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Abstract: In this paper, the network transmission properties of a feedforward
Spiking Neural Network (SNN) affected by synchronous stimuli are investigated
with respect to the connection probability and the synaptic strengths. By means
of an event-driven method, all simulations are conducted using the Leaky Integrate-
and-Fire with Latency (LIFL) model. Typical cases are taken into consideration,
in which a network section (module) is able to process the input information, intro-
ducing a particular behavior, that we have called path multimodality. Simulation
results are discussed. Through this phenomenon, the output layer of the network
can generate a number of temporally spaced groups of synchronous spikes. The
multimodality effect could be applied for various purposes, for instance in coding
or else transmission issues.
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1. Introduction

Spiking Neural Networks (SNNs) represent a class of biological inspired neural net-
works that are widely implemented in many research fields, such as engineering,
neurophysiology, neuroscience. These kind of networks seem very useful, in partic-
ular, for the elaboration of both sensory and cognitive information [2,3,15,23,27].
For example, the transmission of the spiking activity through a neural network
appears of great interest and many computational models have been proposed
to approach this problem, such as feedforward models with convergent-divergent
connections [1,8,11,16-18, 20, 22, 28,34, 35]. These studies involve rate codes or
else temporal codes [24,27], depending on the spiking activity which can be asyn-
chronous, or else synchronous [21]. This difference is due to the necessity of saving
the information in subsequent stages of a sensory pathway.
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In these studies, Leaky Integrate-and-Fire (LIF) models are typically used.
Their low computational cost allows the properties of large spiking networks to be
investigated, maintaining some important biological neuronal features (i.e., sub-
threshold decay, synaptic integration and spiking threshold) [4,5].

The information propagation depends on the network parameters. In fact, it
was shown that feedforward networks with low probability of shared connections
and strong synaptic strengths permit a faithful transmission of asynchronous firing
rate. In the opposite case, a transmission of synchrony is allowed [21].

In the paper, simulation results of a feedforward SNN affected by synchronous
stimuli are discussed. The network transmission properties are investigated in func-
tion of the connection probabilities and the synaptic strengths. Furthermore, all
simulations are conducted on a LIF with Latency (LIFL) model, simulated through
an event-driven method. The latency phenomenon introduces a nonlinearity in the
suprathreshold neuron behavior, allowing the information propagation in a multi-
modal manner through consecutive layers of a feedforward neural network (FNN).
It will be shown how the latency property affects synchronous inputs to a neu-
ronal layer, and causes temporal clusters for the spike generated by the layer itself.
Then, the typical behaviors that occur under certain hypothesis will be classified,
and will be explained how the temporal distance of the neuronal groups depends
on the network parameters. With the aim to distinguish this kind of multimodality
from those already defined in literature [32,33], this effect will hereinafter be called
path multimodality. Taking into account the fact that synchronous spikes are pro-
vided to the network input, the path multimodality represents the capability of
a network section (in this case a module) of generating a number of temporally
spaced groups of synchronous spikes at the output network. Perfect synchronous
input may be thought as spike generated by a previous FNN module in jitter recov-
ery condition [7]. Note that it has been highlighted how the integration of a large
number of Gaussian-distributed inputs with small amplitude (i.e., high synaptic
convergence) produces a substantial reduction of the dispersion in the arrival times
of such inputs, or input jitter, namely the standard deviation of the inputs. In-
deed, the dispersion of the spike timings on a target neuron, or output jitter (i.e.,
the standard deviation of the outputs) can be less than the input jitter [6]. Thus,
it is relevant to understand how this synchronous group can propagate toward
downstream modules.

2. Theory and methods

2.1 Neuron model

In this work, a simple spiking neuron model with features similar to those of the
classic LIF is introduced [4]. The main difference from the LIF model is the presence
of an expression, called firing equation, which qualitatively describes the neuron
behavior in the suprathreshold region: when the membrane potential S reaches
the spiking threshold, the firing is not instantaneous, but it occurs after a variable
continuous time delay ¢, called latency [12]:

= ——. (1)
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In Eq. (1), the relationship between the time delay ¢; and the membrane poten-
tial S is a branch of rectangular hyperbola (Fig. 1) [30]. This is an approximation
of the behavior of the real biological phenomenon and it has been obtained by sim-
ulating a patch of neuronal membrane stimulated with short current pulses, solving
the Hodgkin-Huxley equations [14] by means of the NEURON simulator [13].

In this model, normalized real and non-negative quantities are considered.
Thus, the variable S indicates the inner state of the neuron, and the variable
te, called time-to-fire, can be linked to the spike latency. In addition, the spiking
threshold Si;, = 1 + d is introduced, where d denotes the threshold constant. The
latter quantity has been chosen in order to have a finite maximum value for the
time-to-fire, tf max = 1/d. When S = 0 the neuron is in its resting state.

Fig. 1 Latency as a function of the membrane potential Vi, or else of the current
amplitude Iext, equivalently. Note that Vi, is the biological counterpart of the inner
state S of our model, whereas, Loyt is the biological counterpart of the presynaptic
weight P, of our model. The curve has been obtained simulating a patch of cell
membrane solving the Hodgkin-Huxley equations using NEURON environment.

Taking into account that each neuron receives synaptic inputs from a large num-
ber of synapses (synaptic convergence) and propagates spikes to a high number of
neurons (synaptic divergence), the quantity P, presynaptic weight, denotes the sig-
nal transmitted (i.e., single pulses) from one neuron to a number of other neurons.
Finally, the quantity P, postsynaptic weight, is associated to each connection, in-
dicating the strength between a couple of neurons. For the sake of convenience,
the weights are chosen to be constant, then not subjected to synaptic plasticity [9],
and arbitrarily assigned between 0 and a maximum value. Moreover, if P, is equal
to 0, the related connection is not present. The following equations describe the
rules for the state updating, in passive mode (subthreshold region) and in active
mode (suprathreshold region), respectively (Fig. 2):
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S =8, + P.Py — LaAt, for S < S, (2)
S =58, + PP, for S > Sy. (3)

In Egs. (2)—(3), S, represents the previous state, Lq the subthreshold linear
decay, and At is the temporal difference between two consecutive incoming spikes.
When S > Sy, (suprathreshold region), the neuron becomes active and it is ready
to fire, but it remains still sensitive to incoming spikes. In this region, for each new
state the bijective relationship (1) is evaluated. Thus, as times advances and new
spikes arrive, the state S is properly increased (decreased), due to the excitatory
(inhibitory) effect, and ¢ is evaluated [31]. When the last computed ¢ expires, a
spike is generated, the inner state becomes S = 0 (reset) and the neuron remains
insensitive for a time called the absolute refractory period (tarp), like in the case of
biological neurons.

Due to the necessity of simulating the latency effect, the use of an event-driven
approach for the simulation of the spiking neural network is required. Moreover,
this simulation technique let to investigate large network properties with high pre-
cision, requiring a low computational cost [10,25,29].

Fig. 2 Passive and Active Mode. Sy, indicates the spiking threshold.

2.2 Latency effect on the behavior of a FNN module

Defining a module as a network section that is able to introduce particular delays, a
feedforward module without axonal delays and affected by a synchronous vertical
input train is considered here (Fig. 3). At each simulation, the incoming spikes
have the same amplitude (i.e., P, is chosen to be constant and P, is fixed by (4),
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see Section 3). Thanks to the presence of the latency in the neuron model, the
information through the network can be transmitted in an asynchronous manner
to the output (Fig. 4). The particular behavior of the transmission mainly depends
on both postsynaptic weights and the connection probability. As an example, in
the case of a sparsely connected network with high postsynaptic weight values, an
asynchronous pulse train is generated (Fig. 3).
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Fig. 3 An example of a Feedforward Module Topology (FMT) composed by siz LIFL
neurons. It is shown a case of sparsely connected network. At ty three synchronized
inputs arrive to the input layer. The magnitude of these inputs is sufficient to
provoke an initial active state (Sin) greater than the threshold. Then, neurons 1,
2 and 3 fire at to. Since there is no axonal delay, the spikes arrive to the output
layer at ts3 = ta. Because of each neuron has a different fan-in, their firings are
asynchronous (i.e., t4, t5, tg are not synchronous, depending on the related Si, ).

In the present work, a double layer feedforward network composed by 50 neu-
rons per layer is used to carry out considerations about the multimodality effect
(Fig. 5). To this purpose, the connections characterization, between the two lay-
ers, is realized by means of the two parameters P, and CF (Connection Factor).
Note that the number of neurons per layer is relatively small because only a very
small portion of neurons in the brain responds to a stimulus (sensory or cognitive
stimuli) [21]. Typically tens or few hundreds of neurons per layer are considered.
The simulation procedure is shown in Section 3.

2.3 Path multimodality

As mentioned in the introduction, the path multimodality is the capability of a
network path (a feedforward module, in this particular study) of generating in the
output more groups of synchronous spikes temporally spaced, when it is stimulated
by a synchronous input train. If the number of neurons in a FMT grows up, the
phenomenon described above is more evident. Indeed, under particular conditions,
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Fig. 4 Raster plot of a simulation made using the module shown in Fig. 3. It is
reported the temporal behavior of the FMT. On the vertical azis the neuron number
is denoted. On the horizontal axis the simulated time is indicated.
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Fig. 5 Input: external sources that generate synchronous spikes. Input Layer and
Output Layer represent the feedforward network module; the connections between
the layers can be both fully and sparsely connected. The output behavior is analyzed
in function of Py and CF. Finally, the kind of multimodality is classified.

this behavior is replicated, so that, in the output of a module, some temporal groups
composed by synchronous spikes can be obtained. Depending on the network
parameters, these spike timing group intervals can present regular or else irregular
distributions. The purpose of the present work is to investigate this phenomenon
and the behaviors that could be obtained varying some network parameters.

In order to reduce the freedom degrees in the simulation process, constant and
identical P, values are assigned for the connections between the two layers, as
shown in Section 3, so that most of the output spikes are generated. In this way,
defining the neuron fan-in as the number of the incoming connections, when the
module receives only synchronous inputs, the output spike timing distribution is
uniquely related to the fan-in configuration of the output layer neurons. On the
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basis of the above described conditions, the number of the possible modes of a
FMT is equal to the number of the different fan-in values concerning the output
layer (Fig. 6).

Fig. 6 Raster plot of a typical simulation. The eight spike timing groups emerged
after the stimulation are indicated with the related fan-in (F.I.) and the correspond-
ing elicited latency, or mode (M).

Taking into account the above described network conditions and neuron fea-
tures, it seems quite easy to imagine how a neuron model, that does not implement
the latency phenomenon, does not allow different spike timings intervals to be gen-
erated through the network. Then, the introduction of the latency in the model
allows generating output spikes with intervals related to the network parameters.

In general, depending on which input layer neuron is excited, it is easy to un-
derstand how the output can be characterized by some modes rather than other
ones. In addition, the discussion becomes more complex if a real scenario is con-
sidered, in which other conditions could be present: asynchronous input spikes,
variable input spike amplitude, variable connection weights P,, and axonal delays.
In future works, these conditions will be introduced in order to extend the present
discussion.

3. Simulation results

In this section, in order to study the behavior of the network under proper con-
ditions, both model and network parameters are introduced. Also, the simulation
results are presented. There are two basic parameters: postsynaptic weight and
connection factor. The fist one is defined by the following relationship:

Pw:(]vS:(hR)u (4)
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where St represent the spiking threshold (conventionally fixed to 1.04), N is the
number of the active connections and R is the neuronal threshold ratio. The latter
can be expressed by the relationship:

_ St
- Si 9 (5)

in which S, is the initial active state (as indicated in Fig. 3) reached by an output
neuron, thanks to the overall incoming spikes. The values of R have been chosen
in the range [0.1, 0.9] with step equal to 0.1. The expressions (4)—(5) have been
obtained on the basis of similar relationships discussed in Burkitt and Clark [6]. In
addition, the connection factor is defined as

R

N

CF = ,
Ntot

(6)

as mentioned above, N represents the number of the active connections and Ny
is the total number of the connections. In the case of fully connected network
CF is equal to 1. Note that, in order to obtain values of CF in the range [0.1,
1], the connections are chosen in a pseudorandom manner. The results, shown in
the following raster plots, have been obtained by simulating a network composed
of 2 layers: the first one, input layer, provides synchronized inputs. The second
one, output layer, is connected to the input layer with connections having a certain
connection factor. Therefore, the network can be sparse (i.e., 0 < CF < 1) or else
fully (i.e., CF = 1) connected. The simulations have been performed by varying
P, (i.e., R and N) and CF (i.e., N).

On the basis of the nonlinearity of the latency curve (Fig. 1), it can be possible
to notice substantially different output spike timing distribution behaviors. Indeed,
depending on the portion of the curve affected by the P, — CF combination, they
can be essentially grouped in three typical trends:

e Non-constant behavior. Due to the fan-in decreasing of the target neuron (i.e.,
the decreasing of the number of the incoming connections), this behavior is
characterized by an irregular increasing of the spike timing distance between
the synchronous groups. In this case, the spike timing groups are irregularly
distributed (see Fig. 7).

e Quasi-constant behavior. It is characterized by similar intervals among syn-
chronous groups. In this case, the spike timing groups are quite regularly
distributed (see Fig. 8).

e Perfect-Synchrony behavior. It is characterized by a single spike timing group.
This emerges only in the case of CF =1 (see Fig. 9).

In all cases, thanks to the latency effect, it is possible to identify several acti-
vated synchronous groups. Depending on the neuronal and network parameters,
these groups can be temporally distributed in quasi-constant or non-constant man-
ner. Then, depending on the network parameters, it is possible to generate pulse
trains with both irregular or else regular spike timing group distribution, even in
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Fig. 7 Raster plot that shows non-constant behavior. In this simulation fan-in
equal to 50, 49, 48, 47, 46 for the output neurons have been observed.

Fig. 8 Raster plot that shows quasi-constant behavior. In this simulation fan-in
equal to 50, 49, 48, 47, 46 for the output neurons have been observed.

the case of synchronous input spikes. Note that, only in the case of CF = 1, the
firings of the output layer are generated in a perfect-synchrony manner. Further-
more, the more both synaptic weights and CF are high (i.e., high P, and low R
values), the more the spike timing groups appear close in time. Finally, for CF
increasing, the number of synchronous groups will decrease, up to the limit value
of CF = 1. In this case, only a synchronous group is present (as shown in Fig. 9).

The network analysis has been performed taking into account the Coefficient
of Variation, CV. The latter is a measure of the dispersion in the ISI (Inter-Spike
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Fig. 9 Raster plot that shows perfect-synchrony behavior. The fan-in of the output
neurons is equal to 50 for each neuron.

Interval) distribution, and it is computed by means of the following relationship:

N—-1

v — ﬁ ;(Ati_m)/m, (1)
in which N is the total number of spikes, At is a given ISI, and At is defined as
o ;| Nl
t=5—1 Z At. (8)

The coefficient of variation can be computed either for a single neuron or the
entire network [19]. We have considered the latter case for our study. Note that
for a constant At the CV is zero, whereas it is greater than 1 (for example) when
the distribution of spike intervals become hyperexponential [26].

Since we have performed 100 trials for each combination of CF — R, mean and
standard deviation of CV over all trials have been calculated.

As above discussed, for high synaptic weights (then low values of R) and low
values of shared connections (i.e., low values of CF), CV is greater than 1 (red
regions in the most left colormap in Fig. 10), implying non-constant behaviors. On
the other hand, CV approaches to zero (blue regions in the most left colormap in
Fig. 10) for high values of the shared connections and high values of the synaptic
weights. Finally, in the case of CF = 1 the coefficient of variation can not be defined
because there is only one synchronous group (i.e., perfect-synchrony behavior), and
then for this value the colormap is blank.

Another observation is that CV is quite independent of the subthreshold de-
cay Lq. Indeed, the behaviors exhibited from the module are insensitive to the
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variation of the parameter Lq. This happens because in this study the inputs are
synchronous, then the state of the target neurons (i.e., the neurons of the output
layer) are not able to show the leaky behavior.

4. Conclusions

In this paper, the case of feedforward spiking neural networks stimulated by syn-
chronous inputs is analyzed. Under proper working conditions, the chance of the
generation of groups of synchronous spikes is investigated.

In order to obtain quite biological plausible dynamics, a Leaky Integrate-and-
Fire with Latency model is considered. On the basis of the nonlinearity introduc-
tion in the neuron model, new kind of behaviors can emerge in a simple spiking
FNN module, in which the generation of some synchronous spike timing groups is
possible.

In this work a single FNN module has been taken into consideration, in order
to study the simplest case of input-output behavior resulting from the pathmulti-
modality effect. As mentioned in the introduction, there are conditions that allow
asynchronous propagation and other conditions that allow synchronous propaga-
tion. In this work, we focused our study on the simple case of synchronous inputs,
showing how the latency phenomenon can affect the behavior of the network for the
generation of the output spike sequence. For this purpose, typical cases are inves-
tigated by varying the parameters of the model, showing how a network section is
able to process the input information, highlighting a particular phenomenon, called
path multimodality. Depending on the distribution of spike timing groups, different
trends have been classified: non-constant, quasi-constant, and perfect-synchrony
behaviors. Each case has been related to combinations of both network and neu-
ron parameters, as shown in Fig. 10. Note that, the response time behavior of the
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Fig. 10 Mean and standard deviation of the Coefficient of Variation for the case
Lq = 0.001.

373



Neural Network World 4/2016, 363—-376

neuron depends basically on the amount of stimulation (see Egs. (1), (2), (3)), and
then on the portion of latency curve affected by the stimuli. Finally, a mapping of
the behaviors varying the model parameters has been provided.

The presented work represents a first contribution toward the modular study of
complex topologies considering the path multimodality effect. Taking into account
that a feedforward network is composed by several modules, the effect of multi-
modality can be considered for different scenarios, e.g., in coding or else trans-
mission. In the synthesis phase, this effect can be considered in order to obtain
particular rhythms by means of a multi-modular FNN architecture. On the other
hand, in the analysis phase, this effect can be considered in order to infer the net-
work architecture starting from a given response in terms of spike trains. Of course,
further efforts will be made to investigate in details all the opportunities offered
by the multimodality effect. In future works, further conditions will be considered,
such as input spikes with variable amplitude (i.e., not fixed presynaptic weights
P,), postsynaptic weights P, affected by synaptic plasticity and axonal delays as
well.
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