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Abstract: Associative memory (AM) is a very important part of the theory of
neural networks. Although the Hebbian learning rule is always used to model the
associative memory, it easily leads to spurious state because of the linear outer prod-
uct method. In this work, nonlinear function constitution and dynamic synapses,
against a spurious state for associative memory neural network are proposed. The
model of the dynamic connection weight and the updating scheme of the states of
neurons are presented. Nonlinear function constitution improves the conventional
Hebbian learning rule to be a nonlinear outer product method. The simulation
results show that both nonlinear function constitution and dynamic synapses can
effectively enlarge the attractive basin. Comparing to the existing memory mod-
els, associative memory of neural network with nonlinear function constitution can
both enlarge the attractive basin and increase the storage capacity. Owing to dy-
namic synapses, the attractive basin of the stored patterns is further enlarged, at
the same time the attractive basin of the spurious state is diminished. But the
storage capacity is decreased by using the dynamic synapses.
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1. Introduction

The associative information processing, for instance the associative memory, plays
an important role in many functions of brain [4,18,26]. And it can be used for
some application problems, such as image processing [4,22], data clustering [11],
regression analysis [5], and control systems [27,35]. The Hopfield networks are
often used to carry out the AM. The Hopfield networks have stable steady states
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viz. equilibrium points [3,6,9,19,37]. The patterns can be stored in the network
by setting of synaptic weight, but a big number of spurious states exist in the
traditional Hopfield networks [20]. According to the Hebbian learning rule [36],
the synaptic weight matrix is static, and therefore the neuron’s local field is linear
with the state of the neuron. There is no depression for the neuron’s local field.
Thus, the neuron’s local field is linearly increased, which leads to the “diffused
spurious memory”.

In most of traditional neural network models [7,15,25,31,38-40], the synaptic
weights are assumed to be ’static’, or changing their weight values only on a slow
time pace. Accordingly, once the weights of the synapses are for example deter-
mined by a covariance rule, they are fixed during the network evolution process.
However, synaptic plasticity across many time scales from the order of days to the
order of milliseconds [1,2,13,16,17,23,41], has been widely discovered. Short-time
synaptic plasticity such as facilitation and depression may play an important role
in neuronal response. In this sense, the synapses of neurons can be dynamic rather
than static [21]. These findings affect the transmission properties of single neu-
rons, as well as network function and behavior. The dynamics of the network with
dynamic synapses has attracted much attention recently [10, 12,24, 32,42]. Most
of the models of dynamic synapses are constructed within the context of spiking
neurons and under the principle of synaptic transmission resources [1, 13,29, 30].
In traditional works, synaptic weights cannot be changed after learning. If the
stored patterns have large overlap, some synaptic weights will be very big, which
leads to the spurious state. In order to reduce this influence, synaptic depression
is introduced in this paper. Due to the synaptic depression, the synaptic weights
will be depressed, especially for a big value of synaptic weights, which gives the
network a driving force to get out of the spurious state.

In a contrast to many studies on binary-valued discrete time associative models,
in this paper, the nonlinear function constitution, a new method against spurious
state is proposed. This method improves the conventional Hebbian learning rule
to become a nonlinear outer product method. Then we propose an anti-spurious-
state neural network with static synapses (ASS-SSNN). The simulation results
show that on one hand, our methods can effectively enlarge the attractive basin;
on the other hand, associative memory neural network with nonlinear function
constitution method can increase storage capacity. We further propose a novel anti-
spurious-state neural network with dynamic synapses for auto-associative memory
(ASS-DSNN) based on ASS-SSNN model. The experiments show that the ASS-
DSNN model not only keeps the advantage of ASS-SSNN model, but also has
more ample dynamic features than associative neural network without depressing
synapses. The ASS-DSNN can further enlarge the attractive basin for memory
state, reduce the attractive basin for spurious state, but the storage capacity is
reduced.

The paper is organized as follows. In Section 2, the associative memory model
with nonlinear function constitution and dynamic synapses is proposed. Section 3
presents the simulation results of the new model, and discusses the attractive basin
and storage capacity of the proposed model. Finally, the Section 4 concludes this

paper.
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2. The network with nonlinear function
constitution and dynamic synapses

The structure of the discrete Hopfield neural network is shown in Fig. 1, where NV
is the number of neurons in the network, I; is the external input to neuron 4, that
is constant, and it is assumed to be zero. S; is the state of neuron i. w;; is the
connection weight from neuron j to neuron 1.

7
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Fig. 1 The neural network construction.

2.1 The traditional associative memory model

The neuron in the network is characterized by binary state {s;}¥; = {0,1}. The
patterns {X* = (a},2%,...,2%)} are stored in the network, where u =1,2,...,p
denotes the label of the patterns. Each element {X"} of the u-th memory pattern
is generated independently with prob[z¥ = 1] = 1—prob[z} = 0] = r, where r is a
coding level of the network. For the task of the recognition of p stored patterns,
the synaptic coupling strength w;; is usually given by the Hebbian learning rule.
In such rule, the weights are described as

P
=1 Uy for i # j
W puZ::le ' or i # j, (1)
In the traditional associative memory model, the state of each neuron in the
network is updated as follows

N
si(t+1) = f(ha(t) = 6:) = f | D wiys;(t) —6; |, (2)

j=1.j#i
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where s;(t) is the output of neuron ¢ at time ¢. The update is done synchronously,
and the network dynamics continue until the convergence. 6, is the threshold of
the local field. h;(t) is the local field of neuron ¢,

N
hi(t) = > wijs;(t). (4)

j=1j#i

The Egs. (1)—(4) describe the traditional model of the associative memory
(THNN). There are two conclusions about the Hebbian learning rule.

Conclusion 1: if the stored patterns X* (k = 1,2,3,...,p) are orthogonal, thus
X*.X"=0, then,

1| 1| &
WXk - = [Z XZ(XZ)T‘| Xk _ Z Xl(Xl)TXk +Xk(Xk)TXk
P = Pk
Lk by T k) o Tk
= —XM(XT) X~ —XF,
p p

where r is a coding level of the network. The above equation indicates that each
stored pattern X* is the attractor of the network.

Conclusion 2: if the stored patterns X* (k=1,2,3,...,p) are not orthogonal,
thus,

—

b p
1
wxk = - P Xl(Xl)T] Xt==15
=1 p =1,l#

k

bS]

l

Q

1 p
iXk—i—f Z Xl(XZ)TXk7
p Pk

where %Xk is the useful signal for pattern recall, and %Zle’l#k XHXHT Xk
is regarded as the noise for the memory. According to the Hebbian learning
rule, the synaptic weight matrix is static, weights are constrained as they are nor-
malized by the number of stored patterns, p, so that they are limited to the range

0 to 1. But % is just a normalized term, which cannot change the memory result,

P
synaptic weight w;; = % - :Eixé is still linear increased by zﬁ:cé According to

the Hebbian learning rule, the neuron’s field is linear with the output of the neu-
ron. The proportional coefficient is determined by the static matrix of the synaptic
weight, and the synaptic weight increases proportionally. If the element of noise
vector is too large, and the corresponding vector element of X* is 0, then the
network cannot evolve to the attractor X%, which results in a diffused spurious
state.

Here, an example of the spurious state is presented. In Fig. 2, there are three
memory patterns, which are denoted as P;, P>, and P5;. These three patterns lap
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over each other, and the overlap parts are marked as P, = P, N Py, P, = P N Ps,
P.=P;NP,and P, =P NP,NP; =P,NP,NPFP. We use the Pattern P,
to investigate the emergence of a spurious state. Fig. 2 shows that the Py is the
overlap of three patterns. For the neurons of P;, the connection weight is the
highest. For the same reason, the connection weight of P,, P, and P, are higher
than that of Py, Py, and Ps. If we use the Hebb rule for learning, the local field is
linearly increased to the output of other neurons, and the proportional coefficient is
determined by static matrix of the synaptic weight, the synaptic weight increases
proportionally without depression, which can easily lead to a “diffused spurious
memory”. Thus, in the memory process for pattern P,, not only P, — P4, and
P. — P, can be retrieved, but the P, — P; can frequently be retrieved as well. In
this way, memory result of the network may be P = P, + P, — P;. Here, P, — P,
is the spurious state. The state P» is desirable, and we expect the spurious state
is to be avoided.

NV 0%

Fig. 2 Diffused spurious state.

2.2 Associative Memory with the nonlinear function
constitution (ASS-SSNN)

For reduction of the diffused spurious state of the THNN, ASS-SSNN is proposed,
which is implemented by a nonlinear function constitution. This method is a non-
linear outer product method. When using the nonlinear function constitution, the
associative local field is described as

G| 1
= 3 3 (e 05). )
j=1,j#i
where a and b are scale parameters. If we assume that s;(t) = 1for j =1,2,3,..., N,

and w;; is the variable, then the output result of nonlinear integration can be de-
scribed in Fig. 3. The figure shows that the range of the output is determined by
value a, the gradient is determined by value b. w;; is the static synapse matrix, un-
changeable within time. The local field of the neuron is nonlinear with the output
of the neuron, avoiding the unrestrained increase of ﬁi(t).
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Fig. 3 Different values of a and b for nonlinear integration.

Due to the nonlinear integration, the state of neuron ¢ at time ¢ is updated as

. R N 1 .
si(t+1) = f(hi(t)—0;) = f Z P (Hbe”s](t) - 0.5) —0;1. (6)
Jj=1,j#i

Here, 6 is the threshold of the local field. ASS-SSNN can be described by
Egs. (1), (3), (5) and (6). In ASS-SSNN the local field of a neuron is nonlinear
with the output of the neuron, avoiding the unrestrained increase of h;(t). Due to
the nonlinear function constitution the number of spurious states will be reduced.

2.3 Associative Memory with nonlinear function
constitution and dynamic synapses (ASS-DSNN)

Synapses in real neurons tend to exhaust their resources, i.e., their strength de-
creases when used. If we consider the dynamic synapses [13,36], the synaptic weight
discussed above, w;; evolves within time ¢ as follows [30]

wij(t) = wij - 14(1), (7)

where w;; (see Eq. (1)) are static terms that are determined by the stored patterns.
rj(t) is the term produced by the synaptic depression, and it is updated with
following the dynamics [1,21]

1) = 0+ )5, 0
where 7;(t) denotes the fraction of synaptic resources available for a postsynaptic
current, s;(t) is the output of presynaptic j-th neuron, 7 and 6 (0 < é§ < 1) are the
parameters for synaptic depression. At every time step, a fraction of unavailable
resources ——2{ g recovered, while a fraction of available resources ds;(t)r;(t)
becomes unavailable due to the activity of the presynaptic neuron. The authors
have proved that the fixed point of this model is the same as that of a network
without synaptic depression [33]. Thus, the local field of the neuron i can be
described as

_ 1 1
ha(t) = Z a (1 + e—bwi (Os;(8) 05) ’ )

j=1,j#i
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Due to the dynamic synapses, the state of neuron i at time ¢ is updated as

N
s+ ) = fEat) —a) =1 1( ! o.5)§,; 0)

—bw;(t)s; (¢
A a \THebwu®s0

The associative memory in a network with nonlinear function constitution and
dynamic synapses (ASS-DSNN) can be given by Egs. (1), (3), and (7-10).

The closeness between the state of the network s(t) and the stored pattern a*
at time t is characterized by an overlap defined as

1 N
24(t) = R () > (@t = k)si(h). (11)

i=1

If the overlap z%(t) is close to 1, the stored pattern z* is assumed to be retrieved
at time step t.

3. Simulation results of the model

In order to evaluate the validity of the proposed model for anti-spurious-state, we
must investigate the attractive basin! of different models with the same number of
stored patterns. In this paper, the number of neurons in the network is assumed to
be 2000, and the coding level r of the network is 0.1, which is the sparse coding. In
order to get a high accuracy of the simulation results, each experiment is repeated
for 100 times, then the average overlap of these results is computed. In this work,
all stored patterns are used for simulations. Each stored pattern is simulated 100
times with added noise. For a single pattern, the added noise is randomly produced
with same probability for each simulation. In the simulations for scale parameters
and threshold, each of 100 simulations has a different starting point with 15%
added noise (15% added noise means that the overlap between the initial state of
the neural network and stored pattern is 85%).

First of all, the values of scale parameters a and b should be confirmed. In
practice, when a = 25, b = 100, the network could provide a good performance,
the simulations for scale parameters are presented in Tab. I. Indeed, if the factor a

a=1b=4 a=4b=20, a=25b=100

Threshold 6 Overlap z"
0.25 0.9922 0.9939 1.0000
0.2 0.6017 0.6467 0.9994
0.15 0.5333 0.5539 0.8411
0.1 0.3972 0.4187 0.6050

Tab. I The scale parameters of ASS — DSNN (p = 300).

I Attractive basin [a,1] means that the neural network can recall the pattern when the overlap
between the initial state of the neural network and stored pattern is from a to 1.
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is just a scale parameter, it cannot affect the nonlinearity. But it can influence the
range of a local field. The factor a can control the threshold less than 1. Fig. 4 shows
how memory performance changes with variation in parameter b. The simulation
shows that the network can get the best performance when b = 100. Thus, in this
work, the values of a and b are set as 25 and 100 respectively. Then, the threshold
6 of THNN and the threshold 6 of ASS-SSNN should be confirmed. Tab. II and
Tab. ITI present the numerical results for THNN and ASS-SSNN respectively. From
the simulation, the # of THNN can be set as 0.42, the 6 of ASS-SSNN can be set
as 0.26. When thresholds of 0.42 and 0.26 are reached for THNN and ASS-SSNN,
the best performance can be reached.

The storage capacity of ASS-SSNN with different values of b

0.8 ]
o 06f —=— ASS-SSNN(b=4)
T; —@— ASS-SSNN(b=100)
O 04t —A— ASS-SSNN(b=20)
0.2f
O -
0 200 400 600 800 1000 1200 1400

Number of the stored patterns

Fig. 4 Performance of the storage capacity for ASS-SSNN with b = 4, b = 20, and
b = 100 (all simulations are with 15% initial noise).

The number of stored patterns p 300 400 500 600 700

Loading rate « 0.15 0.2 0.25 0.3 0.35
Threshold 6 Overlap z*
0.6 0.9850 0.9800 0.9350 0.8350 0.8050
0.5 0.9900 1.0000 0.9850 0.9900 0.9494
0.4 1.0000 1.0000 1.0000 0.9950 0.9828
0.3 1.0000 0.9978 0.9950 0.9283 0.8522
0.2 0.9111 0.6872 0.7178 0.5950 0.6389
0.1 0.5422 0.5483 0.6106 0.5500 0.5461

Tab. IT The threshold of THNN.

In order to find how sensitive the results to parameters 7 and § are, the asso-
ciative memory results of different values 7 and ¢ are presented. In the simulation
the initial state of the network are with noise of a stored pattern. The added noise
is 40%, 50%, and 60% respectively. Fig. 5 shows that the network can provide
good performance for different added noise when 6 = 0.01. Fig. 6 indicated that
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The number of stored patterns p 300 500 700 800
Loading rate « 0.15 0.25 0.35 0.4
Threshold 6 Overlap z*
0.6 0 0 0 0
0.5 0.9950 0 0 0
0.4 1.0000 0.9600 0.8094 0.7200
0.3 1.0000 1.0000 0.9544 0.9583
0.2 1.0000 0.9983 0.9906 0.8761
0.1 0.7467 0.7033 0.6617 0.6289
Tab. III The threshold of ASS-SSNN.
14 i
0.8 b
g osf —e— Noise=50% i
% —=A— Noise=40%
04k —#&— Noise=60% i
0.2} :
0 ‘ ‘ ‘ ‘
0 0.01 0.02 0.03 0.04 0.05

The value of &

Fig. 5 Associative memory results of different values § using different initial noise
for ASS-DSNN (p = 300).

—&— Noise=40%
—&— Noise=50%
—#— Noise=60%

12

1.4 1.6
The value of T

Fig. 6 Associative memory results of different values T using different initial noise
for ASS-DSNN (p = 300).
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if only 7 = 1.2, the pattern can be recalled when the added noise is 60%. Thus,
in this work, the values of parameters 7 and ¢ are set as 1.2 and 0.01 respectively,
and 7;(0) = 1. Then the threshold 6 of ASS-DSNN should be confirmed. Tab. IV
presents the numerical results for ASS-DSNN. From the simulation, the § of ASS-
DSNN can be set as 0.26, that the network can provide the best performance.

Stored patterns p 300 400 500 600 700 800
Loading rate « 0.15 0.2 0.25 0.3 0.35 0.4

Threshold Overlap z"
0.6 0 0 0 0 0 0
0.5 0.9450  0.6000 0 0 0 0
0.4 1.0000 0.9850 0.9600 0.9600 0.6594 0
0.3 1.0000 0.9950 0.9900 1.0000 0.9944 0.9678
0.2 1.0000 0.9989 0.9722 0.9883 0.8611 0.9494
0.1 0.6978 0.7283 0.7067 0.6933 0.6622 0.6450

Tab. IV The threshold of ASS-DSNN.

Then we investigate how the nonlinear function constitution and the dynamic
synapses influence the storage capacity. The loading rate « [20] (e = p/N, where p
is the number of stored patterns, N is the number of network nodes) is required to
be less than the storage capacity a. [20](e = Pmax/N, Where pmayx is the maximum
number of patterns the network can store, N is the number of network nodes) to
ensure the successful retrieval of the pattern. In this work, if the memory recall
error is less than 0.01, viz. the overlap is more than 0.99, the pattern is assumed
to be memorized. From the simulation results in Tab. II, Tab. III and Tab. IV,
the resolution of threshold are § = 0.42, § = 6 = 0.26 to arrive at the storage
capacity in this work. Fig. 7 gives the performance of storage capacity for the
THNN, ASS-SSNN and ASS-DSNN. Fig. 7 shows that the network with nonlinear
function constitution has a bigger storage capacity than that of the THNN. But
with the dynamic synapses the storage capacity in the model of ASS-DSNN is less
than that of ASS-SSNN. This result indicates that the dynamic synapses decrease
the storage capacity of network.

Tab. V presents the numerical results of storage capacity for THNN, ASS-
SSNN and ASS-DSNN. The Storage capacity of the THNN is about 0.3375, while
the storage capacity of ASS-SSNN is 0.377 and the storage capacity of ASS-DSNN

Different models Maximal patterns stored Threshold Storage capacity

THNN 675 0.42 0.3375
ASS-SSNN 754 0.26 0.3770
ASS-DSNN 717 0.26 0.3585

Tab. V The storage capacity of THNN, ASS-SSNN and ASS-DSNN (N=2000).
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The storage capacity of THNN, AS.

S—SSNN, and ASS-DSNN

0.8 B
‘_E- 0.6 i
g
O 04 —e— THNN g

—=— ASS-SSNN

0.2} —A&— ASS-DSNN

3

0 200 400 600 800 1000
Number of the stored patterns

1200 1400

Fig. 7 Performance of the storage capacity for THNN, ASS-SSNN and ASS-DSNN
(all simulations are with 15% initial noise).

is 0.3585. Due to the nonlinear function constitution, the storage capacity of the
network is enlarged, but the storage capacity can be decreased by using dynamic
synapses. Due to the characteristics of dynamic synapses, the network is easily to
jump from one pattern to another, or stay at an intermediate state between different
stored patterns, which is the reason why the storage capacity of ASS-DSNN is less
than ASS-SSNN.

Fig. 8 presents the simulation results of attractive basin for THNN, ASS-SSNN
and ASS-DSNN. In this simulation, the number of stored pattern should be set less
than min (717,754, 675) to ensure that the number of stored patterns is lower than
the stored capacity. The result shows that the attractive basin of the THNN can

Attractive basin of THNN, ASS-SSNN and ASS-DSNN

1r 9z
0.8}
5 06f
= — % THNN(p=400)
3 04 — A THNN(p=500) 1
— e ASS-SSNN(p=400,500)
0.2 — = ASS-DSNN(p=400,500) -
O‘ 1 Il Il Il ]
0 0.2 0.4 06 0.8 1

The overlap of the initial neuron state
Fig. 8 Performance of attractive basin for THNN, ASS-SSNN and ASS-DSNN.
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be influenced by p, and the attractive basin decreases when p increases. But the
simulation implies that the number of stored patterns has no effect on the attractive
basin of ASS-SSNN and ASS-DSNN. The simulation results in Fig. 8 also show
that the nonlinear function constitution can effectively increase the ability of error
tolerance i.e. to enlarge the attractive basin. The ASS-DSNN can further enlarge
the attractive basin for memory state, reduce the attractive basin for spurious state,
and has better ability of error tolerance.

Tab. VI gives the numerical results of attractive basin for the THNN, ASS-
SSNN, ASS-DSNN. When the number of stored patterns is 400, the attractive
basin of the THNN is [0.53, 1], but the attractive basin of the THNN is [0.52, 1]
as p = 500. The attractive basin of the ASS-SSNN is [0.38,1], and that of ASS-
DSNN is [0.36,1]. This result indicates that the nonlinear function constitution
and dynamic synapses can efficiently reduce the spurious state.

Model Threshold Critical noise  Attractive basin
THNN (p=400) 0.42 47% [0.53,1]
THNN (p=500) 0.42 48% [0.52,1]
ASS-SSNN (p=400,500) 0.26 62% [0.38,1]
ASS-DSNN (p=400,500) 0.26 64% [0.36,1]

Tab. VI Attractive basin of THNN, ASS-SSNN and ASS-DSNN (N = 2000).

4. Summary and discussion

In this work, we investigated the influence of nonlinear function constitution and
dynamic synapses on the performance of the associative memory in the terms of
attractive basin and storage capacity. In the traditional associative model, the
local field of neuron is defined as

p
1
§ : U
W5 = — (L’il‘j.
pu—l

Due to the Hebbian learning rule, the neuron’s state is linear with the output of a
neuron, there is no upper bound for the local field, which results in diffused spurious
states. Due to the nonlinear function constitution for local field, the conventional
Hebbian learning rule with linear outer product method can be improved, the neu-
ral network avoids the unrestrained increase in local field, which can prevent the
network from evolving to the spurious states. That is why the nonlinear function
constitution can effectively enlarge the attractive basin. Furthermore, the associa-
tive memory of neural network with nonlinear function constitution, the storage
capacity can be increased remarkably comparing to the existing sequence memory
models.

The electrophysiological experiments with animals have proven that synaptic
weights are not “static” in real neurons. In natural neurons synapses tend to ex-
haust their resources, i.e. their strength decreases being used. In this work, the
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dynamic synapse is introduced to reflect better the operation of a real neural sys-
tem. In traditional work, synaptic weights cannot be changed after learning. If the
stored patterns have a large overlap, some synaptic weights will be too big, which
leads to a spurious state. In order to reduce this influence, synaptic depression is
introduced in this paper. Thanks to the synaptic depression, the synaptic weights
will be depressed, especially for a big value of synaptic weights, which provides the
network with a driving force to get out of the spurious state. Thus, the attractive
basin of the stored patterns is enlarged, but the storage capacity is decreased by
using dynamic synapses.

In the existing literature, there are many methods how to improve the asso-
ciative memory, such as Willshaw’s clipped Hebbian learning [8], Koh’s “coherent
and collective firing” [14]. Clipped Hebbian learning is a good work for pattern
recall, the strength of the synaptic connection from i-th neuron to j-th neuron can

be written as
p
w;; = min (1, fo . x?) € {0,1},
u=1

which is different from the learning method in this work. In this work, the highest
value of w;; is very small because of the sparse coding. Thus, even if b = 100,
e i ig still big enough to influence the last results. So, even if b = 100, or the
value of b is larger than 100, our model is still different from the clipped Hebbian
network of Willshaw. In Willshaw’s work, the storage capacity is improved, and the
performance is based on the measures of a unit usage. The model proposed in this
paper is not of the unit use, but it is a good point for our future works. In a coherent
and collective firing model, neurons fire collectively in a phase coherent manner,
which may increase the storage capacity. In previous works, the neural networks
were with pairwise neuron interactions. The coherent and collective firing gives a
good suggestion for future works. In addition, the stability of the neural network
is also an important research point of associative memory. It determines whether
the associative memory model can be competent for some practical application
problems. Some works have been done for this point so far [28,34], which can
improve the stability of memory.
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