
A NOVEL FRAMEWORK TO ALLEVIATE
DISSEMINATION OF XSS WORMS IN

ONLINE SOCIAL NETWORK (OSN) USING
VIEW SEGREGATION

P. Chaudhary, B.B. Gupta

Abstract: In this paper, we propose a client-server based framework that alle-
viates the dissemination of XSS worms from the OSN. The framework initially
creates the views corresponding to retrieved request on the server-side. Such views
indicate that which part of the generated web page on the server can be accessed by
user depending on the generated Access Control List (ACL). Secondly, JavaScript
attack vectors are retrieved from the HTTP response by referring the blacklist
repository of attack vectors. Finally, injection of sanitization primitives will be
done on the client-side in place of extracted JavaScript attack vectors. The frame-
work will perform the sanitization on such attack vectors strictly in a context-aware
manner. The experimental testing of our framework has performed on the two plat-
forms of open source OSN-based web applications. The observed detection rate of
JavaScript attack vectors was effective and acceptable as compared to other ex-
isting XSS defensive methodologies. The proposed framework has optimized the
method of auto-context-aware sanitization in contrast to other existing approaches
and hence incurs a low and acceptable performance overhead.

Key words: Cross-Site Scripting (XSS) worms, online social network security, URI
links

Received: April 11, 2016 DOI: 10.14311/NNW.2017.27.001
Revised and accepted: October 3, 2016

1. Introduction

In the recent years, Online Social Network (OSN) have gained significant popu-
larity as these have become intertwined into the daily life of people as the digital
virtual place that empower communication. It is a virtual place, where people cre-
ate their own profile, find new friends and re-establish the lost connections based
on the common attributes and behavior. The popular OSN utilized nowadays is
Facebook [7,24] with over more than 1 billion active users. Other famous OSNs are
Google+ [11,12] with more than 235 million active users; Twitter [9] has over 200

Pooja Chaudhary; B.B. Gupta – Corresponding author; National Institute of Technology, Ku-
rukshetra (pin code: 136119), Haryana, India, E-mail: pooja.ch04@gmail.com bbgupta.nitkkr@

gmail.com

c©CTU FTS 2017 5

mailto:pooja.ch04@gmail.com
mailto:bbgupta.nitkkr@gmail.com
mailto:bbgupta.nitkkr@gmail.com

Neural Network World 1/2017, 5–25

million active users and LinkedIn [22] with more than 160 million active users. As
user share every type of information on OSN platform ranging from personal to pro-
fessional; therefore, such networks suffer from various categories of cyber-attacks.
XSS worms have turned out to be a plague for the OSN based web applications
like Facebook, Twitter, LinkedIn, etc. Cross Site Scripting (XSS) [13–15] attack
has become one of the dangerous threats to the OSN. XSS is a type of code injec-
tion attack in which attacker injects judiciously crafted malicious JavaScript code
through the input parameters at the client-side. It is done in order to cause harmful
actions of the web applications and accomplish the attacker’s objectives like cookie
stealing, session token theft or to launch other attacks. It can be categorized into
3 types [16, 17]: 1) Persistent XSS attack in which attacker permanently inserts
malicious scripts into the server. After that, when web pages is loaded at browser
then malicious scripts get executed and results into XSS attack; 2) Non-persistent
attack in which attacker lures the victim to click on illicitly crafted URL which
leads to the execution of malicious script included in this URL; 3) DOM-based
XSS attack [18,19] is caused because client-side scripts dynamically alter the DOM
structure of web page in order to run malicious scripts.

1.1 Various security challenges on OSN platform

As OSN usage has been tremendously increased in the digital world, its users
unknowingly become exposed to the many threats to their security and privacy.
Users are unaware of the security risks which exist in these types of communications,
including privacy risks, identity theft, malware, fake profiles (also in some cases
referred to as sybils or Socialbots), and sexual harassment, among others. As the
use of OSNs becomes progressively more embedded in users’ daily lives, personal
information becomes easily exposed and abused. This information may include
relationship status, DOB, school name, email address, phone number, and even
home address. This information if put into wrong hands, can be used to harm
users both in the virtual world and real world. Various security issues exist on the
OSN platform [10]. Some of them are shown in Fig 1. As reported by the White Hat
Security (2015) [33]. XSS secure 3rd position among all dangerous web application
vulnerabilities. According to the survey done by the OWASP [25] in 2013, the
problem causing greatest infection is the Cross-Site Scripting (XSS) attack and is
accordingly the third top most weakness among the top ten susceptible threats.

1.1.1 XSS attack is very challenging to detect

The three main factors that affect the XSS vulnerability are 1) users’ behaviour
means the probability with which user visits a friend’s profile than a stranger; 2)
highly concentrated architecture of OSN groups; 3) group size. Since the proba-
bility with which a user visits friend’s profile is higher therefore, its propagation
speed is faster than the other worms. Amplitude of damage from XSS depends on
the sensitivity of data breached by the attacker. Unfortunately, many OSN users
are unaware of the security risks which exist in communications online like XSS.
Hence, information comprising personal data becomes easily accessible and abused
by the adversary. It can be used to harm user in virtual world and real world also.
In 2005, Samy worm was the first worm which exploits the XSS vulnerability [8].

6

Chaudhary P., Gupta B.B.: A novel framework to alleviate dissemination of XSS. . .

Fig. 1 Security and Privacy issues in OSN platform.

Over a time period of 20 hours, Samy worm has infected one million users on MyS-
pace social networking site as shown in Fig. 2. Since it triggers by the attacker

Fig. 2 Total number of infections after 20 hours by Samy worm.

through the injection of JavaScript code that looks similar to the legitimate code,
therefore, it is a tedious task to make a differentiation between the two code snip-
pets. Consequently, XSS attack is more difficult to catch on highly clustered OSN
platform.

1.2 State-of-art techniques

Numerous XSS defensive solutions were proposed by the researchers for detect-
ing and alleviating the effect of XSS vulnerabilities from the different platforms of
Web applications. Blueprint [31] provides robust protection from the XSS attacks
in spite of having irregular browser parsing behavior. However, it requires modi-

7

Neural Network World 1/2017, 5–25

fications at both the sides, i.e. client and server side. It does not protect against
the non-scripting attacks. It is difficult to apply as it changes the way applica-
tion generates the HTML content for browser. Li et al. [32] uses machine learning
algorithm to classify malicious Web pages from benign Web pages in OSN-based
web applications. However, its effectiveness depends on the training phase to build
up the feature database. Saner [2] make use of both static and dynamic analysis
for detecting the presence of malicious scripting code in the source code of web
applications. However, its deployment cost is high. Nandji et al. [23] proposed a
client-server based architecture to enforce document structure integrity. It com-
bines runtime tracking and randomization to thwart XSS attack. However, it is not
effective to detect the DOM-based XSS attack. Pelizzi [26] proposed a client-side
XSS filter, XSSFilt, which could discover non-persistent XSS vulnerabilities. This
filter identifies and thwarts portions of address URL from giving an appearance in
web page. This filter could also discover partial script insertions. XSS Auditor [3]
is a filter that realizes equally extraordinary performance as well as high accuracy
via jamming scripts following the HTML parsing and prior to execution. The filter
can simply spot the components of the response which are considered as a script. It
also scans the Document Object Model (DOM) tree generated by the HTML parser
for the clear interpretation of the semantics of the bytes. Cao et al. [4] proposed
a technique (i.e. Path Cutter) that works by restricting the two main steps in the
proliferation of the XSS worm: 1) access to DOM, at client side, to different views.
2) Illegitimate HTTP request to the OSN server. Path Cutter is a server side ap-
proach which attempts to reduce the impact of the XSS worm by constraining its
dissemination path. However, it is not able to protect each and every view from
being infected from the XSS attack vector. Reis and Gribble [27] have designed
browser architecture based on the web applications instances to improve the reli-
ability of multi-process browser architecture. To achieve this, they have identified
program abstractions in the web browser by preserving their semantic structure.
These instances can be used to improve browser robustness and performance. Tang
et al. [29] designed a client-side architecture named as Alhambra, which enforces
security policies to automatically defend browser from wide range of attacks like
XSS. It uses policy enhanced components to enforce policies for the restriction of
execution of malicious content in the web page. Then, it uses testing component to
test for the presence of the XSS attack as reply system. However, it cannot handle
re-ordering of non-deterministic function calls like random() within the same script.
Cox et al. [5] have designed a web browsing system named Tahoma, to improve
the safety and security of the web users. In this system, each web application is
allowed to execute in its own sandboxed process to remove the need to trust on
web browser and services that they retrieve. For this, it inserts new security layer
browser operating system (BOS) which manages web applications and its sand-
boxed process. For security of web application, BOS restricts the resources and
sites to which web application can communicate. Its evaluation revealed that its
can prevent web application from 87% of vulnerabilities that has infected Mozilla
web browser. However, the existing techniques pay their attention towards mini-
mizing the effect an XSS worm can cause, by restraining it to a particular view and
blocking its proliferation path. However, an attacker may capture the control of a
specific view and successfully steal the important information about the user, to

8

Chaudhary P., Gupta B.B.: A novel framework to alleviate dissemination of XSS. . .

achieve his objectives. These techniques also incur high rate of false positive and
false negative.

1.3 Our contribution

To overcome such performance issues, this paper presents the view segregation
based defensive framework that mitigates XSS attack on the OSN platform. It is
a client-server based framework. Firstly, it learns about the Access Control List
(ACL) in offline mode. Secondly, at the server side, it performs view generation
and isolation process. Then, at the client side, it implements context-sensitive
sanitization of extracted malicious JavaScript code after the successful request au-
thentication. The rest of the paper is organized as follows: In Section 2, we describe
the detailed information of our proposed technique. In Section 3, we provide the
implementation details. Finally, Section 4 concludes the paper.

2. Proposed framework

In this section, we provide a brief description of our proposed framework which
is a based on the view segregation approach. It is a novel framework which aims
at protecting each part of the OSN based web application from XSS attack by
performing 2 main steps: first, through the extraction of malicious JavaScript code
from each part of web application, second, performing sanitization of malicious
scripts extracted in first step. Next, we outline the key concepts used by our
framework and the strategy used by our method to mitigate XSS worms. Finally,
we describe how the implementation of our framework on OSN platform can help
in protecting the users from XSS attack.

2.1 Abstract design overview

Our proposed framework aims to provide protection to each view of the Web ap-
plication from XSS attack. It restricts attacker to gain access to any view and
become capable of stealing sensitive information corresponding to that view like
session token, cookie information and any other personal information of the user.
Our framework executes in two phases: Learning phase and Identification phase.
In the first phase, we distribute the OSN web application into different views and
Access Control List (ACL) is rehearsed to apprentice all the privileges/rights a
particular view can secure. In the second phase, firstly it validates the action orig-
inated by the particular view to ensure that the corresponding view possess the
capability to perform that action or not. If action is validated then it discovers the
malicious JavaScript nodes in the parsed HTML document. Secondly, it applies
context-sensitive sanitization method on these extracted JavaScript nodes and fi-
nally returns the sanitized document to the user. By doing this we ensure that
each view is protected against the execution of malicious JavaScript code that will
trigger XSS attack. Otherwise, request is denied. Fig. 3 illustrates the abstract
view of our proposed model. Now let us discuss the prime concepts used in our
model. These are defined below:

9

Neural Network World 1/2017, 5–25

• Views: It may be defined as sandboxed process used to implement the part
of the Web application. At the client-side, it will appear as the Web page
or a part of it. For example, when user access example.com/options and
example.com/update, it can be considered as those two to be from different
views.

• Actions: Actions may be considered as the tasks executed by the View. For
example there may be a request from view X to write a comment on X’s
comment area. Actions may be considered as the rights given to a view to
perform accordingly. To validate the actions initiated from the view Access
Control List (ACL) is used.

• Malicious JavaScript nodes: After the construction of HTML parse tree,
malicious JavaScript nodes represent script node that take input from user.
These nodes help in implanting of untrusted code in the legitimate scripts as
string or literals. This is a common practice of web application to allow user
input in JavaScript variables for modifying performance of scripts. However,
this leads to a successful embedding of malicious user input which outcomes
into XSS attack. For example, <script> alert(document.cookie);</script>
or the use of functions such as eval() or innerHTML() to invoke dynamic
content that initiate dangerous parsing behavior.

• Context Sensitive Sanitization: Sanitization is method for removing malicious
scripts/data from the used supplied input. It is done to ensure that input
data are in the correct syntactic and semantic format as acceptable by the
web application. Context sensitive sanitization apply sanitizers’ functions
on each untrusted variable (i.e dynamic content like JavaScript) according
to the context they are used. For example, filter xss() is a function used
to filtered out HTML string to prevent from XSS attack. There may be
different context present in an HTML document like Element tag, attribute

Fig. 3 Abstract design view of the Proposed Model.

10

Chaudhary P., Gupta B.B.: A novel framework to alleviate dissemination of XSS. . .

value, Style Sheet, Script, anchors, href, etc. These all context can help the
attacker to launch XSS attack by embedding malicious code into the trusted
code. Table I highlights HTML features used to inject the XSS vector into
the Web application.

HTML Attribute Expected Value Attack Request Instance
Tag Type

Link Href Text/CSS <link type = “text/css” href
= “attack malicious URL” />

Body Background Image <body background:
url(‘attack malicious URL’)>

Img Src Image <img src = “attack malicious
URL” />

Script Src text/JavaScript <script type = “text/javascript”
src = “attack malicious URL” >
</script>

Style Type text/JavaScript <STYLE TYPE=”text/javascript
”>alert(’XSS’);</STYLE>

Input Src Image <input type = “image” src
= “attack malicious URL”
alt = “Submit”/>

Tab. I HTML elements and their attributes used to initiate XSS attack.

Fig. 4 highlights the step-wise working process of our proposed framework in
the form of a flow chart. It provides deep insight into the implementation details
of the model.

2.2 Detailed design overview

In this sub-section, we provide detailed description of each component present
in the abstract view to deliver deep understanding of our proposed model. Fig. 5
shows the detailed architecture of our proposed framework. It defines how different
modules interact with each other. Our framework executes in two phases: Learning
phase and Identification phase.

• Learning phase: Learning phase plays a vital part in determining the ef-
ficiency of our proposed technique. This phase is implemented offline. In
this phase, ACL list is lay down. Moreover, system learns about all the ac-
tions that a particular view can originate. Access Control List is maintained
to carefully authenticate each action during identification phase. Basically,
it provides a mapping between each view and its corresponding actions. It
should be constructed carefully so that system will be more powerful in defin-
ing that the view has the privileges to perform actions or not. ACL contains
the entry in the form of ¡User ID, privileges¿, User ID denotes the user’s
cookie information and privileges denotes the actions a user with that User

11

Neural Network World 1/2017, 5–25

Fig. 4 Flow chart depicting working process of the proposed model.

ID can execute. It is maintained at the client-side for validating each ac-
tion. For example, consider some of the pseudo entries in ACL list shown in
Tab. II. First column indicates the type of the user (i.e. developer, anony-
mous user, authenticated user, client, etc.) second column represents path of

12

Chaudhary P., Gupta B.B.: A novel framework to alleviate dissemination of XSS. . .

specific part of the web application and third column denotes all the privileges
secured by that type of user.

User type URL path Privileges

Developer www.drupal.com/dashboard All privileges
Client www.drupal.com/dashboard All, except

code modifications
Authenticated user www.drupal.com/dashboard Read, write,

settings configuration
Anonymous user www.drupal.com/dashboard Read

Tab. II An illustration of entries in ACL list.

Fig. 5 Detailed Architecture of the proposed model.

• Identification Phase: During this phase, system works in the real environ-
ment. It is the most important phase as XSS attack detection is accomplished
here with the help of ACL list prepared in the training phase. This phase is
executed at both side client and server. The following steps are performed at
server side to achieve view segregation:

1. When OSN server receives the HTTP request from the Client side then
it is firstly dispatched to the session admin where it is mapped with

13

Neural Network World 1/2017, 5–25

stored session depending on the user’s cookie information (i.e. user’s
login credentials).

2. After this, Request is checked to ensure whether it alters the server
content or not. For example, a request arises to post a comment. If it
does not alter the web content then OSN server produces the static Web
page and returns it to the browser.

3. Otherwise, multiple views are generated of the Web application and re-
quest if forwarded to view which can process it. It is achieved with
the help of URL mapper which dispatch HTTP requests to their corre-
sponding view for generation of HTTP response web page.

4. Depending upon HTTP request, identified view is taken out via view
extractor and returned to the client as HTTP response. However, steps
which are given below are implemented at the client side.

5. When browser gets the HTTP response firstly it is parsed by the HTML
Parser to generate the DOM (Document Object Model) tree so that
browser can deduce the web content signified by the HTML document.
Thus, parsed document is passed to the HTML document generator
process the web content.

6. HTML document is forwarded to the action validator to check that the
view which initiated the action is capable to perform that action or not
by using ACL list prepared during Training period. If it is not authenti-
cated then it means attacker is trying to breach the view privileges and
trying to launch the XSS attack. Therefore, access is denied.

7. Otherwise, it discovers the malicious JavaScript nodes in the generated
DOM tree with the help of the JS malicious scripts repository. Finally,
extracted JavaScript nodes are then dispatched to the Context Sensi-
tive Sanitization engine where it is sanitized according to the context in
which each script node is embedded. After sanitized each node, again
they are injected into the document and lastly, sanitized HTML Docu-
ment is displayed to the user.

Next, we provide the comprehensive description of each of the major compo-
nents involved in the abovementioned process.

2.2.1 Major components

This sub-section provides the brief introduction to the main components used in
our proposed framework.

Server-side components: These components are implemented at the server
side to accomplish view segregation process. These are described below:

• Session admin: It is responsible for implementing 2 basic functions: 1) It
creates the session for the OSN user when user registers itself for the first
time, by generating cookie corresponding to user’s login details. Moreover, it
provides storage space for these sessions and responsible for controlling and

14

Chaudhary P., Gupta B.B.: A novel framework to alleviate dissemination of XSS. . .

monitoring these stored sessions; 2) it performs the mapping of the stored
session with the user’s login credentials. Basically it stores and maps in-
formation given to OSN server at the time of registration or at the time of
login.

• URL mapper : Web application can be isolated into distinct views on the ba-
sis of its content by using two strategies: first, we can isolate web application
into different views on the basis of content semantics. For example, blogging
social site like WordPress can be divided into views via blog names. Sec-
ond, isolation can be achieved on the basis of requested URL. For example,
www.wordpress.com/blog1/options and www.wordpress.com/blog2/updates
can be considered as two different views of web application WordPress.
In our proposed framework, we use second strategy to divide web appli-
cation into different views. Therefore, URL mapper is responsible to map
requested URL to the part of the web application that is capable to process
the request. It is responsible for generation of the view that is requested by
the user, on the basis of requested URL. For example, the requested URL
www.wordpress.com/blog1/post maps to the post part of the blog1 web page
of WordPress web application.

• View extractor : It is responsible for the withdrawing the requested view and
returns it to the client as the HTTP response. It extracts the view according
to the HTTP request. To ensure correct extraction of requested view, it per-
forms isolation of the content of particular view from the content of another
view of same web application. It is achieved to prevent unauthorized access
from one view to another. To implement this, our framework encapsulates
each view into virtual domain. For example, each view from blog1.com can be
encapsulated into virtual domain as segblog1.com. It is embedded into main
page using iframe feature provided in HTML5. It ensures that a user having
access to blog1.com cannot gain access to segblog1.com illicitly. This will
enforce Same Origin Policy (SOP) on view segregation of web application.

Algorithm 1 describes the algorithm implemented at the server side to perform
the view generation operations by using session admin and URL mapper. This
algorithm performs the view generation and extraction operation by performing
the following steps:

1. Session variable (Str S) is an array which is used to hold the session related
to user cookie information. For each HTTP request (HI), Str S will store the
session (SI) and then server checks if request modifies the Web application
content, if not, it generates the static web page (WI) and returns it to the
client as HTTP response (H1). Otherwise, VI holds the view generated for
severing the HTTP request.

2. URL mapper maps the requested URL ∈ (U1, U2, U3, . . . , UN) to the respec-
tive view and finally, that view is returned to the client as HTTP response.

Client-side Components: In addition to the server-side components, our pro-
posed framework also includes some of the major components which are positioned
at the client-side. These components are illustrated below:

15

Neural Network World 1/2017, 5–25

Algorithm 1 Server-side View Generation.

Input: Set of HTTP Request (H1, H2, H3, . . . ,HN).
Output: Set of Views (V1, V2, V3, . . . , VN) or Web Pages
Start
Str S ⇐ NULL; /*list for storing session for users.
for Each HTTP request as HI do

Generate session SI ;
Str S⇐ SI∪ Str S;
if HI modifies OSN server content then

Generate View VI

Map each VI to their corresponding URL ∈ (U1, U2, U3, . . . , UN)
Return H1 ⇐ VI

else
Generate static Web page WI

Return H1 ⇐WI

end if
end for
End

• HTML parser : At the client side, HTTP response is first received by the
HTML parser which constructs the Document Object Model (DOM) tree.
It is the method which is used by the browser to interpret the HTML doc-
uments. During parsing, text code are separated from the executable code
and represented in the DOM tree as data node and script node respectively.
Browser interprets these nodes to display the content in the resultant HTML
document to the user. For instance, consider the following code snippet as
shown in Algorithm 2.

Algorithm 2 Example shows vulnerable HTML code produced by vulnerable
server.

<html>
<body>
<div name= “val” onClick= “my()”> Click Me!!! </div>
function my(){
document.getElementByName(“val”).innerhtml= “hello” + “$ GET(‘name’)” +
“you are” + “$ GET(‘age’)” + “years old”;}
</script>
</body></html>

In the above example, untrusted user input is applied at $ GET(‘name’) and
$ GET(‘age’). The parse tree generated for the above code snippet is shown in
Fig. 6. Each node of the tree represents HTML tags or text. This tree will be
processed to determine script node embedded in to the web page.

• HTML document generator: This component is responsible for storing and
interpreting the web content represented by parsed document. Its main ob-

16

Chaudhary P., Gupta B.B.: A novel framework to alleviate dissemination of XSS. . .

Fig. 6 Parse tree generated for the code shown in listing 1.

jective is to separate visual elements and scripting elements and pass them
to other parts of the browser. For example, style elements are passed to the
CSS parser and scripts are forwarded to the JavaScript interpreter.

• Action validator: After parsing, HTML document is validated by the action
validator which checks the authenticity of the action initiated by the view.
It is to ensure that view which has originated the action is able to perform
this action or not i.e. it has the capability to execute action or not. It is
achieved with the help of the ACL (Access Control List) prepared during
learning phase. To examine the action authenticity, first, we retrieve the
URL link specified in the referer header of HTTP request as String referer=
request.getheader(referer);.secondly, we utilize this extracted link along with
type of user to search in the ACL list. If match is found then it checks
the corresponding actions/privileges. If initiated action matches with the
stored actions in ACL then action is authenticated and request is forwarded
JavaScript node extractor. Otherwise, it means that some adversary is trying
to breach the security of the view by injecting some XSS attack vectors into
the view and finally it is rejected.

• JavaScript node Extractor: On the successful validation of the Parsed HTML
document, it is forwarded to the JavaScript node extractor which determines
JavaScript node from the DOM tree. These nodes are extracted because
trusted scripts may be used by the attacker to inject the malicious code into
the web page. For example, in the parse tree shown in Fig. 5, it extract the

17

Neural Network World 1/2017, 5–25

node with value “¡script¿” (encircled with red color) along with its descen-
dants.

• Context Sensitive Sanitization engine: Sanitization is a method to substitute
the untrusted user variable with the sanitized variable. Extracted JavaScript
nodes are sanitized according to the context in which they are used in the
HTML document. In order to defend against XSS attack, we need to ensure
that the all the characters used in the attack vectors must be replace by their
escaping codes. Tab. III shows some of the escaping codes corresponding
to malicious characters. For instance, attacker inject <script>alert(“XSS);
</script> attack vector into any input field of the web application then, ‘ <′

and ‘ >′ would be replaced with the < and >. Algorithm 3 shows a
code snippet that will replace these characters.

Characters Hexadecimal code Numerical code

“ " "
#
& & &
‘ ' '
(((
)))
/ &#x 2F /
, &#x 3B ;
¡ &#x 3C <
¿ &#x 3E >

Tab. III Character escaping code.

Algorithm 4 describes the algorithm used by the context sensitive sanitization
engine to sanitize the script nodes. The context sensitive sanitization engine pro-
cedure algorithm works as follows:

1. San is a repository which includes the externally available sanitizer’s vector,
used for sanitization. VUT is an array used to hold the untrusted variables.

2. After extracting JavaScript nodes (JS), we search for the untrusted variable
(X) and store it in the VUT . Now context type identifier is used to determine
the context (CI) of the each X and then apply the sanitizer (SI) according
to the context in which VI is used.

3. Sanitized variable is store in VSI and then it is merged with the San for more
effective results.

4. All the sanitized variables are then injected to the HTML document at their
respective extracted locations and modified HTML document is displayed to
the user.

Algorithm 5 describes the algorithm executed at the client side to complete all
the processes. It uses various variables and ACL to complete its working process.
The complete details of the algorithm are given below:

18

Chaudhary P., Gupta B.B.: A novel framework to alleviate dissemination of XSS. . .

Algorithm 3 Example shows vulnerable HTML code produced by vulnerable
server.

Public function filter char esc($string)

$str = str replace
(
array(<‘, >‘, |‘‖, ‖‘,)‘, (),
array(<‘, >‘, '‘, "‘,)‘, (‘)
$string
);
$str = str ireplace(%3Cscript‘, , $str);
return $str;

Algorithm 4 Context Sensitive Sanitization engine procedure.

Input: Set of JavaScript nodes (JS1, JS2, JS3, . . . , JSN).
Output: Sanitized HTML document.
Start
San⇐ list of sanitizers (S1, S2, S3, . . . , SN);
X⇐ ϕ; /*list to hold untrusted variable
for Each extracted node JSI do

X⇐Untrusted variable;
VUT ⇐ X∪VUT ;
for Each VUT do
CI ⇐Context(VUT);
SI ⇐ (S ∈ San) ∩ (S matches CI);
VSI ⇐ SI(VUT);
San⇐ VSI∪ San;

end for
Insert all sanitized variables in document
Return document

end for
End

1. Each entry in the ACL (A) is denoted as (A1, A2, A3, . . . , AN) and J S is an
array which is used to store the extracted JavaScript nodes.

2. For each responded view (VI) performing action AI, it first parses the doc-
ument as DP and it is passed to the HTML document generator to process
the document in D1. After this, it checks whether the VI has the capability
to execute that AI or not (i.e. check the condition ((VI executes AI)∩ (AI ∈
A)). If it is true then JavaScript nodes are extracted and context-sensitive
sanitization is applied on these extracted nodes. This is achieved by applying
the algorithm as shown in Algorithm 4.

19

Neural Network World 1/2017, 5–25

Algorithm 5 Client side sanitization and action authentication.

Input: Set of extracted views (V1, V2, V3, . . . , VN) or web page WI .
Output: Modified HTTP response (HRM1, HRM2, HRM3, . . . ,HRMN)
Start
A⇐ Access Control List (A1, A2, A3, . . . , AN)
JS ⇐ ϕ; /*list to store extracted JS nodes
for Each View as VI do
DP Parser(V1);
D1 HTML Document-generator(DP);
if ((VI executes AI) (AI ∈ A)) then

J S⇐ Extract JavaScript node(DP)∪ J S ;
HRMI ⇐ Context-Sensitive-Sanitization-engine(J S);
Return HRMI

end if
if AI /∈ A then

Request is denied.
Return Access Denied

end if
end for
End

2.3 Key strengths of our proposed framework

The proposed framework is a client-server and view segregation based defensive
solution to thwart XSS attack via view isolation and sanitization of malicious
JavaScript code. Our framework executes by intercepting two critical ways in
the proliferation path of XSS worm: 1) illegitimate request to the OSN server; 2)
access to the views at client-side. Therefore, instead of restrict attacker to a partic-
ular view of the web application, it ensures that attacker is not able to gain access
to any view of the web application. In addition to the detection of traditional XSS
attack vector payload, our framework is capable to detect attack vector payload
constructed using new tags and attributes introduced in HTML5 like audio, video,
src, etc. Moreover, we have performed the sanitization of attack vector after the
successful determination of its context so that we can implant correct sanitization
routine. Also, less work is done in the direction of protecting OSN platform from
the plague of XSS attack. Therefore, our framework aims to mitigate XSS attack
from OSN platform. The next section will elaborate the implementation details of
our framework along with the experimental analysis.

3. Experimental evaluation and analysis

This section discusses the implementation and experimental evaluation outcomes
of our client-server side framework. We have implemented our framework in java
using Apache Tomcat server [1] as the backend, for mitigating the effect of XSS vul-
nerabilities from the tested suite of real world web applications. The experiment
background is simulated with the help of a normal desktop system, comprising

20

Chaudhary P., Gupta B.B.: A novel framework to alleviate dissemination of XSS. . .

1.6 GHz AMD processor, 2 GB DDR RAM and Windows 7 operating system. Ini-
tially, we manually verified the performance of our framework against five open
source available XSS attack repositories [20,28,30,35,36], which includes the list of
old and new XSS attack vectors. Very few XSS attack vectors were able to bypass
our client-server resident framework. We utilize HtmlUnit [21] HTML parser to
generate the parse tree for the extraction of JavaScript nodes. We have tested our
proposed system on two open source real world OSN platforms i.e. WordPress [34]
and Drupal [6]. This has been done for evaluating the XSS attack vector mitigation
capability by the deployed mechanisms on these open source OSN web applications.
In terms of accuracy, we estimate what percent of XSS attack payloads are alle-
viated by our system. We have incorporated the infrastructure of our proposed
framework into the OSN application. Tab. IV highlights the configuration and
XSS known vulnerability on the mentioned OSN platforms. We have tested and
evaluated the detection capability of our proposed solution on two real world OSN
web applications namely WordPress and Drupal. We select these applications for
accessing the forms to potentially supply modified pages and access the HTML
forms. We have also calculated the XSS attack payload detection rate of OXSSD
on the utilized two individual OSN-based web applications. This is done by divid-
ing the number of XSS attack payload detected to the number of malicious script
exploited for each category of attack vectors. Tab. V highlights the detection rate
of two OSN web applications w.r.t. individual category of attack vectors.

Application Version XSS vulnerability Lines of Code

WordPress 3.6.1 CVE-2013-5738 135540
Drupal 7.23 CVE-2012-0826 43835

Tab. IV Observed experimental results on Drupal.

The observed results of JS-SAN on two real world web applications correspond-
ing to the chosen categories of JS attack vectors has been shown in the Figs. 7
and 8.

Scripts category⇒
Application⇓ JS Embedded Obfuscated Malicious Character

malicious character JS URL JS encoding
events tags variables script

WordPress 82 91 93 90 94
Drupal 94 91 89 85 92

Tab. V Detection rate (in % age) of OSN-based web applications.

3.1 Performance analysis using F-measure

In this section, we discuss the performance evaluation of our framework during XSS
worm detection testing on open source OSN platform. We have presented detailed
performance analysis of our framework by conducting a statistical analysis method

21

Neural Network World 1/2017, 5–25

Fig. 7 Observed experimental results on WordPress.

Fig. 8 Observed experimental results on WordPress.

(i.e. F-measure). F-measure generally analyses the performance of system by cal-
culating the harmonic mean of precision and recall. The analysis conducted reveals
that our framework exhibits high performance as the observed value of F-measure
in all the platforms of web applications is 0.9. Therefore, the proposed frame-
work exhibits 90% success rate in all the five HTML5 web applications. Tab. VI
highlights the detailed performance analysis of our work.

Precision =
True Positive (TP)

True positive (TP) + False Positive (FP)

Recall =
True Positive (TP)

True positive (TP) + False Negative (FN)

F-measure =
2(TP)

2(TP) + FN+FP

22

Chaudhary P., Gupta B.B.: A novel framework to alleviate dissemination of XSS. . .

Web Total # of # of # of # of Precision Recall F-
Application TP TN FP FN measure

Drupal 127 117 3 6 1 0.9512 0.9915 0.9709
WordPress 127 115 5 2 5 0.9829 0.9583 0.9704

Tab. VI Performance analysis by calculating F-measure.

4. Conclusion and future work

This article discusses a client-server based XSS defensive methodology that scans
and mitigates the effect of JavaScript vectors from the platforms of OSN. The pro-
posed framework generates the views by performing segmentation on the generated
HTTP response. These views define the accessibility region of user to check which
view is accessible by user or not. Based on the extracted views, the extraction of
JavaScript attack vectors will be performed by referring the blacklisted repository
of such attack vector. Finally, the automated process of context-aware sanitization
will be executed on these extracted attack vectors for their safe interpretation on
the client-side web browser. We will try to integrate the capabilities of our pro-
posed framework on the cloud platforms and will evaluate its XSS attack detection
capability on some more platforms of OSN-based web applications.

References

[1] APACHE SOFTWARE FOUNDATION. Apache tomcat 5.5 [software]. 2012-10-10 [accessed
2016-01-30]. Available from: https://tomcat.apache.org/download-60.cgi

[2] BALZAROTTI D., COVA M., FELMETSGER V., JOVANOVIC N., KIRDA E., KRUEGEL
C., SANER V.G.: Composing static and dynamic analysis to validate sanitization in web
applications. IEEE Symposium on Security and Privacy. 2008, pp. 387–401, doi: 10.1109/
SP.2009.33

[3] BATES D., BARTH A., JACKSON C. Regular expressions considered harmful in client-side
XSS filters. In: Proceedings of the 19th international conference on World wide web, Raleigh,
North Carolina, USA, ACM, 2012, pp. 91-—100.

[4] cao y., yegneswaran v., porras p.a., chen y. PathCutter: Severing the Self-Propagation
Path of XSS JavaScript Worms in Social Web Networks. In: NDSS Symposium, San
Diengo, California, 2012. Available from: https://pdfs.semanticscholar.org/5ee0/

0f29d07faaa19f6bb3a4c671e9fb26034d9d.pdf

[5] COX R.S., HANSEN J.G., GRIBBLE S.D., LEVY H.M. A safety-oriented platform for web
applications. In 2006 IEEE Symposium on Security and Privacy (S&P’06). 2006, pp. 15,
doi: 10.1109/SP.2006.4

[6] DRUPAL ORG. Drupal 7.23 [software]. 2013-04-03 [accessed 2016-01-30]. Available from:
https://www.drupal.org/

[7] Facebook. [viewed 2014-01-14]. Available from: http://www.facebook.com/

[8] FAGHANI M.R., SAIDI H. Social networks’ XSS worms. In: International Conference on
Computational Science and Engineering (CSE’09), IEEE, 2009, pp. 1137-—1141, doi: 10.
1109/CSE.2009.424

23

 https://tomcat.apache.org/download-60.cgi
http://dx.doi.org/10.1109/SP.2009.33
http://dx.doi.org/10.1109/SP.2009.33
https://pdfs.semanticscholar.org/5ee0/0f29d07faaa19f6bb3a4c671e9fb26034d9d.pdf
https://pdfs.semanticscholar.org/5ee0/0f29d07faaa19f6bb3a4c671e9fb26034d9d.pdf
http://dx.doi.org/10.1109/SP.2006.4
https://www.drupal.org/

Neural Network World 1/2017, 5–25

[9] FIEGERMAN S. Twitter now has more than 200 million monthly active Users [on-
line]. [viewed 2012-18-12]. Available from: https://www.statista.com/statistics/282087/

number-of-monthly-active-twitter-users/

[10] FIRE M., GOLDSCHMIDT R., ELOVICI Y. Online social networks: threats and solu-
tions. IEEE Communications Surveys & Tutorials. 2014, 16(4), pp. 2019–2036, doi: 10.

1109/COMST.2014.2321628

[11] Google+. [viewed 2014-01-14]. Available from: https://plus.google.com/

[12] GUNDOTRA V. Google+: Communities and Photos [online]. [viewed 2012-12-
06]. Research report. Available from: http://googleblog.blogspot.coil/2012/12/

google-communities-and-photos.html

[13] GUPTA B.B., GUPTA S., GANGWAR S., KUMAR M., MEENA P.K. Cross-site script-
ing (XSS) abuse and defense: exploitation on several testing bed environments and its de-
fense. Journal of Information Privacy and Security. 2015, 11(2), pp. 118–136, doi: 10.1080/
15536548.2015.1044865

[14] GUPTA S., GUPTA B.B. Cross-Site Scripting (XSS) attacks and defense mechanisms: clas-
sification and state-of-the-art. International Journal of System Assurance Engineering and
Management. 2015, pp. 1–19, doi: 10.1007/s13198-015-0376-0

[15] GUPTA S., GUPTA B.B. BDS: browser dependent XSS sanitizer. Book on Cloud-Based
Databases with Biometric Applications, IGI-Global’s Advances in Information Security,
Privacy, and Ethics (AISPE) series, 2014, pp. 174–191, doi: 10.4018/978-1-4666-6559-0.
ch008

[16] GUPTA S., GUPTA B.B. JS-SAN: defense mechanism for HTML5-based web applications
against javascript code injection vulnerabilities. Security and Communication Networks.
2016, 9(11), pp. 1477–1495, doi: 10.1002/sec.1433

[17] GUPTA S., GUPTA B.B. PHP-sensor: a prototype method to discover workflow violation
and XSS vulnerabilities in PHP web applications. In: Proceedings of the 12th ACM Inter-
national Conference on Computing Frontiers, Ischia, Italy, ACM, 2015, pp. 59.

[18] GUPTA S., GUPTA B.B. XSS-secure as a service for the platforms of online social network-
based multimedia web applications in cloud. Multimedia Tools and Applications. 2016, pp.
1–33, doi: 10.1007/s11042-016-3735-1

[19] GUPTA S., GUPTA B.B. XSS-SAFE: a server-side approach to detect and mitigate cross-site
scripting (XSS) attacks in JavaScript code. Arabian Journal for Science and Engineering.
2016, 41(3), pp. 897–920, doi: 10.1007/s13369-015-1891-7

[20] HANSEN R. Rsnake. XSS Cheat Sheet [online]. [viewed 2016-02-14]. Available from: http:

//ha.ckers.org/xss.html,2008

[21] HTMLUNIT PARSER [software]. [accessed 2016-01-30]. Available from: https://

sourceforge.net/projects/htmlunit/files/htmlunit/

[22] Linkedin, about Linkedin, 2013. [viewed 2016-01-16]. Available from: https://press.

linkedin.com/about-linkedin

[23] NADJI Y., SAXENA P., SONG D. Document Structure Integrity: A Robust Basis for Cross-
site Scripting Defense. NDSS. 2009, pp. 20.

[24] NEWSWIRE P.R. Facebook reports fourth quarter and full year 2013
results. [online]. MENLO PARK, Calif, 2014 [viewed 2014-01-29]. Re-
search report. Available from: http://files.shareholder.com/downloads/

AMDA-NJ5DZ/3073793635x0x721811/f028299e-a5b9-4ed5-9a2d-e3f0923ef261/

FacebookReportsFourthQuarterAndFullYear2013Results.pdf

[25] OWASP top 10 vulnerabilities 2013. [online]. Available from: https://www.owasp.org/

images/f/f8/OWASP_Top_10_-_2013.pdf

[26] PELIZZI R., SEKAR R. Protection, usability and improvements in reflected XSS filters. In:
ASIACCS, Seoul, Korea, ACM, 2012, pp. 5.

[27] REIS C., GRIBBLE S.D. Isolating web programs in modern browser architectures. In: Pro-
ceedings of the 4th ACM European conference on Computer systems (EuroSys ’09), Nurem-
berg, Germany, ACM, 2009, pp. 219–232.

24

 http://www.facebook.com/
http://dx.doi.org/10.1109/CSE.2009.424
http://dx.doi.org/10.1109/CSE.2009.424
https://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users/
https://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users/
http://dx.doi.org/10.1109/COMST.2014.2321628
http://dx.doi.org/10.1109/COMST.2014.2321628
 https://plus.google.com/
http://googleblog.blogspot.coil/2012/12/google-communities-and-photos.html
http://googleblog.blogspot.coil/2012/12/google-communities-and-photos.html
http://dx.doi.org/10.1080/15536548.2015.1044865
http://dx.doi.org/10.1080/15536548.2015.1044865
http://dx.doi.org/10.1007/s13198-015-0376-0
http://dx.doi.org/10.4018/978-1-4666-6559-0.ch008
http://dx.doi.org/10.4018/978-1-4666-6559-0.ch008
http://dx.doi.org/10.1002/sec.1433
http://dx.doi.org/10.1007/s11042-016-3735-1
http://dx.doi.org/10.1007/s13369-015-1891-7
http://ha.ckers.org/xss.html, 2008
http://ha.ckers.org/xss.html, 2008
https://sourceforge.net/projects/htmlunit/files/htmlunit/
https://sourceforge.net/projects/htmlunit/files/htmlunit/
https://press.linkedin.com/about-linkedin
https://press.linkedin.com/about-linkedin
http://files.shareholder.com/downloads/AMDA-NJ5DZ/3073793635x0x721811/f028299e-a5b9-4ed5-9a2d-e3f0923ef261/FacebookReportsFourthQuarterAndFullYear 2013Results.pdf
http://files.shareholder.com/downloads/AMDA-NJ5DZ/3073793635x0x721811/f028299e-a5b9-4ed5-9a2d-e3f0923ef261/FacebookReportsFourthQuarterAndFullYear 2013Results.pdf
http://files.shareholder.com/downloads/AMDA-NJ5DZ/3073793635x0x721811/f028299e-a5b9-4ed5-9a2d-e3f0923ef261/FacebookReportsFourthQuarterAndFullYear 2013Results.pdf
https://www.owasp.org/images/f/f8/OWASP_Top_10_-_2013.pdf
https://www.owasp.org/images/f/f8/OWASP_Top_10_-_2013.pdf

Chaudhary P., Gupta B.B.: A novel framework to alleviate dissemination of XSS. . .

[28] ROXBERRY M., KOTOWICH K., STRANATHAN W., SHAH S., LARA J. HTML5 Secu-
rity Cheat Sheet. [online]. [viewed 2016-02-14]. Available from: http://html5sec.org/

[29] TANG S., GRIER C., ACIICMEZ O., KING S.T.A.: a system for creating, enforcing, and
testing browser security policies. In: Proceedings of the 19th international conference on
World wide web, Raleigh, North Carolina, USA, ACM, 2010, pp. 241–250.

[30] Technical Attack Sheet for Cross Site Penetration Tests. [online]. [viewed 2016-02-14]. Avail-
able from: http://www.vulnerability-lab.com/resources/documents/531.txt

[31] TER LOUW M., Venkatakrishnan V.N. Blueprint: Robust prevention of cross-site scripting
attacks for existing browsers. 30th IEEE Symposium on Security and Privacy. 2009, pp.
331–346, doi: 10.1109/SP.2009.33

[32] WANG R., JIA X., LI Q., ZHANG S. Machine Learning Based Cross-Site Scripting Detection
in Online Social Network. High Performance Computing and Communications, 2014 IEEE
6th Int Symp on Cyberspace Safety and Security, 2014 IEEE 11th Int Conf on Embedded
Software and Syst (HPCC, CSS, ICESS). 2014, pp. 823–826, doi: 10.1109/HPCC.2014.137

[33] White Hat Security report. [online]. Available from: https://info.whitehatsec.com/rs/

whitehatsecurity/images/2015-Stats-Report.pdf

[34] WORDPRESS ORG., WordPress 3.6.1 [software]. 2013-08-13 [accessed 2016-01-30]. Avail-
able from: http://wordpress.org/

[35] @XSS Vector Twitter Account. [online]. [viewed 2016-02-14]. Available from: https://

twitter.com/XSSVector

[36] 523 XSS vectors [online]. [viewed 2016-02-14]. Available from: http://xss2.technomancie.

net/vectors/

25

 http://html5sec.org/
 http://www.vulnerability-lab.com/resources/documents/531.txt
http://dx.doi.org/10.1109/SP.2009.33
http://dx.doi.org/10.1109/HPCC.2014.137
https://info.whitehatsec.com/rs/whitehatsecurity/images/2015-Stats-Report.pdf
https://info.whitehatsec.com/rs/whitehatsecurity/images/2015-Stats-Report.pdf
http://wordpress.org/
https://twitter.com/XSSVector
https://twitter.com/XSSVector
http://xss2.technomancie.net/vectors/
http://xss2.technomancie.net/vectors/

