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Abstract: We developed a data generating system that is able to create systemat-
ically testing datasets that accomplish user’s requirements such as number of rows,
number and type of attributes, number of missing values, class noise and imbal-
ance ratio. These datasets can be used for testing of the algorithms designed for
solving classification rule problem. We used them for optimizing of the parameters
of the classification algorithm based on the behavior of ant colonies. But they can
be advantageously used for other applications too. Program generates output files
in ARFF format. Two standards and one user-define probability distributions are
used in data generation: uniform distribution, normal distribution and irregular
distribution for nominal attributes. To our knowledge, our system is probably the
first synthetic data generation system that systematically generates datasets for
examination and judgment of the classification rule algorithms.
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1. Introduction

One of the many algorithms based on artificial ant colonies behavior is classifi-
cation rule algorithm known as AntMiner [19]. It turned out, that an ant-based
classification rule’s search is more flexible and robust than traditional approaches.
For comparison of this algorithm with the others it is essential to quantify accu-
racy, time of calculation and number of rules. It is difficult to determine that one
algorithm is better than the other since different algorithms usually use different
testing datasets with certain constraints such as dimension, number and type of
attribution, data distribution, number of class, missing values and so on. For the
algorithms development and especially for optimization of the algorithm parame-
ters, it appears necessary to use synthetic generated datasets. Although there are
some databases repositories with a variety of datasets obtained from the real life
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environment, it is very difficult to obtain larger amount of very large datasets (with
at least 10000 instances). Such datasets are crucial for recognition of differences
between algorithms and for efficient optimization of their parameters.

Generating synthetic data allows to control the data distributions used for test-
ing and can help us to allow a fair performance comparison among the algorithms.

This paper is organized into five sections. Section 2 outlines recent approaches
to synthetic data generation. In the Section 3.1 proposed algorithm is described.
Section 3.2 describes data set parameters affecting the accuracy of classification
that were used at data generation. Illustrative example of data format provides
Section 6. Results of computational experiments designed to evaluate the per-
formance of AntMiner algorithm are described and analyzed in Section 4. Major
conclusions are drawn in Section 5.

2. Related work on synthetic data generation

Recently, there is an increasing need for synthetic data generation, in various fields
such as testing and developing enterprise application, demonstrating of them to
a potential customer and testing of data mining application. It is very useful to
generate data sets with known characteristic to assess whether or not data mining
tools can discover those characteristics.

Commercial synthetic data generation products have recently become available
[6, 8, 13]. These products do a good job producing moderate amounts of simply
defined data. They have limited range of representation and there are some types
of relations, functional dependencies and constraints that are not easy to describe
using these commercial products [10,11].

Data generation tools have been developed in the academic world as well [5,12,
15]. These provide greater flexibility in the description and generation of synthetic
data.

Most authors are focused on the association rule mining (ARM) problem.
Cooper and Zito [7] think that a good choice for investigating of statistical prop-
erties of ARM algorithms is synthetic databases generated by the IBM QUEST
program [22]. Jeske et.al. [14] describe a platform for the generation of shipping
container data used for testing of data mining tools developed for port security.

Authors [18] propose a new scheme of knowledge-based classification and rule
generation using a fuzzy multilayer perceptron. Paper [3] presents properties of
network-based moving objects. Chosen approach is suitable for generating large
data sets. Authors [1] present a data generator for generating synthetic complex-
structured XML data, which can be of use to researches in XML data management.

Lately, some authors [2] deal with generating of synthetic data using a publicly
available tool Benerator. Procedure is suitable for social, economic and demo-
graphic data. Authors of Lula University of Technology deal with synthetic data
for hybrid prognosis [17].

Surprisingly, little work has been done on systematically generating artificial
datasets that accomplish user’s requirements such a number of missing values,
class noise and imbalance ratio. Our work differs from previously published works
in some aspects (the following ways). First, our data generation process is centered
on multiclass classification rule problem, especially solved by ant colony algorithm.
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Second, our tool generates more complex datasets – the user can select the datasets
properties such number of missing values, class noise and imbalance ratio. To our
knowledge, our system is probably the first synthetic data generation system that
systematically generates datasets for examination and judgment of the classification
rule algorithms.

3. Experimental part

3.1 Implementation and properties of synthetic data
generator

Synthetic data generator is implemented in Microsoft Visual Studio 2015 which
is suitable for development of graphical user interface applications with Windows
Forms. The output data files (and also the input ones) files are in Attribute-
Relation File Format (ARFF).

ARFF format contains two basic data types, nominal and numeric. Attributes
of the date type are actually numeric. Attributes of string type are effectively
nominal, although before using the strings are often converted to numerical values.
Relational attributes contain independent sets of records that have elementary
numeric and nominal attributes. For this reason, without loss of universality, the
generator works only with these two basic data types.

In an effort to systematically generate test datasets for data analysis, we used
two standard and one user-define probability distributions. For numeric attributes,
we used uniform distribution and normal (Gaussian) distribution. For nominal
attributes we considered uniform distribution or special user-defined distribution.
This method provides the mechanism for that datasets are not only generated
automatically but also controlled by the parameters from the user input.

The uniform distribution is the simplest continuous probability distribution. A
random variable x has the uniform distribution if all possible values of the variable
are equally probable. It is also called rectangular distribution. The uniform dis-
tribution is specified by two parameters: the end points a and b. The distribution
has constant probability density on the interval (a, b) and zero probability density
elsewhere.

A continuous random variable x has a normal distribution or Gaussian distri-
bution if its probability density function is

f(x) =
1

σ
√

2π
e−(x−µ)

2/2σ2

, (1)

where x ∈ R, µ ∈ R is mean and σ2 is the variance.
Because these two distributions do not include all common cases, we further

implemented irregular user-defined distribution for nominal attributes. For each
attribute value, the user sets the probability of this value. For example, the pro-
portion of smokers and nonsmokers is approximately 30:70. (See Fig. 1)

After starting the generator the user first sets attribute properties – their num-
ber, type of attributes, types of distribution for each attribute and a percentage
rate of missing values. After that the user defines classification rules. The term
classification refers to any context in which a decision or prediction is made based
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Fig. 1 User-defined distribution input.

on information available at any given time. A classification algorithm should be
able to make such judgments in new situations. Each rule in Ant-Miner contains
a condition part as the antecedent and a predicted class. The condition part is
a conjunction of attribute-operator-value tuples. The classification rules have the
form:

IF 〈conditions〉 THEN 〈class〉, where part of the 〈conditions〉 is a conjunction
of several terms. Each term is a triplet 〈attribute, operator, value〉, for example
〈smoker = yes〉 or 〈systolic blood pressure ≤ 140〉. An example of user-defined
classification rules is shown in Fig. 2).

Fig. 2 Rules input.

For generating of attributes according to the selected (chosen) probability dis-
tribution was used freely available library Boost Random Number Generator Li-
brary [16]. This library provides a framework for random number generators with
well-defined properties so that the generators could be used in the demanding
numeric and security domains. A uniform random number generator provides a se-
quence of random numbers uniformly distributed on a given range. The range can
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be compile-time fixed or available (only) after run-time construction of the object.
Algorithm, which reads attribute types and generates values for each attribute is
in Algorithm 1.

Algorithm 1 Read attribute type and generate random values of attributes.

INPUT Array of attributes
OUTPUT Array of attributes with values

const size t numAttribute = m vecAttribute.size();
CDistributionCalculationAttributePtrVector vecGenerAttribute;
vecGenerAttribute.resize(numAttribute);
for (size t ind = 0; ind < numAttribute; ind++)
{

CDistributionCalculationAttributePtr pNew;
pNew = new CDistributionCalculationAttribute(m vecAttribute[ind]);
pNew −> GenerateValue();
vecGenerAttribute[ind] = pNew;
mapName.insert(tStringMap::value type(vecAttribute[ind]−> name(),pNew));
}

Synthetic Data Generator is freely available at [21].

3.2 Parameters of classification rule datasets

The results of our experiments indicate that classification accuracy strongly de-
pends on the complexity of a dataset [20]. We consider several parameters, which
affect the accuracy: number of dataset instances, number of classes, number and
type of attributes, percentage of missing values, class noise, imbalance ratio and
information gain.

Imbalance ratio for two-class problems is a ratio between the number of majority
class instances and the number of minority class instances. For a multi-class dataset
can be defined as

Ir =
Nc − 1

Nc

∞∑
i=1

Ii
In − Ii

, (2)

where Ir is in the range (1 5 Ir 5 ∞) and Ir = 1 is a completely balanced dataset
having equal instances of all classes. Nc is the number of classes, Ii is the number
of instances of class i and In is the total number of instances [23].

Noise is characterized by the proportion of incorrectly classified instances by
a set of trained classifiers [4]. More complex, noise can be quantified as the sum
of all off-diagonal entities (incorrectly classified instances) where each entity is the
minimum of all the corresponding elements in the set of confusion matrices. The
confusion matrix of the n-th classifier in a set of n classifiers can be generally
represented as

219



Neural Network World 2/2017, 215–229

Cn =


i11 i12 · · · i1j
i21 i22 · · · i2j
...

...
. . .

...
ii1 ii2 · · · iij

 , (3)

where the diagonal elements represent the correctly classified instances and off-
diagonal elements are the incorrectly classified instances.

Information gain is an information-theoretical measure that evaluates the qual-
ity of attributes in a dataset [24]. It measures the reduction of uncertainty if the
values of an attribute are known. For a given attribute X and a class attribute Y ,
the uncertainty is given by their respective entropies H(X) and H(Y ). Then the
information gain of X with respect to Y is given by I(Y ;X), where

I(Y ;X) = H(Y )−H(Y |X). (4)

After generating the records (see Algorithm 2), each record is evaluated accord-
ing to the decision rules and relevant class 〈class〉 is determined (see Algorithm 3).
After generating of a sufficient number of records, some records are removed so
that the user selected imbalance ratio in the generated dataset would be preserved
(see Eq. (2)).

After that records are artificially affected by “noise” (see Algorithm 4). Part of
the records is modified so that their class is changed to another one (a wrong one).
Percentage share of thus modified entries is selected by a user (“noise”). Finally,
as many values for each attribute are randomly removed as there has been entered
by the user. In the ARFF file these values are replaced by a question mark (see
Algorithm 5).

In the Fig. 3 a generator box with dataset parameters is shown.

Fig. 3 Listing of dataset parameters.
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Algorithm 2 Own generating of records.

Generating of record in dataset using generated attributes from Algorithm1

INPUT Vector of attributes with values from Algorithm 1
OUTPUT Record of dataset

bool bIsElseCondition = (!bIsCorrectCondition) && (pElse != nullptr) &&
(!pElse −> GetConsequentName().IsEmpty());

if (bIsCorrectCondition | | bIsElseCondition)
{

CDistributionConsequentPtr pDistributionConsequent =
new CDistributionConsequent;

pDistributionConsequent -> m VecCalc = vecGenerAttribute;

if (bIsElseCondition)
{

pDistributionConsequent −> m Consequent =
pElse −> GetConsequentName();

}
else
{

pDistributionConsequent −> m Consequent = strConsequent;
}
m vecGeneratedData.push back(pDistributionConsequent);
}

4. Results and discussion

Ant-Miner algorithm uses some parameters in order to satisfy some constraints in
iteration of the algorithm:

• Number of ants (Numberofants) indicates the maximum number of the ants
involved in rule discovery process.

• Minimum number of cases per rule (Minnumberofcases): each rule must
cover at least Minnumberofcases to ensure a minimum generality.

• Maximum number of uncovered cases in the training set (Maxnumberofunco-
veredcases): it is used as an ending constraint to terminate the main loop.

• Number of rules used to test convergence of the ants (Numberofrules): if
the current ant has constructed a rule that is exactly the same as the rules
constructed by the Numberofrules −1 previous ants, then convergence has
occurred. Therefore the current iteration of the main loop of the algorithm
is stopped and the next iteration is started.
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Algorithm 3 Detects records satisfied the classification rules and adjusts class.

Part of Algorithm 1

INPUT Attribute rules
OUTPUT IsCorrectCondition (BOOL)

bool bIsCorrectCondition = false;
for (auto pAttributeRule: attributeRules)
{

CRuleItemPtrVector attributeItemRuleVec = pAttributeRule −> GetVec();
for (auto pRule: attributeItemRuleVec)
{

bIsCorrectCondition = false;
tStringMap::iterator itName =

mapName.find(pRule −> GetAttributeName());
if(itName == mapName.end())
{

ASSERT(FALSE);
break;
}
CDistributionCalculationAttributePtr pFind = itName −> second;
ASSERT(pFind != nullptr);

COleVariant oleGeneratedValue = pFind −> GetGeneratedValue();
COleVariant oleRuleValue = pRule −> GetValue();

bIsCorrectCondition = pFind−>GetARFFAttribute()−>GetARFFAttribute
Record()

−> CompareVal(oleGeneratedValue,pRule−>GetTypeCompare(),oleRule
Value);

if(!bIsCorrectCondition)
{

break;
}
}
if (bIsCorrectCondition)
{

break;
}
}
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Algorithm 4 Generating of noise.

INPUT Noise, Records of dataset
OUTPUT Records of dataset modified with noise

ULONG numNoise = pInfo −> GetNoise() * numGenConswquent;
tVec vecNoiseIndex = GenerateRandom(numNoise, numGenConswquent);
for (size t ind = 0; ind < vecNoiseIndex.size();ind++)
{

tVec vecIndex = GenerateRandom(1, pClass −> GetNum());
CString strConsequentNoise = pClass −>GetAtIndex(vecIndex[0]);
ASSERT(!strConsequentNoise.IsEmpty());
m vecGeneratedData[vecNoiseIndex[ind]] −> m ConsequentNoise =

strConsequentNoise;
}

Algorithm 5 Generating of missing values.

INPUT Percentage of missing values, Records of dataset
OUTPUT Records of dataset with missing values

tVec vecMissNum;
vecMissNum.resize(numAttribute);
for (size t ind = 0; ind < numAttribute; ind++)
{

CDistributionAttributePtr pNon =
m vecGeneratedData[0] −> m VecCalc[ind] −> GetARFFAttribute() −>

GetARFFAttributeRecord() −> GetNonevaluatedAttribute();
ASSERT(pNon != nullptr);
vecMissNum[ind] = pNon −> m Vec[0] * numGenConswquent;

}
typedef std::vector<tVec> tVecIndex;
tVecIndex vecMissNumIdex;
vecMissNumIdex.resize(numAttribute);
for (size t ind = 0; ind < numAttribute; ind++)
{

vecMissNumIdex[ind] =
GenerateRandom(vecMissNum[ind], (numGenConswquent));

}
for (size t ind = 0; ind < numAttribute; ind++)
{

for (auto indexMiss: vecMissNumIdex[ind])
{

ASSERT(indexMiss < m vecGeneratedData.size());
ASSERT(ind < m vecGeneratedData[indexMiss] −> m VecCalc.size());
m vecGeneratedData[indexMiss] −> m VecCalc[ind] −> SetMissed();
}

}
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• Evaporation factor (Evaporationfactor, ρ ∈ (0,1)) represents the speed of
evaporation of pheromones and avoids unlimited accumulation of pheromones
on edges.

The greatest influences on the accuracy and calculation time haveNumberofants
and Evaporationfactor ρ. It was discovered that increasing evaporation factor will
result in a slower convergence process and no significant increase in accuracy. The
calculation time increases with the number of ants and with the evaporation factor.
The two-dimensional plot Fig. 4 and Fig. 5 shows the influence these two parame-
ters on execution time and accuracy and it is obviously that there is flat-maximum
effect.
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Fig. 4 Influence of the number of ants and evaporation factor ρ on accuracy.
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Fig. 5 Influence of the number of ants and evaporation factor ρ on execution time.

Synthetic data generator allows creating a model dataset for determining and
comparing of the classification algorithms accuracies. In a real situation, generally
there are not available appropriate amount of datasets with specified parameters.
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Fig. 6 and Fig. 7 show an example of the influence of noise and missing values ratio
on AntMiner algorithm accuracy in comparison with conventional algorithms.
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Fig. 6 Influence of Noise value on AntMiner accuracy compared with “classical”
algorithms.
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Fig. 7 Influence of Missing value ratio on AntMiner accuracy compared with “Ran-
dom Forest” algorithm.

Comparative performance of method using ten-fold cross-validation was evalu-
ated. N-Fold Cross validation is similar to Random Subsampling, the advantage of
N-Fold Cross validation is that all the examples in the dataset are eventually used
for both training and testing.

Each dataset was divided into ten partitions, and each method was run ten
times, using a different partition as test set each time, with the other nine as
training set. The rule list produced by a training set to predict the class of each
case in the test set was used, the accuracy rate being calculated according to
Eq. (5). Every rule list includes a default rule, which has no condition and takes
the majority class in the set of training cases as its class, so that the default rule
could be applied if none of the rules in the list covers the test case.
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Fig. 8 Schema of N-Fold Cross validation.

The true error is estimated as the average error rate

E =
1

N

N∑
i=1

Ei (5)

5. Conclusions

Synthetic data generation is an interesting topic in data mining. In many research
areas, a set of synthetic datasets is significant for quality assessment of a pro-
posed algorithm. It is difficult to determine that one algorithm is better than the
other since different algorithms usually use different testing datasets with certain
constraints such as dimension, number and type of attribution, data distribution,
number of class, missing values and so on. For the algorithms development and
especially for optimization of the algorithm parameters, it appears necessary to
use synthetic generated datasets. The need for the development of the generator
arose from the inaccessibility sufficiently large datasets required for the optimiza-
tion of algorithms. Our work concentrates on the generation of test instances for
classification rules algorithms, especially algorithms based on artificial ant colonies.
Developed software generates output files with specified parameters such as num-
ber of rows, number and type of attributes, number of missing values, class noise
and imbalance ratio These datasets can be used for optimization of algorithm de-
signed for solving classification rule problem or for comparison of these algorithms.
To our knowledge, our system is probably the first synthetic data generation sys-
tem that systematically generates datasets for examination and judgment of the
classification rule algorithms.
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6. Appendix – ARFF

An ARFF (Attribute-Relation File Format) file is an ASCII text file that describes
a list of instances sharing a set of attributes. ARFF files were developed within
the Machine Learning Project at the Department of Computer Science of The
University of Waikato for use with the Weka machine learning software [9]. ARFF
files have two distinct sections. The first section is the Header information, which
is followed by the Data information. The Header of the ARFF file contains the
name of the relation (as the first line), a list of the attributes (the columns in the
data), and their types. The Data section contains the data declaration line and
the actual instance lines. Each instance is represented on a single line. Attribute
values for each instance are separated by commas, and they are in the order in that
they were declared in the header section. Missing values are represented by a “?”
mark. An example of dataset is shown in the Fig. 9.

Lines that begin with a “%” mark are comments. We used these lines to store
attributes information (name, type and distribution), class information and rules
information (See Fig. 9)).
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Fig. 9 Sample of ARFF syntax with smart using of comment lines.
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