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Abstract: Combinatorial optimization problems are extensively solved by using
neural networks. Hopfield-Tank model is used to solve Traveling Salesman prob-
lem and many NP-Hard problems. This paper describes a neural network opti-
mizer/scheduler that optimizes a solution for a highly complicated version of N
Queens problem (NQP), i.e. N+1 non-threatening Queens on a N×N chessboard
with an intermediate pawn on it. Both synchronous and asynchronous methods of
updating of the neurons have been applied for optimization of N + 1 Queens prob-
lem. Computer simulations are used to confirm the results. The proposed neural
network is attracted to optimized solution or finds the global minima in 90% of the
trials. A new rule of initialization, i.e. the proximity rule of initialization has been
proposed. Using the proximity rule of initialization the performance of the system
is enhanced and the system converges to an optimal solution in much less time.
Many novel applications like multiprocessor job scheduling, resource optimization,
of the above mentioned algorithm have been proposed. N Queens problem has
been solved by many techniques but no other algorithm exists to solve N + 1 QP
in the literature. Consequently, the performance of the network is compared with
full space search algorithm.
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1. Introduction

Hopfield and Tank proposed a neural network that seemed to be very promising
in solving optimization problems. The network is quite handy in solving Com-
binatorial Optimization problems (COPs) that are non-polynomial in nature and
are called NP problems. The model was used to solve Traveling salesman prob-
lem [3–5]. Bizzari investigated in detail the convergence of neural network [1].
Afterwards many dedicated neural networks were designed to optimize different
real life problems and the approach proved to be a success. Maňdziuk [7, 8] in-
vestigated and proposed a dedicated neural network in order to solve a classical
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and conceptually simple N Queens problem. Isao Tanka and Yoshifumi Nishio [10]
proposed Chaos Neural Network for N Queen problem. The proposed network is
attracted, in 90 % of the trials, to the correct solution.

This paper presents a novel neural network to find solution to (N+1) QP which
is a very complex version of NQP. N Queens problem is a classical COP and NP
in nature. So it is a natural candidate to be solved by neural network. The quest
to find an efficient solution for N + 1 QP is very valuable as it is analogous to
many scheduling problems. Some of the scheduling problems have been proposed
in [6, 9, 11,12], where the resources were optimized.

The NQP and (N+1) QP have many applications for real world problems. The
analogous applications can be found in job/shop scheduling, data routing, dead-
lock or blockage prevention, efficient resource management in computer systems,
task assignment in multiprocessors, digital image processing and parallel memory
storage schemes.

NQP is addressed by many approaches ranging from backtracking search, Ge-
netic algorithms, Particle Swarm Optimization, Ant Colony Optimization, Sim-
ulated Annealing and Neural Networks, but no such techniques exist for N + 1
QP.

NQP is actually a scheduling problem, where N Queens are to be placed on a
chess board of dimensions N ×N such that no two queens attack each other. As
Queen can move along any row, column and diagonal therefore the constraints of
the problem are the following:

• Only one Queen in a row,

• Only one Queen in a column,

• Only one Queen in a diagonal,

• Total number of Queens = n.

As the Hopfield model proposed a neural network with following Energy func-
tion:

E = −1/2

n∑
i=1

n∑
j=1
j 6=i

TijViVj , (1)

where Tij is the weight of connection from the j-th neuron to i-th neuron and Vi
and Vj are the output of i-th and j-th neuron respectively.

The input of i-th can be given as

ui = − ∂E
∂ui

; (i = 1, 2, 3, . . . , n). (2)

By taking the derivative of E we shall get

ui =

n∑
j=1

TijVj ; (i = 1, 2, 3, . . . , n) . (3)

The activation function for neurons is chosen as

Vi = 1/2 [1 + tanh (αu)] . (4)
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For a very high value of α Eq. (4) will reduce to

Vi = 1 for ui > 0,

Vj = 0 otherwise.

The energy function for the NQP is defined by Jacek Mandiziuk [2] as

E =
1

2
A

n∑
i=1

n∑
j=1


 n∑

k=1
k 6=j

vik

 vij +

 n∑
k=1
k 6=i

vkj

 vij



+B

n∑
i=2

i−1∑
j=1


 n∑

k=i−j+1
k 6=j

vk,k−i+j

 vij


+B

n∑
i=1

n∑
j=1


n+i−j∑

k=1
k 6=i

vk,k−i+j

 vij



+B

n∑
i=1

n∑
j=n−i+1


 n∑

k=i+j−n
k 6=i

vk,i+j−k

 vij


+B

n−1∑
i=1

n−i∑
j=1


i+j−1∑

k=1
k 6=i

vk,i+j−k

 vij


+ C

 n∑
i=1

n∑
j=1

vij − (n+ σ)

2

, (5)

where A, B, C and σ are positive constraints.

According to Eq. 2 we have

−uij = A

 n∑
k=1
k 6=i

vij +

n∑
k=1
k 6=i

vkj

+Rij + Sij + C

(
n∑

k=1

n∑
l=1

vkl − (n+ σ)

)
, (6)

where

Rij =


B

n∑
k=j+1
k 6=i

vk,k−i+j ; if i− j > 0

B
n+i−j∑
k=1
k 6=i

vk,k−i+j if i− j ≤ 0

 , (7)
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Sij =


B

n∑
k=i+j−n

k 6=i

vk,i+j−k; if i+ j > n

B
i+j−1∑
k=1
k 6=i

vk,i+j−k; if i+ j ≤ n

 , (8)

where ij = 1, 2, 3, . . . , n.

2. (N + 1) Queens with an intercepting pawn

2.1 Problem statement

The N + 1 Queens with an intercepting pawn on the chess board of N × N di-
mensions is a highly complex version of NQP problem. The algorithm that solves
N + 1 Queens problem with intercepting Pawn or (N + 1) QP has to search the
feasible solution out of 264 states possible solution for N = 8.

For the sake of completeness the (N+1) QP has been defined as follows: “Place
N+1 Queens and a Pawn on a chessboard of N×N dimensions such that no Queen
threatens the other.”

In other words the constraints of the problem are as follows:

1. If there is no pawn in a row, column or diagonal of the cell then there must be
only one Queen in that corresponding row, column or diagonal respectively;

2. If there is a pawn in a row, column or a diagonal then

a. There can be only one Queen in that corresponding row, column or
diagonal respectively or

b. There can be only two Queens, one on each side of the pawn in that
corresponding row, column or diagonal;

3. Total number of Queens = N + 1.

A possible solution to the problem has been shown in the Fig. 1.

Problem representation A discrete Hopfield-type neural network of N × N
dimensions has been used for (N + 1) QP such that each neuron represents cell
on the chessboard. A Queen is represented by 1, a pawn is represented by −1
and empty cell is denoted by 0. As no solution exist if we place the pawn at the
boundary cells. For N = 8 there are 28 boundary cells out of 64. So a pawn has to
be placed on non-boundary cells. A pawn is placed permanently near the center at
coordinates Pawn(p, q) and the system is allowed to converge. However, the pawn
can also be placed at any other non-boundary cell.
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Fig. 1 Solution of (N + 1) QP.

Derivation of Energy function. The Energy function for the proposed neural
network for (N + 1) QP has following constraints

E =
1

2

n∑
i=1

n∑
j=1



Vpq = −1
if i 6= p and j 6= q

Sum of Row Terms +
Sum of Column Terms +

Sum of Diagonal 1 Terms +
Sum of Diagonal 2 Terms

if i = p or j = q
{Sum of Row Terms upto (p, q)

Sum of Column Terms upto (p, q)}
if i− j = 0 or i+ j = 0

Sum of Diagonal 1 Terms upto (p, q)
Sum of Diagonal 2 Terms upto (p, q)

for all i = p and j = q
Total number of Queens = n+ 1



Vij . (9)
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The detailed energy function for the problem is given as

E =
1

2
A

n∑
i=1

n∑
j=1



n∑
k=1
k 6=j

i 6=p,j 6=q

Vik +
n∑

k=1
k 6=i

i 6=p;j 6=q

Vkj+

q−1∑
k=1
k 6=j

i=p;j<q

Vpk +
n∑

k=1
k 6=i

i=p;j<q

Vkj+

n∑
k=q+1
k 6=j

i=p;j>q

Vik +
n∑

k=1
k 6=i

i=p;j>q

Vkq+

n∑
k=1
k 6=j

i<p;j=q

Vik +
p−1∑
k=1
k 6=i

i<p;j=q

Vkq+

n∑
k=1
k 6=j

i>p;j=q

Vik +
n∑

k=p+1
k 6=i

i>p;j=q

Vkq



Vij

+
1

2
B

n∑
i=2

i−1∑
j=1



n∑
k=i−j+1

k 6=i
i−j 6=p−q

Vk,k−i+j+

p−1∑
k=i−j+1

k 6=i
i−j=p−q

i<p

Vk,k−i+j+

n∑
k=p+1

i−j=p−q
i>p

Vk,k−i+j


Vij

+
1

2
B

n∑
i=2

i−1∑
j=1



n∑
k=i−j+1

k 6=i
i−j 6=p−q

Vk,k−i+j

+
p−1∑

k=i−j+1
k 6=i

i−j=p−q
i<p

Vk,k−i+j

+
n∑

k=p+1
i−j=p−q

i>p

Vk,k−i+j


Vij

300



Waqas M., Bhatti A.A.: Optimization of N + 1 Queens problem using. . .

+
1

2
B

n∑
i=1

n∑
j=1



n+i−j∑
k=1
k 6=i

i−j 6=p−q

Vk,k−i+j

+
p−1∑
k=1
k 6=i

i−j=p−q
i<p

Vk,k−i+j

+
n+i−j∑
k=p+1
k 6=i

i−j=p−q
i>p

Vk,k−i+j


Vij

+
1

2
B

n∑
i=1

n∑
j=n−i+1



n∑
k=i+j−n

k 6=i
i−j 6=p−q

Vk,i+j−k

+
n∑

k=i+j−n
k 6=i

i+j=p−q
i>p
k>p

Vk,i+j−k

+
n∑

k=i+j−n
k 6=i

i+j=p−q
i<p
k<p

Vk,i+j−k



Vij

+
1

2
B

n−1∑
i=1

n−i∑
j=1



i+j−1∑
k=1
k 6=i

i−j 6=p−q

Vk,i+j−k

+
i+j−1∑
k=1
k 6=i

i+j=p−q
i>p
k>p

Vk,i+j−k

+
i+j−1∑
k=1
k 6=i

i+j=p−q
i<p
k<p

Vk,i+j−k



Vij

+
1

2
C

 n∑
i=1

n∑
j=1

i 6=p,j 6=q

Vij − (n+ 1− σ)


2

+D (Vpq − (−1)) . (10)
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The motion equation can be derived by differentiating the above equation and
is given as

−uij = A



n∑
k=1
k 6=j

i6=p;j 6=q

Vik +
n∑

k=1
k 6=i

i6=p;j 6=q

Vkj+

q−1∑
k=1
k 6=j

i=p;j<q

Vpk +
n∑

k=1
k 6=i

i=p;j<q

Vkj+

n∑
k=q+1
k 6=j

i=p;j>q

Vik +
n∑

k=1
k 6=i

i=p;j>q

Vkq+

n∑
k=1
k 6=j

i<p;j=q

Vik +
p−1∑
k=1
k 6=i

i<p;j=q

Vkq+

n∑
k=1
k 6=j

i>p;j=q

Vik +
n∑

k=p+1
k 6=i

i>p;j=q

Vkq



+Rij + Sij

+ C

 n∑
i=1

n∑
j=1

i 6=p,j 6=q

Vij − (n+ 1− σ)

+D (Vpq − (−1)) , (11)

where

Rij =



for i− j > 0

B



n∑
k=i−j+1

k 6=i
i−j 6=p−q

Vk,k−i+j+

p−1∑
k=i−j+1

k 6=i
i−j=p−q

i<p

Vk,k−i+j+

n∑
k=p+1

i−j=p−q
i>p

Vk,k−i+j



for i− j ≤ 0

B



n+i−j∑
k=1
k 6=i

i−j 6=p−q

Vk,k−i+j

+
p−1∑
k=1
k 6=i

i−j=p−q
i<p

Vk,k−i+j

+
n+i−j∑
k=p+1
k 6=i

i−j=p−q
i>p

Vk,k−i+j


,

(12)
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and

Sij=



for i+ j>n

B



n∑
k=i+j−n

k 6=i
i−j 6=p−q

Vk,i+j−k

+
n∑

k=i+j−n
k 6=i

i+j=p−q
i>p
k>p

Vk,i+j−k

+
n∑

k=i+j−n
k 6=i

i+j=p−q
i<p
k<p

Vk,i+j−k



for i+ j≤n

B



i+j−1∑
k=1
k 6=i

i−j 6=p−q

Vk,i+j−k

+
i+j−1∑
k=1
k 6=i

i+j=p−q
i>p
k>p

Vk,i+j−k

+
i+j−1∑
k=1
k 6=i

i+j=p−q
i<p
k<p

Vk,i+j−k



.
(13)

Explaination of terms In Eq. (11), the term Vik calculates the row sum and the
term Vkj column sum for the corresponding neuron. The different cases actually
correspond to the different position of neuron with respect to the intercepting pawn.
There are following different cases that exits:

i. if i 6= p and j 6= q,

a. calculate the row and column sum in the normal manner;

ii. if i = p and j 6= q,

a. if j < q,
calculate Row sum up to j = q − 1,
calculate Column sum normally,

b. if j > q,
calculate Row sum form j = q + 1 to j = n,
calculate Column sum normally;

iii. if i 6= p and j = q,

a. if i < p,
calculate Column sum up to i = p− 1,
calculate Row sum normally,

b. if i > p,
calculate Column sum form j = p+ 1 to j = n,
calculate Row sum normally.

The terms Rij and Sij in Eq. (11) correspond to the two diagonals. The terms,
Rij and Sij , were further explained in Eqs. 12 and 13. Their expression is the
logical extension of their NQP expression’s counterpart. We have identified the
various regions that exist in (N+1) QP. The term with C calculates the number of
Queens in the system and the last term makes sure that the neuron corresponding
to pawn is always at potential as −1.
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The activation function for the network is given as

Vij =

 0; if i 6= p and j 6= q and uij ≤ 0,
1; if i 6= p and j 6= q and uij > 0,
−1; if i = p and j = q.

(14)

Simulation results There are two modes of updating the neurons: synchronous
and asynchronous. In synchronous updating, all the neurons are updated at the
same time after specific intervals of time but in asynchronous updating, a neuron is
randomly selected among the network and its value is updated. Both approaches,
synchronous and asynchronous modes, are implemented and the result was almost
identical. The performance of the network was not dependent upon the mode
selected.

Initially the neurons are randomly assigned the value from (0, 1) except for
Vpq = −1, which corresponds to the intercepting pawn.

There are many ways to assign the value of A,B,C and D. As all the constraints
involved are equally important the values of A,B,C and D must be identical. We
have set A = B = C = D = 100 and σ = 25 as in [8]. However we can also
set A = B = C = D = 1 and σ = 0.25, 0.5, 0.75. On average the network finds
optimal solution in 38.9 iterations for N = 8. Some simulation results along with
the number of iterations are shown in Fig. 2 and Tab. I. The time complexity of
the simulations is O(n4).

No solution exists for N ≤ 5. The solution exists for larger values of N .

N K = 1 K = 2 K = 3 K = 4

6 16 0 0 0
7 20 4 0 0
8 128 44 8 0
9 396 280 44 8
10 2288 1304 528 88
11 11152 12452 5976 1688
12 65172 105012 77896 30936
13 437848 977664 1052884 627916
14 3118664 9239816 13666360 11546884
15 23387448 90776620 179787988
16 183463680 897446082
17 1474699536

Tab. I Number of solutions for N + k Queens problem.

The proximity rule of initialization The Proximity Rule of Initialization
states that the Neural Network should be initialized in the vicinity of some ex-
pected outcome. If we place the pawn at the boundary cells of the board then no
solution exists for N+1 QP as the pawn will not be able to block the attack between
the queens. However if we place the pawn on cells other than the boundary cells
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Fig. 2 N Queens problem solution.

the solution exists. Generally for every N there will be 4N − 4 boundary cells out
of N2 cells. Therefore for N = 8 there will be 28 edge cells and if pawn is placed
randomly then there is 43.75 % probability that the solution will fail. But if we
place the pawns in the cells other than the boundary cells the system is observed
to converge in 90 % of the trials. So if the Neural Network is initialized in the
vicinity of the expected outcome (in this case placing the pawn on non-boundary
cells) then the system converges to optimum solution in 90 % of the trials.

Comparison with full space search Mandzuik [8] estimated the computa-
tional complexity of O(n4.47) and O(n4.67) for asynchronous and synchronous
model. However the time complexity of the proposed network N + 1 QP is O(n4),
which is an improvement upon Mandzuik model.

Chatham [2] presented number of possible solutions of N +K QP for different
values of N and K. The number of possible solutions to N + k Queens problem for
various values of N and k are given in the Tab. I [2].

The proposed network is found to be far better than full space search approach.
In order to investigate full space search a different formulation is considered. A
valid solution of NQP is presented in Fig. 2. A typical solution of NQP can be
represented in the form of an array Q:

Q = [3, 7, 2, 8, 5, 1, 4, 6]. (15)

The elements of Q represent the position of Queens in corresponding columns. For
any given column there are N number of ways to place a queen. Hence for N
columns there are NN possible configurations. Similarly N + 1 Queens problem
can be represented as an array of N 3-tuples qi(q1, q2, p), where q1, q2, p represent
positions of pawn and queens in the i-th column. All but one of columns contain
only one queen:

Q = [(8, 0, 0) , (5, 0, 0) , (2, 0, 0) , (0, 4, 0) , (1, 7, 4) , (4, 0, 0) , (6, 0, 0) , (3, 0, 0)] , (16)
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where first 3-tuple (8, 0, 0) means that there is only one queen in first column at
rown number 8. While fifth 3-tuple (1, 7, 4) signify two queens at row number
1 and 7 and a pawn at 4-th row. Now in all but one of columns there will be
one Queen. So there are NN−1 ways to place N − 1 Queens in N − 1 columns.
On the remaining column there will be two queens and one pawn. So there are
N (N − 1) (N − 2)/2 ways to place two queens and a pawn in a column. Therefore
there are [NN (N − 1) (N − 2) /2] possible configurations. No solution of N + 1
Queens problem for exist for N ≤ 5 (see Tab. II). For N = 6 there are 446,560
possible configurations out of which only 16 yield correct solution. For N = 8
there are 352321536 possible configurations out of which 20 corresponds to correct
solution. For N = 10 there are 7.2 × 1010 configurations and 2288 solutions. So
the time complexity of brute force algorithm is O(NN ). Clearly brute force or
full space approach will not be fruitful for even the small possible value of N for
N + 1 QP. Considering the cost of evaluating the combinatons and keeping the
track of past configurations, brute force approach would become too inefficient for
even small values of N . Therefore the proposed algorithm is far better than full
space search as ANN solves the problem in polynomial time while brute force has
to search through NN (N − 1) (N − 2) /2 configurations.

Queens(N) Iterations Queens(N) Iterations

4 No.Solution 100 76.3
5 No.Solution 200 68.1
6 14.1 300 81.9
7 21.7 400 124.5
8 38.9 500 109.2
9 40.1 600 113.3
10 49.7 1000 107.4

Tab. II Average no. of iterations for various values of N .

(a) (b)

Fig. 3 Two different solutions of N + 1 Queens problem.
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3. Conclusion

(N + 1) Queens problem is a challenging problem. As NQP is solved using many
approaches ranging from backtracking search, Genetic algorithms, Particle Swarm
Optimization, Ant Colony Optimization, to Simulated Annealing, but no such
efficient algorithm exists to find the solution for N + 1 QP for all values of N . It
is observed that the placement of an extra pawn introduces enormous complexity.
The performance of the network is compared with full space search or brute force
approach. The brute force approach has to search through NN (N−1) (N−2) /2
configurations while the proposed ANN can solve the N+1 QP in O(N4).

A new initializing technique i.e. proximity rule of initialization has also been
proposed, i.e. if we initialize the system in the proximity of the expected solution
(place the pawn on non-boundary cells) then system will be attracted to the exact
solution more rapidly. The results are identical for synchronous and asynchronous
mode of updating neurons. The proposed network shows promising solution for
large values of N . It is analogous in nature with scheduling/job shop problem and
various scheduling. Therefore various job shop problems can be solved by the same
methodology.
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