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Abstract: One difficulty for quaternion neural networks (QNNs) is that quater-
nion nonlinear activation functions are usually non-analytic and thus quaternion
derivatives cannot be used. In this paper, we derive the quaternion gradient de-
scent, approximated quaternion Gauss-Newton and quaternion Levenberg-Mar-
quardt algorithms for feedforward QNNs based on the GHR calculus, which is
suitable for analytic and non-analytic quaternion functions. Meanwhile, we solve
a widely linear quaternion least squares problem in the derivation of quaternion
Gauss-Newton algorithm, which is more general than the usual least squares prob-
lem. A rigorous analysis of the convergence of the proposed algorithms is provided.
Simulations on the prediction of benchmark signals support the approach.
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1. Introduction

In recent years, quaternion neural networks have been applied to some engineer-
ing problems, such as control problems [1], color image compression [9], inertial
body sensors [19], and wind profile modeling [11, 14, 16]. In these applications,
quaternions have been allowed for a reduction in the number of parameters and
operations involved. The characteristic of QNNs is that their inputs/outputs, pa-
rameters and activation functions are quaternion-valued and they can directly pro-
cess quaternion-valued data. One of the difficulties in constructing QNNs is about
the choice of the quaternion nonlinear activation functions. A typical approach,
‘splitting’, uses a real-valued activation function to process each component of
quaternion value. However, such split-type activation functions are often non-
analytic according to quaternion analysis [4] and therefore quaternion derivatives
cannot be used. To relax this constraint, the so-called Cauchy-Riemann-Fueter
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(CRF) condition [13] is often adopted for the quaternion functions. However, the
even polynomial functions do not satisfy the CRF condition. Another class of an-
alyticity for the quaternion functions has been developed in [8] and is called ‘local
analyticity’, but the product and composition of two local analytic functions are
generally not local analytic. Therefore, it is necessary to define a general quater-
nion derivatives for quaternion analytic and non-analytic functions. The recently
proposed GHR calculus [21, 22] precisely satisfies this requirement and comprises
a novel product rule and chain rule, which can be considered as a generalization of
the Wirtinger calculus [2, 7, 18] to the quaternion field.

In this paper, we focus on the derivation of quaternion learning algorithms and
the convergence analysis of the algorithms. Quaternion gradient and direction of
steepest descent based on GHR calculus [23,24] are used to construct the quaternion
gradient algorithms for feedward QNNs. A widely linear least squares problem
minq ||b − (Aq + Bqi + Cqj + Dqk)|| is found in the quaternion field, which is
more general than the minq ||b − Aq||. Solving the widely linear least squares
problem plays an important role in the derivation of quaternion Gauss-Newton
and Levenberg-Marquardt algorithms. An exact form of quaternion Gauss-Newton
update is too complicated, so we propose an approximated Gauss-Newton update to
reduce the computational cost. An approximated quaternion Levenberg-Marquardt
algorithm is also derived in a similar manner. All computations regarding to the
derivation of the algorithms are carried out directly in the quaternion field without
transforming the problem to the real domain. Finally, we prove the convergence of
the proposed quaternion learning algorithms under suitable conditions.

2. Preliminaries

2.1 The GHR calculus

The GHR calculus is derived using a generalized basis {1, iµ, jµ, kµ}, where qµ =
µqµ−1 (µ 6= 0, µ ∈ H) is the quaternion rotation. Observe that iµiµ = jµjµ =
kµkµ = iµjµkµ = −1, and hence this new basis also consists of imaginary unit
vectors. Using this new basis, we obtain the expressions for the GHR calculus

Definition 1 (The GHR derivatives [21, 22]). Let f : H → H. Then the GHR
derivatives of f(q) with respect to qµ and qµ∗ (µ 6= 0, µ ∈ H) are defined as ∂f

∂qµ =

1
4

(
∂f
∂qa
− ∂f

∂qb
iµ − ∂f

∂qc
jµ − ∂f

∂qd
kµ
)
, ∂f
∂qµ∗ = 1

4

(
∂f
∂qa

+ ∂f
∂qb

iµ + ∂f
∂qc

jµ + ∂f
∂qd

kµ
)
, where

q = qa + iqb + jqc + kqd, qa, qb, qc, qd ∈ R, and ∂f
∂qa

, ∂f∂qb ,
∂f
∂qc

, ∂f∂qd ∈ H are the partial
derivatives of f with respect to qa, qb, qc and qd, respectively.

Some useful rules of the GHR derivatives [21] are summarized as follows:

Product rule:
∂(fg)

∂q
= f

∂g

∂q
+
∂(fg)

∂qg
g,

∂(fg)

∂q∗
= f

∂g

∂q∗
+
∂(fg)

∂qg∗
g,

Chain rule:
∂f(g(q))

∂q
=

∑
ν∈{1,i,j,k}

∂f

∂gν
∂gν

∂q
,
∂f(g(q))

∂q∗
=

∑
ν∈{1,i,j,k}

∂f

∂gν
∂gν

∂q∗
,

(1)
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Rotation rule:

(
∂f

∂q

)ν
=
∂fν

∂qν
,

(
∂f

∂q∗

)ν
=

∂fν

∂qν∗
. (2)

2.2 Widely Linear Quaternion Model

The existing (strictly linear) estimation in the quaternion domain is given by

ŷ = wTx, (3)

where x = xa + ixb + jxc + kxd. Observe that for all the quaternion components

ŷη = E[yη|xa,xb,xc,xd], η ∈ {a, b, c, d}, (4)

and using the involutions in [5], we can express the components of a quaternion
via its involutions e.g. xa = 1

4 (x + xi + xj + xk), leading to

ŷη = E[yη|xa,xi,xj ,xk] and ŷ = E[y|xa,xi,xj ,xk]. (5)

In other words, to capture the full second-order information available, we should
use the quaternion widely linear model

ŷ = uTx + vTxi + gTxj + hTxk. (6)

Current statistical signal processing in H is largely based on strictly linear
models, drawing upon the covariance matrix R = E[xxH]. However, to model
both the second-order circular (proper) and second-order noncircular (improper)
signals, based on (6), we need to employ the augmented covariance matrix, given
by [6, 15,17,20]

Ra =


R P S T
Pi Ri Ti Si

Sj Tj Rj Pj

Tk Sk Pk Rk

 . (7)

3. Learning algorithms for QVNNs

3.1 Quaternion Gradient Descent algorithm

We consider a single hidden layer QVNN for convenience. The forward equations
for signal passing through the network are as follows

y = Vx + a, h = φ(y), v = Wh + b, g = φ(v), (8)

where x is the input signal and h,g are the output at hidden and output layer,
respectively. V,W are the weight matrices associated with hidden and output
layer neurons, a,b are the biases to the hidden and output layer neurons, and φ is
the activation function having real partial derivatives. The network error produced
at the output layer is defined by e = d − g, where d denotes the desired output.
Then the gradient descent algorithm minimizes a real-valued loss function

` = ‖e‖2 = eHe. (9)
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From [23,24], the quaternion gradient of error function is given by

∇q∗` =

(
∂`

∂q∗

)T

=

(
∂`

∂q

)H

. (10)

Using the chain rule (1) and rotation rule (2), we have

∂`

∂q
=

∑
µ∈{1,i,j,k}

∂‖e‖2

∂eµ
∂ eµ

∂q
= −

∑
µ∈{1,i,j,k}

∂‖e‖2

∂eµ
(Jqµ)µ, (11)

where Jqµ , ∂g
∂qµ is the Jacobian matrix of g, and the derivative of ‖g‖2 is a vector

version of the term ∂|q|2
∂qµ µ in [23], given by

∂‖e‖2

∂eµ
=

1

2
(eµ)

H
. (12)

Substituting (12) and (11) into (10), we arrive at

∇q∗` = −1

2

∑
µ∈{1,i,j,k}

(
JH
qµe
)µ
. (13)

Now, we derive the gradient descent algorithm in explicit form for the QVNN

Jy =
∂g

∂y
=

∑
µ∈{1,i,j,k}

∂g

∂vµ
∂vµ

∂y
=

∑
µ∈{1,i,j,k}

ΛvµWµ(Λyµ)µ, (14)

where Λvµ denotes the Jacobian of g with respect to vµ. From Jhµ = ΛvµWµ,
(14) can be rewritten as

Jy =
∑

µ∈{1,i,j,k}

Jhµ(Λyµ)µ. (15)

We note from (8) that Jy = Ja and Jv = Jb. Thus update rules for the biases at
hidden and output layer are

∆a = α
(
JH
a e + (JH

aie)i + (JH
aje)j + (JH

ake)k
)
,

∆b = α
(
JH
be + (JH

bie)i + (JH
bje)j + (JH

bke)k
)
,

(16)

where α > 0 is the learning rate. Using the chain rule (1), the update rules for
hidden and output layer weight matrices are given by

∆V = ∆axH,∆W = ∆bxH. (17)

3.2 Quaternion Gauss-Newton algorithm

The Gauss-Newton algorithm can be seen as a modification of Newton’s method
for finding a minimum of a function. It has the advantage of not requiring the com-
putation of second order derivatives of the function. In the QVNN, the linearized
model of network output g(q) around q is given by [24]

g(q + ∆q) ≈ g(q) + Jq∆q + Jqi∆qi + Jqj∆qj + Jqk∆qk. (18)
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The error associated with the linearized model is

ê = e− (Jq∆q + Jqi∆qi + Jqj∆qj + Jqk∆qk), (19)

where ê = d− g(q + ∆q). The task is to find ∆q to minimize the sum of squares
of the right-hand side of (19), i.e.,

min
q
||e− (Jq∆q + Jqi∆qi + Jqj∆qj + Jqk∆qk)||, (20)

which is the widely linear least squares problem minq ||b−(Aq+Bqi+Cqj+Dqk)||
instead of the well known problem minq ||b−Aq||. The problem minq ||b−Aq||
can be solved from the normal equation AHAq = AHb, however, the normal
equation of the widely linear least squares problem remains unknown. In the next
proposition, we solve this problem.

Lemma 1. Let A,B,C and D be arbitrary quaternion matrices of same dimension.
Then a solution to the widely linear least squares problem, minq ||b− (Aq + Bqi +
Cqj + Dqk)||, is given by the following normal equation

QH


b
bi

bj

bk

 = QHQ


q
qi

qj

qk

 , where Q =


A B C D
Bi Ai Di Ci

Cj Dj Aj Bj

Dk Ck Bk Ak

 . (21)

Proof. From [24], we know that the augmented quaternion vector is related with
the dual quadrivariate real vector by the transformation matrix J, while satisfying

1

4
JJH =

1

4


I iI jI kI
I iI −jI −kI
I −iI jI −kI
I −iI −jI kI




I I I I
−iI −iI iI iI
−jI jI −jI jI
−kI kI kI −kI

 = I. (22)

The residual and its involutions associated to the least squares problem are

r = b− (Aq + Bqi + Cqj + Dqk),

ri = bi − (Aiqi + Biq + Ciqk + Diqj),

rj = bj − (Ajqj + Bjqk + Cjq + Djqi),

rk = bk − (Akqk + Bkqj + Ckqi + Dkq).

(23)

Combining the above equations to form a matrix equation and applying the linear
transformation J, the problem can be transformed to real coordinate system, yields

JH


r
ri

rj

rk

 = JH


b

bi

bj

bk

− JHQ(
1

4
JJH)


q
qi

qj

qk

 ,

[
1

4
JJH = I

]
. (24)
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It can be shown that 1
4JHQJ is a real-valued matrix and (24) operates in the real

domain. Thus, the normal equation for the least squares problem (24) is

1

4
JHQHJJH


b

bi

bj

bk

 =
1

4
JHQHJJHQ(

1

4
JJH)


q
qi

qj

qk

 . (25)

Since 1
4JJH = I and invertibility of JH, equation (25) immediately yields the

following quaternion normal equation

QH


b

bi

bj

bk

 = QHQ


q
qi

qj

qk

 . (26)

This completes the proof of Lemma 1.

According to Lemma 1, the least squares solution to (20) gives the following
Gauss-Newton update rule

QHQ


∆q
∆qi

∆qj

∆qk

 = QH


e
ei

ej

ek

 , (27)

where

Q =


Jq Jqi Jqj Jqk

(Jqi)
i (Jq)i (Jqk)i (Jqj )

i

(Jqj )
j (Jqk)j (Jq)j (Jqi)

j

(Jqk)k (Jqj )
k (Jqi)

k (Jq)k

 =

(
Q11 Q12

Q21 Q22

)
. (28)

Let

H = QHQ =

(
H11 H12

H21 H22

)
, where H11 =

∑
µ∈{1,i,j,k}

(
JH
qµJqµ

)µ
. (29)

If H11 is invertible, then use the Banach Schwartz inversion formula for the inverse
of a non-singular partitioned matrix [25], yields

∆q
∆qi

∆qj

∆qk

 =

(
H−111 + LT−1U −LT−1

−T−1U T−1

)
QH


e
ei

ej

ek

 , (30)

where L = H−111 H12, U = H21H
−1
11 and T = (H/H11) is the Schur complement of

H11 in H. Thus, the quaternion Gauss-Newton update rule is given by

∆q =
(

(H−111 + LT−1U)QH
11 + LT−1QH

12

)
e

+
(

(H−111 + LT−1U)QH
21 + LT−1QH

22

) ei

ej

ek

 . (31)
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To avoid computing the inverse of the Schur complement T and to provide a sim-
plification, the Guass-Newton method in (31) can be approximated as

∆q ≈ H−111

(
JH
q e + (JH

qie)i + (JH
qje)j + (JH

qke)k
)

= (GH
qGq)−1GH

qEq, (32)

where

Gq =


Jq

(Jqi)
i

(Jqj )
j

(Jqk)k

 , Eq =


e
ei

ej

ek

 . (33)

Lemma 2. Suppose that g : HN → HM has the GHR derivatives in the set S ⊆ HN
and that the GHR derivatives of g are Lipschitz continuous in S with the Lipschitz
constant L, then for any q,q + ∆q ∈ S∥∥∥∥∥∥g(q + ∆q)− g(q)−

∑
µ∈{1,i,j,k}

Jqµ∆qµ

∥∥∥∥∥∥ ≤ 2L‖∆q‖2. (34)

Proof. Put h(t) = g(q + t∆q), where 0 ≤ t ≤ 1. Using the chain rule in (1), the
GHR derivative of h(t) can be found as

h′(t) =
∑

µ∈{1,i,j,k}

∂g(q + t∆q)

∂qµ
(∆q)µ. (35)

By substituting (35) into h(1) − h(0) =
∫ 1

0
h′(t)dt with h(0) = g(q) and h(1) =

g(q + ∆q), we have∥∥∥∥∥∥g(q + ∆q)− g(q)−
∑

µ∈{1,i,j,k}

Jqµ∆qµ

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∫ 1

0

(
h′(t)−

∑
µ∈{1,i,j,k}

Jqµ∆qµ
)
dt

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∫ 1

0

∑
µ∈{1,i,j,k}

(
∂g(q + t∆q)

∂qµ
− ∂g(q)

∂qµ

)
(∆q)µdt

∥∥∥∥∥∥ .
(36)

According to the Lipschitz condition of the GHR derivatives of g, we arrive at∥∥∥∥∥∥g(q + ∆q)− g(q)−
∑

µ∈{1,i,j,k}

Jqµ∆qµ

∥∥∥∥∥∥ ≤ 4L‖∆q‖2
∫ 1

0

tdt = 2L‖∆q‖2. (37)

Theorem 3. Let e : HN → HM , and let ` = eHe be twice real differential in the
set S ⊂ HN . Assume that Gq,Eq are Lipschitz continuous on S with constant L,
that ‖ Gq ‖≤ α for all q ∈ S, and that there exists q∗ ∈ D such that GH

q∗
Eq∗ = 0,
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and λ is the smallest eigenvalue of GH
q∗

Gq∗ . If β defined in (45) satisfies β < λ,
then for any c ∈ (1, λ/β), there exists ε > 0 such that for all q0 ∈ U(q∗, ε), the
sequence generated by the approximated Gauss-Newton method

qn+1 = qn + (GH
qnGqn)−1GH

qnEqn (38)

converges to q∗, and obeys

‖qn+1 − q∗‖2 ≤
λ+ cβ

2λ
‖qn − q∗‖2 < ‖qn − q∗‖2. (39)

Proof. For the sake of brevity, Gqn ,Eqn and Eq∗ are abbreviated Gn,En and E∗,
respectively. Then the Gauss-Newton method (38) can be rewritten as

qn+1 − q∗ = qn − q∗ + (GH
nGn)−1GH

nEn

= (GH
nGn)−1

(
GH
nEn + GH

nGn(qn − q∗)
)

= (GH
nGn)−1

{
GH
nE∗ + GH

n (En −E∗ + Gn(qn − q∗))
}
.

(40)

By a familiar argument, there exists ε1 such that GH
nGn is nonsingular and

‖(GH
nGn)−1‖ ≤ c

λ
for qn ∈ U(q∗, ε1), (41)

where c > 1 and ε1 > 0. Recalling that Gq and Eq in (33), then the Gauss-Newton
method (40) can be expanded as

qn+1 − q∗ = (GH
nGn)−1

{
GH
nE∗ + JH

qn(en − e∗ + Jqn(qn − q∗))

+ (JH
qin

)i(en − e∗)
i + (JH

qjn
)j(en − e∗)

j + (JH
qkn

)k(en − e∗)
k (42)

+ (JH
qin

Jqin
)i(qn − q∗)

i + (JH
qjn

Jqjn
)j(qn − q∗)

j + (JH
qkn

Jqkn
)i(qn − q∗)

k
}
.

From Lipschitz condition of Gq and GH
q∗

Eq∗ = 0, we have

‖GH
qE∗‖ = ‖(Gq −Gq∗)HE∗‖ ≤ σ‖q− q∗‖. (43)

Recalling that e = d− g and using Lemma 2, we can estimate the second term in
(42) as follows

‖en − e∗ + Jqn(qn − q∗)‖ = ‖g(qn)− g(q∗)− Jqn(qn − q∗)‖
≤ 2L‖qn − q∗‖2 + 3α‖qn − q∗‖.

(44)

Combining (40)−(44) and ‖Gn‖ ≤ α, yields

‖qn+1 − q∗‖ ≤ ‖(GH
nGn)−1‖

{
‖GH

nE∗‖+ ‖Jqn‖‖en − e∗ + Jqn(qn − q∗)‖
+ ‖Jqin

‖‖en − e∗‖+ ‖Jqjn
‖‖en − e∗‖+ ‖Jqkn

‖‖en − e∗‖

+ ‖JH
qin

Jqin
‖‖qn − q∗‖+ ‖JH

qjn
Jqjn
‖‖qn − q∗‖+ ‖JH

qkn
Jqkn
‖‖qn − q∗‖

}
≤ c

λ

{
σ‖qn − q∗‖+ 2Lα‖qn − q∗‖2

+ 3α2‖qn − q∗‖+ (3αL+ 3α2)‖qn − q∗‖
}

=
c

λ

{
β‖qn − q∗‖+ 2Lα‖qn − q∗‖2

}
, (45)
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where β = σ + 6α2 + 3αL. Thus, if β < λ, for any c ∈ (1, λ/β), there exists
ε = min{ε1, λ−cβ4cαL } such that for all qn ∈ U(q∗, ε), then

‖qn+1 − q∗‖ ≤ ‖qn − q∗‖
{
cβ

λ
+

2cαL

λ
‖qn − q∗‖

}
≤ ‖qn − q∗‖

{
cβ

λ
+
λ− cβ

2λ

}
=
λ+ cβ

2λ
‖qn − q∗‖ < ‖qn − q∗‖.

(46)

This shows that qn converges to q∗, the theorem follows.

3.3 Quaternion Levenberg-Marquardt (L-M) algorithm

The L-M algorithm can be seen as a blend of vanilla gradient descent and Gauss-
Newton iteration. It outperforms simple gradient descent and other conjugate
gradient methods in a wide variety of problems

∆q
∆qi

∆qj

∆qk

 = (GHG + bI)−1GH


e
ei

ej

ek

 , (47)

where small values of b result in a Gauss-Newton update and large values of b
result in a gradient descent update. Similar to the derivation of the Gauss-Newton
algorithm, we obtain the following quaternion L-M update rule

∆q =
(

((H11 + bI)−1 + LT−1U)QH
11 + LT−1QH

12

)
e

+
(

((H11 + bI)−1 + LT−1U)QH
21 + LT−1QH

22

) ei

ej

ek

 ,

and the approximated quaternion L-M update rule

∆q ≈ (H11 + bI)−1
(
JH
q e + (JH

qie)i + (JH
qje)j + (JH

qke)k
)

= (GH
qGq + bI)−1GH

qEq.
(48)

Theorem 4. Let the conditions of Theorem 3 be satisfied. If β < λ, then for any
c ∈ (1, (λ + b)/(β + b)), there exists ε > 0 such that for all qk ∈ N(q∗, ε) the
sequence generated by the approxiated L-M method

qn+1 = qn + (GH
qnGqn + bI)−1GH

qnEqn (49)

converges to q∗, and obeys to

‖qn+1 − q∗‖2 ≤
(λ+ b) + c(β + b)

2(λ+ b)
‖qn − q∗‖2 < ‖qn − q∗‖2. (50)

Proof. This proof is similar to that of Theorem 3, so it is omitted here.
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4. Simulations

Simulations were performed in an M -step prediction setting and provide a compre-
hensive comparison between quaternion backpropagation (QBP) [1, 3], geometri-
cal quaternion backpropagation (GQBP) [9] and quaternion Levenberg-Marquardt
(QLM) for training a feedforward QNN. The feedforward QNN had one hidden layer
comprising L inputs, eleven hidden neurons and one output neuron. In the experi-
ments, the amplitudes of input signals in each dimension were scaled to within the
range [−0.8, 0.8] and the learning rate was chosen to be 0.1 for all algorithms. The
quantitative performance measure was the prediction gain Rp, defined as [10]

Rp = 10 log10

σ2
x

σ2
e

, (51)

where σ2
x and σ2

e denote the estimated variance of the input and the prediction
error respectively. The considered quaternion-valued processes was the synthetic
benchmark 4D Saito’s Chaotic Signal [12][

∂x1

∂τ
∂y1
∂τ

]
=

[
−1 1
−α1 α1β1

] [
x1 − ηρ1h(z)
y1 − η ρ1β1

h(z)

]
, (52)

[
∂x2

∂τ
∂y2
∂τ

]
=

[
−1 1
−α2 α2β2

] [
x2 − ηρ2h(z)
y2 − η ρ2β2

h(z)

]
, (53)

where h(z) is the normalized hysteresis value given by

h(z) =

{
1, z > −1
−1, z 6 1

, (54)

and z = x1+x2, ρ1 = β1

1−β1
, ρ2 = β2

1−β2
. The Saito chaotic signal was initialized with

the following parameters: η = 1.3, α1 = 7.5, α2 = 15, β1 = 0.16 and β2 = 0.097.
In Fig. 1, we depict the performance surface of the algorithms considered as a
function of the prediction horizon M and the filter length L. We can see that the
QLM outperformed the other two algorithms in all the cases, thus highlighting the
advantages of the GHR calculus.

5. Conclusions

The quaternion gradient descent, quaternion Gauss-Newton and quaternion L-M
algorithms have been developed for training feedforward QNN based on the GHR
calculus, which greatly simplifies the working in the quaternion field. A widely lin-
ear quaternion least squares problem has been solved and utilized in the derivation
of the algorithms. An approximated quaternion Gauss-Newton algorithm has been
proposed to reduce the computational cost, which can be applied in general quater-
nion optimization problems. Under Lipschitz condition of the GHR derivatives, we
have proved the convergence of the proposed quaternion learning algorithms.
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