditional station-
ary probabilities are denoted as: aij = P (qt = sj |qt−1 = si), t>1, 1≤ i ≤ N ,
1≤ j ≤ N . Let {Yt}∞t=1 be a random process defined over the finite space V =
{v1, v2, . . . , vM} where, in general, M 6= N . The processes {qt}∞t=1 and {Yt}∞t=1 are
related by the conditional probability distributions: bj(k) = P (Yt = vk|qt = sj),
t ≥1, 1≤ j ≤ N , 1≤ k ≤M . In certain cases the emission probabilities’ indexes are
denoted as ot and not as k. This interchange is made whenever the exact obser-
vation symbols are insignificant for the formulation under consideration, whereas,
these values are considered to be given and specific. The initial state probability
distribution is defined as: πj = P (q1 = sj), 1≤ j ≤ N .

2.2 The prototype

The SOHMMM introduces a hybrid integration of the SOM and the HMM. In
essence, it implements a nonlinear structured mapping of sequence data onto the
reference patterns of a low-dimensional array. In its basic form it produces a prob-
ability distribution graph of input data that summarizes the HMMs’ distributions
on the sequence space; subsequently, under certain conditions, the nonlinear sta-
tistical relationships between sequence data can be visually detected, investigated
and interpreted.

Each reference pattern (neuron) e, 1 ≤ e ≤ E in the SOHMMM array consists
of a HMM λe, also called reference HMM (E represents the overall number of neu-
rons). Because the SOHMMM is conceptualized as a self-organizing methodology
its algorithmic realization fuses the corresponding competition and cooperation
processes. The leading partial process, viz. competition, finds the neuron with
the best match (usually referred to as winner and indicated by the subscript c).
Whereas, the following partial process, viz. cooperation, improves the match in
the neighboring neurons located in the vicinity of the winner (Fig. 1) in an effort
to gain some knowledge from the input sequence.
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Initially, assume O = o1o2 . . . oT is an input observation sequence. The two
complementary processes of the SOHMMM algorithm are shown in Algorithm 1.

Algorithm 1 SOHMMM Learning Algorithm.

for e = 1 to E do

α̃
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t (i) =

[
N∑
j=1
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The scaled forward and backward variables of reference HMM λe are denoted as
α̂
(e)
t (i) and β̂

(e)
t (i) respectively; whereas, sc

(e)
t are its scaling coefficients. Variable

y ≥ 0 is an integer, the discrete time coordinate. The function η(y) plays the
role of a scalar learning rate factor. The function hce(y) acts as the neighborhood
function; the width and form of hce(y) define the stiffness of the elastic surface
that is fitted to the input sequence data. I {ol = t|λ} is the indicator function.

The exponentially normalized variables of reference HMM λe are denoted as w
(e)
ij ,

r
(e)
jt and u

(e)
j .
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Fig. 1 Paradigm of a hexagonal 8x6 SOHMMM lattice where each reference HMM
λe is depicted as a fully-connected four-vertex six-edges graph. The circular shaded
areas are an indicative winner neuron’s (λc) closest topological neighborhoods (NBc)
at different points in time (y1 < y2). The wider light grey circular neighborhood
corresponds to initial/earlier phases of the coarse learning procedure, whereas the
narrower dark grey circular neighborhood corresponds to latter/final phases of the
fine-tuning training phase.

3. Visualization techniques and graphic displays

3.1 Sequence data density display

In essence, the SDDD depicts the number/amount of sequences which are assigned
to each individual neuron of the SOHMMM mesh. Each sequence’s winner (i.e. best
matching) SOHMMM node is determined according to the maximum likelihood
criterion. Furthermore, the corresponding graphic display, apart from the sequence
data density, takes into consideration the type and dimensions of the SOHMMM
lattice as well as the topology and positioning of the neurons. Each neuron is
drawn with a size relative to the number of assigned sequences. An aftereffect of
this procedure is that, in certain cases, clusters (of input sequence data) can be
visually detected by searching for groups of topologically close/neighboring large
size nodes separated by areas of small size (or zero size) nodes. It should be
noted that a neuron is not drawn at all (usually referred to as zero size) if it is
not the best match for any sequence. An abstract algorithmic formulation of the
SDDD is given in Algorithm 2, where D is the overall/total number of available
sequences, O(d) = o1o2 . . . oTd

is the d-th observation sequence which consists of Td
symbols. P (O|λ) is the probability of sequence O conditioned on λ (likelihood).
For technical reasons, probabilities can be very small. The solution is to work with
the corresponding logarithms [15, 21].

Two remarks can be made by examining the SDDD algorithm. First, the result-
ing visualization depends on and takes into consideration the provided sequence
data and the already trained SOHMMM. Second, one can defensibly claim that
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Algorithm 2 Sequence Data Density Display.

for d = 1 to D do
for e = 1 to E do

α̃
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t (i) =

[
N∑
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t−1(j)a
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]
b
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)
;

end for
c← arg max

e

{
logP (O(d)|λe)

}
;

numOfSeqs[c]← numOfSeqs[c] + 1;
end for
maxNumOfSeqs ← max

e
{numOfSeqs[e]};

minNumOfSeqs ← min
e
{numOfSeqs[e]};

for e = 1 to E do
SDDD Paint(numOfSeqs[e],maxNumOfSeqs,minNumOfSeqs);

end for

the SDDD is a straightforward unsupervised visualization technique since the only
required/necessary information is the corpus of provided monomer sequences.

Experimental investigation/verification of the SDDD (and also, of the SLP)
utilizes the globin protein family. Globins form a well-known family of heme-
containing proteins that reversibly bind oxygen, and are involved in its storage
and transport. The globin protein family is a large family which is composed of
subfamilies. From crystallographic studies, all globins have similar overall three-
dimensional structures but widely divergent sequences. The globin sequences used
here were extracted from the iProClass protein knowledgebase [27], a database that
provides extensive information integration of over 90 biological databases. In total,
560 proteins belonging to the three major globin subfamilies were retrieved (namely
hemoglobin α-chains, hemoglobin β-chains, and myoglobins). The resulting globin
data set’s composition is 194 α-globins, 216 β-globins, and 150 myoglobins.

Initially, a hexagonal 6× 7 mesh of 42 SOHMMM neurons was trained on the
whole protein data set. The learning rate was defined as an exponentially de-
creasing function between 1.0 and 0.1, whereas the neighborhood kernels’ standard
deviations started with a value equal to half the largest dimension in the lattice
and decreased linearly to one map unit. Also, the maximum total duration of
both the ordering and tuning phases was set to ten epochs. The corresponding
SDDD is illustrated in Fig. 2. An examination of the depicted display reveals that
SDDD’s two main goals are met satisfactorily. First, the number of each neuron’s
assigned sequences (viz. sequence data density) can be visually investigated. Sec-
ond, three clusters are formed onto the SDDD, these consist of large size nodes’
regions interrupted by small/zero size neurons’ ravines and gaps. Furthermore,
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Fig. 2 SDDD for a globin protein family which is based upon a 6 × 7 SOHMMM
array. The upper part contains a legend that illustrates the utilized analogy be-
tween the size of a hexagon and the corresponding number of sequences (i.e. the
smallest in size hexagon describes only one globin, whereas the largest size hexagon
forty-nine). In the lower part the actual SDDD can be examined. Each hexagon,
regardless of size, represents a SOHMMM neuron. The missing hexagons actu-
ally represent neurons that do not describe any sequence (zero size). The more
sequences are assigned to a specific neuron, the largest is the size of its hexagon.
It is evident that there are concentrations of neurons with an increased number of
assigned sequences and zones of neurons that contain a small number of, or even
no, sequences. The former represent the detected clusters (viz. the three globin
subfamilies in this case), whereas the latter comprise the boundaries between these
clusters.

one can easily verify that these three clusters correspond to each individual globin
subfamily. Protein class information that is excluded from the training and vi-
sualizing procedures can be used to perform a posterior identification/labeling of
each SOHMMM node. The outcome of this procedure can be found in Fig. 3, the
one-to-one correspondence between a depicted cluster and a globin subfamily is
evident.

The Java language has been utilized for programming both the SDDD and SLP
visualization interfaces. The main reason for this choice was the built-in platform
independent support of graphics. The majority of supplied figures are screenshots
of the implemented graphical user interface. The SDDD’s interface (apart from
the top-left legend) provides additional features and functionality. The number
of assigned sequences is displayed by moving the mouse pointer over a SOHMMM
node, whereas by left-clicking a neuron the user has the options of viewing or saving:
(1) the assigned sequences’ amino acid or nucleotide descriptions; (2) the assigned
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Fig. 3 The devised SDDD visualization (i.e. the lower part of Fig. 2) enriched
with information obtained from posterior labeling of depicted hexagons. This post-
processing approach acts as a proof-of-concept so as to demonstrate that the SDDD’s
identified clusters have a one-to-one correspondence with the globin subfamilies
which are existent in the data set. The dotted lines mark the boundaries of the
α-globin, β-globin, and myoglobin detected clusters.

sequences’ identifiers; (3) the corresponding HMM’s parameters. This information
can potentially be used for studying the profile and statistical properties of the
assigned sequences [1, 6, 17, 20, 22].

An intrinsic drawback of the SDDD originates from its dependence from input
sequence data. In certain cases, where sequences that belong to specific clusters
are orders of magnitude larger in numbers compared to the remaining clusters’
sequences, visual detection of the latter clusters is obstructed (since these are sup-
pressed on the display). Appropriate thresholds could be employed for overcoming
this difficulty but their determination would deviate considerably from the unsu-
pervised framework, and thus, are avoided.

3.2 Sequence likelihood projection

Practically, the SLP is a graphic representation of the likelihood magnitudes (of
a given sequence) with respect to each individual SOHMMM neuron. As ex-
pected, the corresponding visualization incorporates the type and dimensions of
the SOHMMM array as well as the topology and positioning of the respective
nodes. More specifically, each neuron’s coloring is analogous to the likelihood
value it yields; the color itself is selected relatively to the employed color scale. A
potential aftereffect of this process is that a cluster might be visually traced (given
the examined sequence belongs to a cluster which is represented) by searching for
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groups of topologically close/neighboring high likelihood nodes separated by areas
of low likelihood nodes. A generic formulation of the SLP algorithm is shown in Al-
gorithm 3, where OS =

{
O(1), O(2), . . . , O(D)

}
is the set of D available observation

sequences.

Algorithm 3 Sequence Likelihood Projection.

O ← sequenceSelection(OS );
for e = 1 to E do

α̃
(e)
t (i) =

[
N∑
j=1

α̂
(e)
t−1(j)a

(e)
ji

]
b
(e)
i (ot), 1 ≤ i ≤ N , 2≤ t ≤ T ;
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(e)
t =

(
N∑
i=1

α̃
(e)
t (i)

)−1
, 1 ≤ t ≤ T ;

α̂
(e)
t (i) = sc

(e)
t α̃

(e)
t (i), 1 ≤ i ≤ N , 2≤ t ≤ T ;

logP (O|λe)← −
T∑
t=1

log
(
sc

(e)
t

)
;

likelihood[e]← logP (O|λe);
end for
maxLikelihood ← max

e
{likelihood[e]};

minLikelihood ← min
e
{likelihood[e]};

for e = 1 to E do
SLP Paint(likelihood[e],maxLikelihood,minLikelihood);

end for

In this case, also, two comments can be made. The resulting graphic dis-
play is based upon and incorporates the selected sequence and the already trained
SOHMMM. Moreover, one can claim that the SLP is a direct unsupervised pro-
jection technique since the only required/necessary information is the provided
monomer sequence.

The present experimental examination of the SLP was conducted by using the
same SOHMMM that had been trained previously on the globin protein family. The
resulting SLP, for a sequence belonging to one of the three subfamilies (hemoglobin
α-chains), is illustrated in Fig. 4. The initially defined objectives are (at a certain
extent) achieved. The sequence’s likelihood value distribution (or likelihood land-
scape) is represented visually. More important perhaps, one cluster is formed onto
the SLP. This cluster consists of cohesive areas of high likelihood neurons sur-
rounded by regions of low likelihood neurons. Furthermore, by keeping in mind
the fact that this SLP describes a hemoglobin α-sequence; there is an evident anal-
ogy/correspondence with the detected α-globin cluster of the SDDD visualization
(Fig. 2).

Per contra, a cytoglobin (Xenopus laevis) not used during the adaptation pro-
cedure of the SOHMMM, viz. not represented explicitly on the SOHMMM plane,
is depicted in Fig. 5. In this case, instead of observing cohesive regions with well-
defined boundaries, we see that sparse mosaic-like parcellations emerge. SLP’s re-
sulting visualization appears unstructured and unformed. This is justifiable since
the specific SOHMMM has not been trained for modeling the cytoglobin subfamily
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Fig. 4 Characteristic SLP, which is based upon a 6 × 7 SOHMMM array, that
corresponds to an α-globin. In the upper part the displayed color scale is in analogy
to the log-likelihood values (i.e. higher values correspond to darker shades and vice
versa). Each hexagon, regardless of color, represents a SOHMMM neuron. In the
lower part the actual SLP for the α-globin case is depicted. A region rich in darker
hexagons (high likelihood neurons) surrounded by hexagons of lighter shades (low
likelihood neurons) is easily detectable. These high likelihood neurons reside within
the boundaries of the α-globin’s container cluster. Furthermore, the low likelihood
neurons are exclusively only those that belong either to the boundaries of the cluster
under consideration or to the remaining clusters that do not represent the α-globin
subfamily.

or for clustering the respective chain molecules. Nevertheless, even in this case, the
highest likelihood values are located in areas which do not contain any of the three
known clusters (Fig. 2). We believe that this is an additional indirect proof of the
fact that the SOHMMM produces a nonlinear, ordered mapping of sequence data.
Even though, the cytoglobin is applied for the first time it is not assigned falsely
to a HMM neuron corresponding to one of the three previously identified clusters,
instead the SOHMMM node that best describes the cytoglobin sequence does not
represent any α-globin, β-globin or myoglobin cluster.

As mentioned previously the SLP visualization interface has been programmed
in Java. Likewise, all figures are screenshots of the implemented graphical user in-
terface. The SLP’s interface includes a color scale legend (which is in analogy to the
minimum and maximum log-likelihood values) and has functions for retrieving the
examined sequence’s amino acid/nucleotide chain as well as its identifier. Also, the
exact likelihood magnitude/value is displayed when positioning the mouse pointer
over each SOHMMM node. Last, by left-clicking a neuron the user has the option
to view or save the respective HMM’s coefficients/parameters.
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Fig. 5 Indicative outcome of a SLP, based upon the same 6 × 7 SOHMMM, cor-
responding to a cytoglobin chain molecule. The specific cytoglobin is actually an
outlier for the clustering problem under consideration since it does not belong to
any of the subfamilies modeled by the algorithm. Nevertheless, along a pure un-
supervised procedure, the SLP demonstrates generalization ability by not clustering
the cytoglobin as belonging to one of the previously detected clusters (Fig. 2), but
instead produces a likelihood tessellation which is indicative of the cases where the
investigated sequence does not belong to the modeled sequence distribution.

4. Application scenario

Splice junctions mark transitions from expressed to unexpressed gene regions and
vice versa, and they are thus important for the assembly of structural and reg-
ulatory proteins that constitute and control biochemical metabolisms. Splice site
recognition is therefore a topic of interest for the understanding of genotype/pheno-
type relationships. The UCI machine learning repository [19] contains a data set
for primate (eukaryotic) splice junction determination.

In an effort to put the SDDD’s and the SLP’s characteristics and capabilities
in context we employ the devised unsupervised learning algorithm for training
a hexagonal 9 × 4 SOHMMM array; all the remaining parameters are identical
to those used previously. The exact problem posed in this practical application
is to recognize the exon-intron boundaries (frequently called donor splice sites)
and the intron-exon boundaries (acceptor splice sites). The sequence data set’s
composition is 767 donors and 768 acceptors. The produced visualizations are
shown in Figs. 6–8.

Initially, one can observe that the SDDD (in synergy with the underlying
SOHMMM) identifies the existence of the two splice junction clusters (namely
the acceptor cluster and the donor cluster). Moreover, alongside a strict unsuper-
vised learning procedure (no prior knowledge nor category information are used in
any stage), the recognized clusters are directly traced/identified visually (Fig. 6).
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Fig. 6 SDDD of a 9×4 SOHMMMM lattice for the splice junction recognition prob-
lem. Two clusters have been detected that correspond to the exon-intron boundaries
(donor splice sites) and the intron-exon boundaries (acceptor splice sites). The
donor splice sites’ cluster is located on the right of the SDDD, whereas the acceptor
splice sites’ cluster is on the left.

Fig. 7 Representative SLP of a sequence containing an exon-intron boundary.

Fig. 8 Paradigm of a SLP visualization for an acceptor splice site sequence.
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The interpretation of the SLPs’ results (Figs. 7 and 8) is dual. They can either be
considered as assignments of unknown sequences to the previously detected clus-
ters (viz. sequences with exon-intron boundaries are assigned to the donor cluster
and sequences with intron-exon boundaries are assigned to the acceptor cluster),
or they can be treated as an additional verification/proof of the discovered clusters
(since each one of the 1535 sequences produces high likelihoods in exactly one out
of the two distinct areas of the SOHMMM mapping, and these two regions coincide
with the recognized clusters).

Subsequently, under the assumption that class information is given a posterior
labeling of the traced clusters can be performed on the SDDD (as in Fig. 3). In
such a case, an unknown or orphan splice junction is classified as belonging to
the category designated by the SOHMMM neuron yielding the highest likelihood,
and (as shown previously) is clustered accordingly. It is interesting that the SLP’s
visualization goes beyond the mapping of the highest likelihood SOHMMM node
by depicting the overall likelihood landscape (of the examined/analyzed sequence),
thus, resulting in a richer and comprehensive description.

5. Conclusion

The present study has developed mapping techniques and graphic displays to
demonstrate and visualize sequence data clustering results. Epigrammatically, the
SDDD estimates and subsequently devises a sequence data density graphic repre-
sentation, whereas the SLP produces a sequence likelihood landscape. The SDDD
and SLP projections represent the input sequence data in a lower-dimensional
space in such a way that the clusters and statistical relations of data elements are
preserved as faithfully as possible, thus, making the SOHMMM’s capabilities ac-
cessible to a wider range of interdisciplinary tasks. It has been demonstrated that
the SDDD and the SLP in synergy with the SOHMMM integrate cluster visualiza-
tion and nonlinear mapping (on a low-dimensional lattice) in a unified functional
framework; thus making the produced results visually accessible, verifiable and in-
terpretable. The proposed techniques’ experimental testing and verification has
been performed both on amino acid and nucleotide sequences.
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