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Abstract: In this study, the performance of three different self organization feature
map (SOFM) network models denoted as SOFM1, SOFM2, and SOFM3 having
neighborhood shapes, namely, SquareKohonenful, LineKohonenful, and Diamond-
Kohenenful, respectively, to predict the critical factor of safety (Fs) of a widely-used
artificial slope subjected to earthquake forces was investigated and compared. For
this purpose, the reported data sets by Erzin and Cetin (2012) [7], including the
minimum (critical) Fs values of the artificial slope calculated by using the simpli-
fied Bishop method, were utilized in the development of the SOFM models. The
results obtained from the SOFM models were compared with those obtained from
the calculations. It is found that the SOFM1 model exhibits more reliable predic-
tions than SOFM2 and SOFM3 models. Moreover, the performance indices such as
the determination coefficient, variance account for, mean absolute error, root mean
square error, and the scaled percent error were computed to evaluate the predic-
tion capacity of the SOFM models developed. The study demonstrates that the
SOFM1 model is able to predict the Fs value of the artificial slope, quite efficiently,
and is superior to the SOFM2 and SOFM3.
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1. Introduction

Slope stability analysis is an important area in geotechnical engineering [27]. The
evolution of slope stability analyses in geotechnical engineering has followed closely
the developments in the soil [24]. Slope failures are complex natural experience that
comprises a serious natural hazard in many countries [32]. They are responsible for
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hundreds of millions of dollars of damage to public and private property every year
[32]. Thus, it is very crucial to analysis the stability of slopes [22]. The factor of
safety (Fs) based on an appropriate geotechnical model as an index of stability is
required to evaluate the slope stability [23]. Failure surface is the most important
in calculating of a minimum (critical) Fs against sliding or shear failure. The Fs for
slope stability analysis is usually defined as the ratio of the ultimate shear strength
divided by the mobilized shear stress at incipient failure [27]. Given a predefined
slip surface, the Fs is determined from the equilibrium of force and/or momentum
of the mass contained between the slip surface and the free ground surface [33].
Evaluation of a reliable Fs is one of the most difficult issues in soil and rock me-
chanics problems [23]. Many researchers have attempted to develop techniques for
analysis and prediction of stability of slopes [23]. The slope stability analysis is
mostly being performed under static loading conditions [22], but earthquakes are
important triggering forces behind the instability of slopes in a seismically active
region [18]. As a result, in these regions, it is also essential to carry out the seismic
slope stability analysis [22]. The pseudo-static (PS) approach is the widely-used
procedure used for seismic slope stability evaluation even though more advanced
and rigorous methods of analysis are now available [3]. This approach has been
implemented in various limit equilibrium methods in which earthquake effects are
represented by an equivalent static force [1]. The limit equilibrium methods, in
spite of having several well-known disadvantages, are still commonly used to esti-
mate the stability of slopes [2]. These equilibrium methods satisfy either some or
all of the equilibrium conditions which include: (1) some or all interslice forces [15,
19]; (2) moment and/or some forces [4, 31]; and (3) moment and all forces [25, 28,
29].

The Self Organization Feature Map (SOFM) has been originally developed by
Teuvo Kohonen [21], and is a data analysis, visualization and interpretation tool
that is based on the principles of vector quantization and measures of vector sim-
ilarity [16]. A SOFM analysis can highlight subtle relationships and assist in the
process of knowledge creation from complex and disparate data [16]. While most
SOFM procedures can be considered exploratory, the method can be used to per-
form broad categories of operations such as, function fitting, prediction or estima-
tion, clustering, pattern recognition or noise reduction, and classification [16]. In
this study, three different SOFM models, with respect to the above advantages,
were developed to predict the critical Fs value of a widely-used artificial slope sub-
jected to earthquake forces. Keeping this in view, the data sets used by Erzin
and Cetin [7], including the minimum (critical) Fs values of the artificial slope
calculated by using the simplified Bishop method [4], were utilized in the devel-
opment of the SOFM models. The performance indices such as the determination
coefficient, variance account for, mean absolute error, root mean square error, and
the scaled percent error were used to assess the prediction capacity of the SOFM
models developed.

2. Self Organization Feature Map (SOFM)

Self Organization Feature Map (SOFM) network, a competitive learning method,
is utilized for training which has been developed based on specific characteristics of
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human brain [26]. Cells in the human brain in various areas have been organized
so those are presented with regular and important computational maps in different
sensory areas. In a SOFM network, the processor units are in the nodes of one-
dimensional, two-dimensional, or more dimensional network [26]. In a competitive
learning process, the units are regulated based on the input patterns. The location
of the regulated units in the network regulated such that a significant coordinated
system developed on the network for the input features. Thus, SOFM network
develops a topographic map of input patterns, where the location of the units is
corresponding to the intrinsic characteristics of the input patterns. Competitive
learning employed in such networks is so that in each learning step, the units com-
pete for activation. At the end of a stage race, only one unit wins, its weights are
changed differently than the weights of the other units. This type of learning is
called as unsupervised learning. SOFM networks are classified into several cate-
gories in term of structural features including, MaxNet, Mexican Hat, Hamming,
and Kohonen network [26].

Kohonen learning law goes back to 1962 and before and unsupervised clustering
discussions. In 1970s decade, Christoph Von Der Malsburg introduced a law based
on the idea that the sum of input weights result from one specified output in various
units must be constant [21]. The basis of this idea is the limitation of the existence
chemical material in the input and its dividing between various inputs connecting
to this input. Wi vectors must be changed so that for each input vector X with
density function, the probability ρ is as follows:

ρ (X) =
1

m
. (1)

This idea ideally worked for uniform probability density functions. In 1987, Duane
Desieno developed a change in the Kohonen law which resolved the mentioned
problem. However, it is still called as Kohonen law because of the important role
of Kohonen in this area. A Kohonen layer is a one-dimensional, two-dimensional,
or higher array of neurons. A one-dimensional Kohonen network is given in Fig. 1.

In the learning phase in this network, the distances between the input vectorXand
the corresponding weigh of each unit is calculated using Eq. (2):

Ii = D (X,Wi) , (2)

where D is the measurement function. Each of the common functions can be used
to measure the distance. For example, Eq. (3) shows the spherical arc distance [21]

D (u, v) = (1− cosθ) . (3)

D (u, v) = |u− v| can be used for measuring the angle between u and v or Euclidean
distance. The units aim to know whether they have the closest weight vector to X
or not. This is the competitive part of this kind of networks. The unit with closest
weight to the input vector will be the winner of this step of the competition for
which Zi is equal to 0. Then Eq. (4) represents the Kohonen law used to update
the weights [21]:

0 <∝ wnew
i = wold

i + ∝
(
X − wold

i

)
zi. (4)
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Fig. 1.  One-dimensional Kohonen network structural model [21] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 One-dimensional Kohonen network structural model [26].

Then Eq. (5) is equivalent to Eq. (4):

wnew
i =

{
(1− ∝)wold

i + ∝ x for winner
wold

i other units
. (5)

3. The data sets used in the development of the
SOFM models

In this study, the data sets reported by Erzin and Cetin [7], including the mini-
mum (critical) Fs values of the artificial slope subjected to earthquake forces, were
utilized in the development of the SOFM models. In Erzin and Cetin [7]’s paper,
while the geometry of the slope and the properties of the soil involved in the slope
are kept constant, the three soil properties, namely, bulk unit weight (γ), cohesion
(c), and angle of internal friction (ϕ) of the layer beneath the ground surface and
seismic coefficient (k), varied during the stability analyses. Then, in Erzin and
Cetin [7]’s paper, the Fs values of the artificial slope were calculated by using sim-
plified Bishop method [4] and the Fs value was then determined for each case by
using the written program [5]. The details of the data used in the SOFM models
are listed in Tab. I.
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Parameters used Minimum Maximum Mean Std. Deviation

γ 16 22 19 2.2370
c 5 50 27.5 14.3674
ϕ 15 40 27.5 8.5427
k 0.1 0.5 0.3 0.1415
Fs 0.37 3.80 1.44 0.5899

Tab. I The details of the data used in the SOFM models [7].

4. Developed Self-Organizing Feature Map
models

In this study, three different Kohonen Self Organization Feature Map (SOFM)
network models, denoted as SOFM1, SOFM2, and SOFM3, respectively, were de-
veloped to predict the critical factor of safety (Fs) value of the widely used artificial
slope subjected to earthquake forces. SOFM1, SOFM2, and SOFM3 models have
neighborhood shapes, namely, SquareKohonenful, LineKohonenful, and Diamond-
Kohenenful, respectively. The three soil parameters of the layer beneath the ground
surface, namely, the bulk unit weight, γ, cohesion, c, and angle of internal friction,
ϕ, and seismic coefficient kh were used as the input parameters in the SOFM
models. The calculated Fs value was utilized as the output parameter. To avoid
overfitting, the database was randomly divided into three sets: training, testing,
and validation. In total (i.e., 1190 data sets), 70 % of the data (i.e., 834 data sets),
15 % (i.e., 178 data sets), and 15 % (i.e., 178 data sets) were randomly selected and
used for training, validation, and testing sets, respectively, in the SOFM models
developed in this study.

Different excitation functions including LinearAxon, BiasAxon, LinearSigmo-
hidAxon, LinearTanhAxon, SigmohidAxon, TanhAxon were utilized to determine
the best structure of the SOFM models. The number of the nodes in the hidden
layer(s) was determined by the following empirical formula (6) [17]:

NH ≤ 2NI + 1, (6)

where NH and NI are the number of nodes in the hidden layer(s) and input layers,
respectively. Different learning algorithms, namely, Momentum, Delta-bar-delta,
and Quick prop, were used to search for the most efficient SOFM structure in each
SOFM model. The genetic algorithm was used to intelligently decide the initial
weights and the competitive learning for the further unsupervised training. Then,
the optimal structure of each SOFM model was determined through software ver 5.0
NeuroSolutions. Tab. II summarizes the optimal structure of each model and their
various characteristics obtained from genetic algorithm.
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The number The number
Model Neighborhood Shape of hidden of the nodes in the Learning Transfer

layer(s) hidden layer(s) algorithm function

SOFM1 SquareKohonenfull 1 9 Momentum TanhAxon
SOFM2 LineKohonenfull 2 5-4 Delta Bar Delta LinearAxon
SOFM3 DiamondKohonenfull 2 6-3 Quickprop SigmoidAxon

Tab. II The optimal structure of each SOFM model and their various character-
istics obtained from genetic algorithm.

5. Results and discussion

The Fs values calculated from the Simplified Bishop Method [4] were compared with
the Fs values predicted from the SOFM1 model, as shown in Fig. 2 for training,
validation, and testing samples. The solid diagonal line in Fig. 2 represents a
perfect prediction line. The lower line represents a 100 % over prediction bound
and the upper line represents a 50 % under prediction bound. Approximately all of
the predictions in Fig. 2 fall onto or are very close to the 1:1 line, which indicated
that the predicted Fs values of are good agreement with the calculated Fs values.
As a result, the critical Fs value of the homogeneous finite slope considered in this
study could be predicted by utilizing the trained SOFM1 structures as quite easily
and efficiently.

The Fs values calculated from the Simplified Bishop Method [4] were compared
with the Fs values predicted from the SOFM2 model, as illustrated in Fig. 3 for
training, validation, and testing samples. The solid diagonal line in Fig. 3 represents
a perfect prediction line. The lower line represents a 100 % over prediction bound
and the upper line represents a 50 % under prediction bound. It can be noticed
from Figs. 2 and 3 that the R2 values in SOFM2 model are smaller than those in
SOFM1 model, indicating the higher prediction performance of the SOFM1 model
in predicting Fs values of the artificial slope than SOFM2 model.

The Fs values calculated from the Simplified Bishop Method [4] were compared
with the Fs values predicted from the SOFM3 model, as depicted in Fig. 4 for
training, validation, and testing samples. The solid diagonal line in Fig. 4 represents
a perfect prediction line. The lower line represents a 100 % over prediction bound
and the upper line represents a 50 % under prediction bound. Figs. 2 and 4
demonstrate that the R2 values in SOFM3 model are very smaller than those in
SOFM1 model, yielding the higher performance of SOFM1 model in predicting Fs

values of the artificial slope than SOFM3model.

As mentioned earlier, SOFM1, SOFM2, and SOFM3 models have different
neighborhood shapes, namely, SquareKohonenful, LineKohonenful, and Diamond-
Kohenenful, respectively. When comparing the performance of the SOFM models
(Figs. 2 to 4), the SOFM1 model yields more reliable predictions than both SOFM2
and SOFM3 models. This result indicates both the importance of the selection of
the neighborhood shape and the use of SquareKohonenful neighborhood shape
while developing the SOFM models as observed by Tai et al. [30]. As a result,
the utilize of the SOFM2 and SOFM3 models with neighborhood shapes, namely
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Fig. 2. The comparison of the calculated Fs values with the predicted Fs values from the 

SOFM1 model for (a) training, (b) validation and (c) testing samples. 
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Fig. 2 The comparison of the calculated Fs values with the predicted Fs values from
the SOFM1 model for (a) training, (b) validation and (c) testing samples.
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Fig. 3. The comparison of the calculated Fs values with the predicted Fs values from the 
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Fig. 3. The comparison of the calculated Fs values with the predicted Fs values from the 

SOFM2 model for (a) training, (b) validation and (c) testing samples. 

 

 

 
Fig. 3. The comparison of the calculated Fs values with the predicted Fs values from the 

SOFM2 model for (a) training, (b) validation and (c) testing samples. 
Fig. 3 The comparison of the calculated Fs values with the predicted Fs values from
the SOFM2 model for (a) training, (b) validation and (c) testing samples.
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LineKohonenful, and DiamondKohenenful is not recommended at the preliminary
stage of designing the homogeneous finite slope subjected to earthquake forces
considered in this study.

When Erzin and Cetin [7] developed a multiple regression (MR) model (Eq. 7)
by utilizing the data sets used while developing the SOFM models to predict the
Fs values:

Fs = 1.247− 2.430kh − 0.030γ + 0.024c+ 0.031ϕ. (7)

The Fs values calculated from the Simplified Bishop Method [4] were also compared
with the Fs values predicted from the MR model in Fig. 5 for training, validation,
and testing samples. The solid diagonal line in Fig. 5 represents a perfect prediction
line. The lower line represents a 100 % over prediction bound and the upper line
represents a 50 % under prediction bound. It can be noted from the Figs. 2 and
5 that the R2 values in the MR model are smaller than those in the SOFM1
model, which indicates the higher performance of the SOFM1 model in predicting
Fs values of the artificial slope. When compared the prediction performances of
MR, SOFM2, and SOFM3 models (Figs. 3 to 5), it can be also noticed that MR
model yielded the higher performance than both SOFM2 and SOFM3 models in
predicting Fs values of the artificial slope.

Variance accounted for (VAF), given by Eq. (8), and the root mean square error
(RMSE), given by Eq. (9), were also calculated in order to evaluate the performance
of the prediction capacity of predictive models developed in the study, as employed
by previous researchers [6, 8-14]:

VAF =

[
1− var (y − ŷ)

var (y)

]
× 100, (8)

RMSE =

√
1

N

∑N

i=1
(yi − ŷi)2, (9)

where var denotes the variance, y is the measured value, ŷ is the predicted value,
and N is the number of the sample. If VAF is 100 % and RMSE is 0, the model
is treated as excellent. The performance indices calculated for the three SOFM
models developed in this study and the MR model are listed in Tab. III, which
shows that the SOFM1 model has exhibited the higher prediction performance
than the other SOFM models (SOFM2 and SOFM3) and the MR model based on
the computed performance indices.

In addition, a graph between the scaled percent error, SPE, (as given by Eq. (10)
and employed by Kanibir et al. [20] and Erzin et al. [14]) and the cumulative
frequency was also drawn, as given in Fig. 4 for the three SOFM models and the
MR model to assess the performance of the models:

SPE =
(Fsp − Fsc)

((Fsc)max − (Fsc)min)
, (10)

where Fsp and Fsc are the predicted and the calculated factor of safety values; and
(Fsc)max and (Fsc)min are the maximum and minimum calculated factor of safety
values, respectively. It can be noticed from Fig. 6 that about 92 %, 57 %, and 23 %
of the factor of safety values predicted from the SOFM1, SOFM2, and SOFM3
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Fig. 4. The comparison of the calculated Fs values with the predicted Fs values from the 

SOFM3 model for (a) training, (b) validation and (c) testing samples. 
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Fig. 4. The comparison of the calculated Fs values with the predicted Fs values from the 

SOFM3 model for (a) training, (b) validation and (c) testing samples. 

Fig. 4 The comparison of the calculated Fs values with the predicted Fs values from
the SOFM3 model for (a) training, (b) validation and (c) testing samples.
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Fig. 5. The comparison of the calculated Fs values with the predicted Fs values from the MR 

model for (a) training, (b) validation and (c) testing samples.  
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Fig. 5. The comparison of the calculated Fs values with the predicted Fs values from the MR 

model for (a) training, (b) validation and (c) testing samples.  
Fig. 5 The comparison of the calculated Fs values with the predicted Fs values from
the MR model for (a) training, (b) validation and (c) testing samples.
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Model Data R2 MAE RMSE VAF [ %]

Training set 0.9634 0.07 0.11 96.34
SOFM1 Validation set 0.9682 0.07 0.11 96.78

Testing set 0.9683 0.06 0.11 96.68
Training set 0.7906 0.19 0.27 79.06

SOFM2 Validation set 0.8132 0.19 0.27 81.20
Testing set 0.7644 0.20 0.28 76.38
Training set 0.0770 0.44 0.56 6.76

SOFM3 Validation set 0.1730 0.46 0.58 11.10
Testing set 0.0903 0.43 0.56 6.58
Training set 0.8876 0.14 0.19 88.76

MR Validation set 0.8954 0.15 0.20 89.36
Testing set 0.9111 0.12 0.17 90.90

Tab. III Performance indices (R2, MAE, RMSE, and VAF) of the SOFM1,
SOFM2, SOFM3 and MR models.

models, respectively, developed a fall into ±5 % of the SPE, indicating a perfect
estimate for the Fs value of the slope from the SOFM1 model when compared with
the SOFM2 and SOFM3 models. As shown in Fig. 6, about 72 % of factor of safety
values predicted from the MR model developed a fall into ±5 % of the SPE. It can
be noticed from Fig. 6 that SOFM1 model yielded the highest estimate for the
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Fs value than the other SOFM models (SOFM2 and SOFM3) and the MR model.
Therefore, the Fs value of the widely-used artificial slope utilized in this study could
be predicted from easily determined soil properties and seismic coefficient using the
SOFM1 model, with acceptable accuracy, at the preliminary stage of designing the
artificial slope.

6. Conclusions

In this study, the performance of three different Kohonen Self Organization Fea-
ture Map (SOFM) network models with different neighborhood shapes to predict
the critical factor of safety (Fs) value of the widely-used artificial slope subjected
to earthquake forces has been investigated and compared. For this purpose, the
data sets reported in Erzin and Cetin [7], including the Fs values of the artifi-
cial slope calculated by using the simplified Bishop method [4], were utilized in
the development of the three SOFM models denoted as SOFM1, SOFM2, and
SOFM3 having neighborhood shapes, namely, SquareKohonenful, LineKohonen-
ful, and DiamondKohenenful, respectively. The SOFM models included four input
parameters, namely, bulk unit weight (γ), cohesion (c), and angle of internal fric-
tion (ϕ) of the layer beneath the ground surface and seismic coefficient (k) and one
output parameter, Fs. The results obtained from the three SOFM models were
compared with those obtained from the calculations. It is found that the Fs values
predicted from the SOFM1 model match with the calculated Fs values much better
than both SOFM2 and SOFM3 models. This result indicated both the importance
of the neighborhood shape and the use of SquareKohonenful neighborhood shape
while developing an SOFM model as observed by past researcher [30]. Further,
the SOFM1 model with SquareKohonenful neighborhood shape is found to yield
better predictions than the MR model developed and reported by Erzin and Cetin
[7].

In addition, the performance indices such as the determination coefficient,
variance account for, mean absolute error, root mean square error, and the scaled
percent error were used to assess the prediction capacity of the SOFM models
developed. The study demonstrates that the SOFM1 model is able to predict the
Fs value of the artificial slope, quite efficiently, and is superior to the SOFM2 and
SOFM3. Thus, the SOFM1 model can be used to predict the Fs value of the widely-
used artificial slope subjected to earthquake forces quite easily and efficiently.
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