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Abstract: Calibration of rainfall-runoff model parameters is an inseparable part
of hydrological simulations. To achieve more accurate results of these simulations,
it is necessary to implement an efficient calibration method that provides sufficient
refinement of the model parameters in a reasonable time frame. In order to perform
the calibration repeatedly for large amount of data and provide results of calibrated
model simulations for the flood warning process in a short time, the method also
has to be automated. In this paper, several local and global optimization methods
are tested for their efficiency. The main goal is to identify the most accurate
method for the calibration process that provides accurate results in an operational
time frame (typically less than 1 hour) to be used in the flood prediction Floreon+

system. All calibrations were performed on the measured data during the rainfall
events in 2010 in the Moravian-Silesian region (Czech Republic) using our in-house
rainfall-runoff model.
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1. Introduction

The rainfall-runoff process is a continual process of water exchange between an
ocean and continent or within a continental region. It consists of the following basic
components: evapotranspiration and atmospherical water transport, precipitation,
interception, infiltration, surface runoff, interflow, and baseflow. It is a complex
process, which can be described only in a simplified form. This simplification can
be modelled by a rainfall-runoff model - the quantitative relation between input
and output characteristics of a hydrological system. Mathematically expressed, it
is an algorithm for solving the equations describing the structure and behaviour
of such system [11, 14]. Rainfall-runoff models can be classified from different
points of view, e.g. the hydrological cycle representation (conceptual and physically
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based models), the level of causality (deterministic and stochastic models), the time
discretization (continual and event models), or the spatial discretization (lumped,
semi-distributed, and distributed models). Lumped models consider the catchment
as one spatial unit with homogeneous hydrological characteristics. In distributed
models, spatial heterogeneity of these characteristics can be expressed as a mosaic
of quasi-homogenous spatial units. Semi-distributed models serve as a midpoint
between lumped and distributed models, where the catchment is divided into sub-
catchments or sub-basins, each with homogeneous hydrologic parameters.

Every (hydrological) model is based on parameters [7,21]. The parameters can
be classified as the physical and process ones [23]. The physical parameters can be
measured or estimated directly (catchment geometry, land cover, etc.), while the
process ones only indirectly (e.g. runoff coefficient, average hydrological parameters
etc.). The process parameters, as well as input hydro-meteorological data, are
therefore affected by an uncertainty arising from spatio-temporal variability of the
hydro-meteorological processes and the method of their measurement or estimation.
All errors in the model parameters are then essentially transferred to the model
outputs (hydrological model uncertainty is further discussed, e.g., in [4–6, 24]).
This means that all hydrological models, especially conceptual lumped and semi-
distributed ones, can be fairly inaccurate without calibration.

Model calibration, in the meaning of parameter optimization, is a process of
searching for such a parameter combination that leads to the best fit between the
simulated and observed hydrographs [1, 7, 24]. This can be mathematically ex-
pressed by an objective function that can use different metrics for model accuracy
evaluation (e.g. Nash-Sutcliffe coefficient, peak discharge error, etc.). Basically,
calibrations can be classified as manual and automatic. In manual calibration,
trial-and-error parameter adjustment is made and requires an experienced hydro-
logist with the knowledge of the catchment behaviour. The manual calibration
then provides hydrologically relevant results, but it is very time consuming and
highly dependent on the level of expertise of the hydrologist. In automatic cali-
brations, model parameters are adjusted automatically according to a specific se-
arch scheme and numerical goodness-of-fit measure of the calibrated model [16,17].
Due to the complexity of the rainfall-runoff process, automatic optimization met-
hods combined with high performance computing (HPC) create a suitable tool for
multi-objective calibration. An objective function for calibration of rainfall-runoff
events often contains numerous local minima that optimize only small parts of the
resulting hydrograph, but finding a global minimum provides a significant incre-
ase in accuracy [12]. The conclusion of the number of studies is that the global
population-evolution-based algorithms are more effective than multi-start local se-
arch procedures, which in turn perform better than pure local search methods [17].
Successfully used global optimization methods are, e.g., genetic algorithms, hill-
climbing methods, shuffled complex evolution (SCE), or simulated annealing [7,17].
Advanced calibration approaches include the statistical methods which take input
uncertainties into account (e.g. [22, 28]), Bayesian statistics (e.g. [13, 20, 25, 31]),
or theoretical methods respecting the principle of equifinality (GLUE and Monte
Carlo methodologies) [8].

Many of these studies only look at the accuracy of the calibration methods
but not on their time aspect, which is very important in operational use of the

392



Theuer M. et al.: Efficient methods of automatic calibration for rainfall-runoff. . .

automated calibration methods and mainly during flooding situations. The main
goal of this paper is to look at these methods in the context of our flood prediction
system called Floreon+ [18, 30], which executes rainfall-runoff simulations for all
major catchments of the Moravian-Silesian region every hour.

The experiments in this paper employ our internally developed semi-distributed
rainfall-runoff model called Math1D. It is based on the SCS-CN (curve number)
method [7] which is commonly applied to quantifying the amount of direct runoff
transformed from the corresponding rainfall in small and medium catchments. The
curve numbers are empirical hydrologic parameters derived from the catchment’s
soil group, land use, and other hydrological parameters. To determine a distribu-
tion of runoff in time, the unit hydrograph is used and water contributions from
particular streams are computed using the kinematic wave approximation and Man-
ning’s equation [29]. Based on the sensitivity analysis and available real hydrologic
data, the Manning’s roughness coefficient, the initial abstraction, and the curve
number were identified as the parameters suitable for calibration. These values are
specific for each river stream and sub-basin.

Besides the Math1D model, several rainfall-runoff models are used in the
Floreon+ system, and all of them should be calibrated. On top of that, the re-
sults of the rainfall-runoff models are used as inputs to the hydrodynamic models,
so their high accuracy and timely execution is very important for providing good
quality of the service. Therefore, this paper focuses on comparing the propo-
sed methods with this time limitation in mind on all catchments modelled in the
Floreon+ system and provides a basic scalability analysis of the used methods to
look at the possibilities of their deployment on the HPC cluster.

The paper is structured in the following way. Sec. 2 describes a general au-
tomated approach and algorithm to calibration of rainfall-runoff models. Sec. 3
along with Sec. 4 discusses local and global optimization methods investigated in
this paper. Sec. 5 provides the methodology used in the calibration experiments
and environment for their execution along with the discussion of the experimental
results. Sec. 6 concludes this paper and outlines the plans for our future research.

2. Model calibration process

Let us assume a hydrological modelH that transforms a set of time dependent input
parameters R into a set of results Q = H(R). Both Q and R consist of discrete
space and time domains, therefore they are represented by matrices, where the first
dimension stands for measurement or prediction stations and the second dimension
expresses time steps. Typically, the output from the modelH is not dependent only
on the input parameters R (usually in the form of measured or predicted rainfall)
but also on other hydrological parameters x. The values of these parameters are
constrained by a set of admissible hydrological parameters Uadm. Typically, we set
the lower and upper limits on the calibrated parameters to ensure their physical
meanings defining Uadm = {xi : li ≤ xi ≤ ui, i = 1, ..., n}, but of course any other
type of constraints is allowed. The goal of the calibration is to find such values of
the parameters x that the parametrized hydrological model H(x,R) provides the
results with the minimal error. If we denote by Q(x) = H(x,R) output from the
hydrological model parametrized by the set of hydrological parameters x and by
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Qo a set of observed quantities corresponding to Q(x), we can measure the model
error by an objective function f(x) = ||Q(x) −Qo||. The choice of the norm ||.||
is arbitrary and the most frequently used choices for rainfall-runoff modelling are
presented in Sec. 5. Using such notation, we can rewrite the model calibration
process as a constrained minimization problem

min f(x) subject to x ∈ Uadm. (1)

From the computational point of view, the evaluation of the objective function
represents the solution of the hydrological model with a given set of parameters
x. Depending on the selected optimization method, a certain number of the same
hydrological models with different parameter setting have to be evaluated in each
optimization step. A general calibration scheme is depicted in Fig. 1.

Initial settings of

model parameters

Model solving

Model error 

check

Start

Stop

Multiple models

solving

Model parameters

update

Optimization step

-

+

Fig. 1 General calibration algorithm.

From the scheme, it is obvious that the most computationally expensive part is
the multiple execution of the hydrological model, which forms the essential part of
the used optimization algorithm. Therefore, the efficiency of the whole calibration
process is dependent on this algorithm. The parallel programming technique seems
to be a possibility to speed up the whole calibration process. Unfortunately, not
every optimization algorithm can benefit from it. In our paper, we have tested
several different optimization methods, both the local and global ones, and we
have evaluated them with respect to the resulting model accuracy. In the next
section, a brief overview of the tested methods is presented.
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3. Local optimization methods

Local optimization methods only find a local minimum of the objective function
when starting from the specified initial input vector. To acquire the optimal cali-
bration parameters for an observed rainfall-runoff event using this kind of methods,
the objective function has to have only one minimum within the predefined con-
straints of the calibrated parameters, or the initial parameter values have to be
between two local maxima that surround the global minimum of the objective
function in each dimension of the function. While using these methods in our ex-
periments, the initial parameters were specified by manual calibration performed
by a hydrologist on a time period with stabilized flow.

3.1 Line search method

The first tested local minimization method evaluates the gradient of the objective
function for the initial input vector and then changes all calibrated parameters in
the direction of the gradient as seen in Eq. (2).

xi+1 = xi − stepi · ∇f(xi), (2)

where xi+1 is the new vector of calibrated parameters for the next iteration, xi is
the vector of calibrated parameters in this iteration, ∇f(xi) is the gradient of the
objective function for input vector xi and stepi describes a step for this iteration
evaluated in Eq. (3).

stepi = argmin
step

(f(xi − step · ∇f(xi))) (3)

The constraints satisfaction is ensured by projection of the gradient on a feasible
set in each step. This method iterates until a specified number of iterations has
been processed or a specified threshold of the objective function value has been
reached.

3.2 Interior point method

The main idea of the interior point methods is to transform a general equality and
inequality constrained optimization problem

min f(x) subject to h(x) = 0 and g(x) ≥ 0 (4)

into a simply bounded and equality constrained minimization problem

min f(x)− µ
∑
i

ln(si) subject to h(x) = 0 and g(x) + s = 0 (5)

adding a logarithmic barrier function
∑

i ln(si) and non-negative slack variables
s ≥ 0. It is easy to see that the solution of the new problem (Eq. (5)) converges
to the solution of the original problem (Eq. (4)) as µ tends to 0. The approximate
problem (Eq. (5)) is solved in each iteration either using Newton step (solution of
Karush-Kuhn-Tucker conditions) or using trust region conjugate gradient step if
Newton step is not possible to perform. This method is well known by its robustness
and polynomial convergence rate. More details about the interior point methods
can be found in [9, 10].
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4. Global optimization methods

Global optimization methods try to find a global minimum of the objective function
within given constraints. They, therefore, eliminate the limitations of local methods
but at the same time are more computationally intensive.

4.1 Pattern search

Pattern search [26] finds a sequence of parameter vectors x0,x1,x2, . . . that appro-
ach an optimal vector xn. The value of the objective function for each subsequent
vector in the sequence either decreases or remains the same, i.e.

∀i ∈ {0, 1, 2, . . . , n− 1}[f(xi) ≥ f(xi+1)]

Pattern search starts at the predefined initial vector x0 and the algorithm can
be described as follows:

1. Generate a pattern of vectors Pi centralized around the current vector. This
pattern is generated by adding and subtracting a value of the mesh size pa-
rameter msi(ms0 = 1) in each dimension of the current vector. For example,
in a two dimensional space the pattern for the initial vector contains the
following four vectors:

P0 = {(x0x, x0y + ms0), (x0x + ms0, x0y), (x0x, x0y −ms0), (x0x −ms0, x0y)}
(6)

2. Evaluate the objective function for each vector in the generated pattern.

3. If the value of the objective function for any vector in the pattern is lower
than the value for the current vector, then the following happens:

(a) The vector with the lowest objective function value becomes the new
current vector for next iteration:

xi+1 = p ∈ Pi : ∀q ∈ Pi[f(p) ≤ f(q)]

(b) The value of the mesh size parameter for the next iteration doubles:

msi+1 = 2 ·msi

(c) The next iteration starts from step 1 of this algorithm.

4. If the value of the objective function for the current vector is lower than the
values for all pattern vectors, then the following happens:

(a) The value of the mesh size parameter for the next iteration is halved:

msi+1 =
msi
2

(b) If the mesh size for the next iteration is lower than a specified threshold,
the algorithm stops and returns the current vector as the optimal point.
Otherwise, the current vector is retained for the next iteration:

xi+1 = xi

The next iteration starts from the step 1.
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4.2 Global search

Global search [27] searches for a global minimum by using the Interior point method
to find the local minima for multiple input vectors. First, a set of input vectors
S is generated in a constrained region by a scatter search algorithm [15] and split
into two disjoint subsets: small initialization subset Si and main subset Sm. The
global search method processes these subsets in two stages:

1. Initialization of method parameters and thresholds on the initialization subset
Si.

(a) Evaluate objective function for all vectors in Si and find the vector with
the lowest value of the objective function:

x0 = argmin
x∈Si

(f(x))

(b) Use the Interior point method to find a local minimum for the found
vector:

locMin0 = mincon(f,x0)

(c) Set a score threshold to the objective function value of the found local
minimum:

threshold = f(locMin0)

(d) Create a spherical basin of attraction defined by the found minimum as
its center:

center0 = locMin0;

and Euclidean distance between the found vector and its minimum as
its radius:

radius0 = |locMin0 − x0|

2. The main iterative loop executed sequentially for each vector x in the main
subset Sm.

(a) If x is not in any basin of attraction:

∀i ∈ {0, 1, . . . ,m}[|x− centeri| > distanceFactor · radiusi]

(m is a number of basins of attraction and distanceFactor is a settable
parameter of the method) and the objective function value for x is less
than the score threshold:

f(x) < threshold,

then:

• Change the score threshold value to the objective function value for
x:

threshold = f(x)
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• Use the Interior point method to find a local minimum for x:

locMinx = mincon(f,x)

• If the found local minimum was already identified in the previous
iterations, update the radius for the appropriate basin of attraction:

radiusi = max(radiusi, |x− centeri|);

otherwise save the newly found local minimum into the results and
create a new basin of attraction around it:

centerm+1 = locMinx

radiusm+1 = |locMinx − x|.

(b) Otherwise if the evaluated vectors belonged to one basin of attraction
for a number of consecutive iterations (specified by waitCycle para-
meter), then this basin is scaled down by multiplying its radius by
(1 − radiusFactor). If the objective function values of the evaluated
vectors were higher than the score threshold for a number of consecu-
tive iterations, then the threshold is increased to enable more successful
evaluations:

threshold←− threshold + thresholdFactor · (1 + |threshold|),

where waitCycle, radiusFactor and thresholdFactor are settable para-
meters of the method.

This algorithm finishes after it runs out of vectors in the main set or after a
specified period of execution time. All resulting local minima are then compared
to each other and the lowest of them is provided as the global minimum.

4.3 Multi-start Interior point method

This global method uses the Interior point method as well but searches for the local
minima of the objective function for multiple independent, randomly generated
input vectors in the constrained region. The lowest of the found local minima is
provided as the global minimum as in the previous method.

One of the advantages of this method is that all generated input vectors are
independent and can be deployed to a computer cluster and evaluated in parallel.
This can significantly decrease the execution time needed to find the minimum.

4.4 Genetic algorithm

The genetic algorithm looks for a global minimum by changing and combining
vectors from initial randomly generated population P0 in the constrained region.
Each iteration of the algorithm’s main loop takes the current population Pi and
performs the following steps:
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1. Evaluate the objective function for all vectors in Pi and select a multiset
of parents Si. This selection is done by the stochastic uniform sampling
algorithm [2].

2. Create an elite multiset Ei containing the eliteCount number of elite vectors
from Pi, i.e. vectors with the best objective function values. The vectors in
this set will be passed to the next generation population without any changes.

3. Create a crossover multiset Ci containing b(|Pi|−eliteCount)·crossoverFractionc
number of crossover vectors created from the set of parents Si. Each crossover
vector is created by combining the vectors of two randomly selected parents.
This combination is done by the uniform crossover method, i.e. each vector
element is taken from one of the parents randomly.

4. Create a mutation multiset Mi containing |Pi| − eliteCount− |Ci| number of
mutated vectors created from the set of parents Si. Each mutated vector is
created from a random parent by adding a random number from the Gaussian
distribution N(0, σi) to each vector element. The standard deviation starts
at a value of the settable parameter scale:

σ0 = scale

and decreases with each generation by a settable parameter shrink:

σi+1 = σi · (1− shrink · i+ 1

generationCount
)

5. Create a population for the next iteration Pi+1 by combining the elite, cros-
sover, and mutation multisets:

Pi+1 = Ei + Ci +Mi

This method stops after a generationCount number of iterations have been pro-
cessed, after a specified period of execution time, or if the best objective function
value is less than or equal to the value of fitnessValue.

This algorithm can be partially parallelized by computing the objective function
for each member of the population concurrently. After all objective functions are
computed, the algorithm has to gather them all and use them to create another
generation. The creation of individual members of the next generation can also be
done concurrently. Therefore, problems with computationally intensive evaluation
of their objective function or those with big populations, in particular, will benefit
from the parallelization of this method.

5. Numerical experiments

In this section, the methodology used in the calibration experiments and software
and hardware environment for executing these experiments will be described along
with the discussion of the results.
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5.1 Runtime environment

Numerical experiments for evaluating the optimization methods were implemented
and performed in programming language and computing environment MathWorks
MATLAB R2013a [19]. Because they are computationally intensive, we used the
MATLAB Parallel Computing Toolbox, MATLAB Distributed Computing Ser-
ver, and MATLAB built-in parallel functions to improve the code performance by
speeding up executions. The fmincon solver using the interior-point algorithm, and
own implementation of the line search algorithm using the fminbnd minimizer for
a step optimization were utilized in the local optimization methods. Similarly, pat-
ternsearch, GlobalSearch using the interior-point algorithm, MultiStart using the
interior-point algorithm, and ga (genetic algorithm) were utilized for the global
optimization methods. The experiments were executed on the computing nodes of
the Anselm cluster at IT4Innovations National Supercomputing Center. Each node
of the cluster is a powerful x86-64 computer, equipped with two 8-core Intel Sandy
Bridge E5-2665 2.4 GHz processors and 64 GBRAM. The nodes are interconnected
by fully non-blocking fat-tree Infiniband network (3600 MB/s).

256 MATLAB workers using 256 processor cores (16 nodes with 16 cores) were
used for running each calculation (job). Each job processed one of the four modelled
catchments in the Moravian-Silesian region (Odra, Opava, Ostravice, Oľse).

5.2 Episodes for evaluation

The Math1D model is usually used for 168 hour episodes which consist of 120
hours of past simulation based on measured data and 48 hours of prediction. Since
the purpose of our test was not the accuracy of the model prediction but the
improvement by calibration, we decided to use 168 hour simulations based on
measured data to minimize the uncertainty of weather predictions.

As for the selection of episodes, we analysed the model results for the whole
year 2010 to test the calibration on a wide range of rainfall events including heavy
rainfall that caused a significant flooding episode in the Moravian-Silesian region
in May. We only picked events with the peak discharge value higher than a median
of year discharges. It was also necessary to choose such events when the discharge
is not heavily affected by precipitations right before the start of the simulation
period. Only periods with complete precipitation and discharge data sets were used
in this experiment as we wanted to minimize the error produced by interpolation
or extrapolation of the data.

5.3 Model accuracy evaluation

Six different combinations of norms were used to evaluate the accuracy of our mo-
del. At first, we used one of the three following norms to measure the error of
modelled hydrographs at i-th measurement station. Nash-Sutcliffe coefficient is
widely used and simple statistics for assessing the goodness of fit of hydrologic
models. This coefficient uses observed and modelled values for assessing the model
efficiency. The Nash-Sutcliffe coefficient is sensitive to extreme values (peak flow),
and therefore it is important to focus on the culmination part of the hydrograph
(normed peak error). Another important characteristic of the flood wave is volume
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and thus we focus on it as well evaluating the normed volume error. Overall, the
results from the Nash-Sutcliffe coefficient show complex evaluation of the calibra-
tion process, whereas peak and volume error are determined to monitor only a
particular part of the calibrated hydrograph.

By Qi
o = 1

T

∑T
t=1 Qi,t

o , we denote mean of observed discharges over time steps t,
Qi,t

m denotes modelled discharge at time step t, and Qi,t
o observed discharge at time

step t.

• Adapted Nash-Sutcliffe model efficiency coefficient:

errAi =

∑T
t=1

(
Qi,t

o −Qi,t
m

)2∑T
t=1

(
Qi,t

o −Qi
o

)2 .
The original Nash-Sutcliffe coefficient is simply given by NSC = 1 − errAi .
The modification was used purely for easier expression of the cost function
for the minimization methods.

• Normed peak error:

errBi =

∣∣∣∣Qi,tip
o −Q

i,tip
m

∣∣∣∣
Q

i,tip
o

, where tip = arg max
t∈{1,...,T}

(
Qi,t

o

)
.

• Normed volume error:

errCi =

∑T
t=1

∣∣Qi,t
o −Qi,t

m

∣∣∑T
t=1

∣∣∣Qi,t
o

∣∣∣ .

In the second phase, we computed the overall error using L2-norm and L∞-norm
of all described error norms errX for each measurement station. N is a number of
measurement stations in the modelled catchment.

∥∥errX
∥∥
2

=

√∑N

i=1

∣∣errXi
∣∣2, ∥∥errX

∥∥
∞ = max

i∈{1,...,N}
errXi .

5.4 Schematization processing strategies

Two types of strategies describing the calibration procedure based on the structure
of modelled catchments were used for the numerical experiments. Each catchment
is partitioned to many sub-basins as specified by the semi-distributed approach
used in the experimental model. The way how sub-basins are calibrated differs for
these two strategies.

Overall strategy. In this approach, the parameters for the whole basin are cali-
brated at once, and errors of modelled hydrographs are computed for each discharge
measurement station. The overall error is evaluated using one of the two norms
described in the second phase of the model accuracy evaluation (L2-norm and
L∞-norm). The principle of this overall strategy is shown in Fig. 2a.
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(a) Overall strategy. (b) Hierarchical strategy.

Fig. 2 Schematic diagrams for schematization processing strategies.

Hierarchical strategy. This approach takes into account the natural hierarchi-
cal behaviour of all catchments, i.e. upstream parts of the catchment that contribute
to an upstream measurement gauge should be calibrated for this gauge and should
not be influenced by downstream gauges. Therefore, the parameters of the sub-
basins that are closest to the river springs are calibrated first and their calibrated
parameters are then taken as fixed while calibrating the downstream parts of the
catchment. The errors for individual measurement gages and the overall error are
computed using the same norms as in the overall strategy. The principle of the
hierarchical strategy shows Fig. 2b.

5.5 Testing parameters

All minimization methods were constrained to finish computation in some reaso-
nable time under one hour. Both local minimization algorithms were bounded by
a number of evaluations of the cost function. The global minimization methods
were bounded by time limit of 1800 seconds.

5.6 Comparison of optimization methods

We compared 6 methods on 32 selected episodes in 6 combinations of norms and
two calibration approaches and evaluated the improvement of the original modelled
discharge error without calibration.

improvement = 1− error after calibration

error before calibration

If the error is reduced to zero, the improvement is 1. If the error remains unchanged,
the improvement is zero. Improvement of one half means that the error after
calibration is one half of the original error.
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5.7 Results

Adapted Nash-Sutcliffe model efficiency coefficient. The medians of both
local optimization methods are comparable (Tab. I and II) but the standard devia-
tion of improvement of the Line search method is twice as high as the improvement
for the Interior point method. It shows that the Line search method sometimes
fails to provide any better improvement. This is even more clear if we consider the
L∞-norm (Fig. 4a). The hierarchical approach provides slightly better results for
almost all methods (except for Multi-start). The best results for both approaches
are provided by the Pattern search algorithm.

Normed peak error. Tabs. III, IV and Fig. 4b show that the best improvement
can be achieved in the normed peak error. This is caused by the fact that the
error is measured only in one point. It turns out that the Pattern search method
and Genetic algorithm can easily find the parameters to fit the value at the peak.
This, of course, does not mean that the modelled hydrograph is in good agreement
with the observed hydrograph at the rest of the episode (see Fig. 3). We can also
observe from Figs. 6c, 6d, 5c, and 5d that there is a positive correlation between
the mean of observed discharge and improvement of error for nearly all methods.

Normed volume error. Calibration for the normed volume error provides smal-
lest improvement but this does not necessarily mean that the absolute results are
the worst. Local methods and the Pattern search provide the best improvement
(Fig. 4c and Tabs. V and VI). The hierarchical approach is slightly better for al-
most all methods. Figs. 5e, 5f, 6e and 6f show that the improvement tends to be
smaller as the mean of observed discharge rises.

The Pattern search algorithm provides the best improvement in all combinations
of the norms. As for the approaches, the hierarchical approach slightly dominates
the overall one.

hierarchical approach overall approach

mean median std mean median std

Local methods

Linesearch 0.811 0.855 0.183 0.787 0.848 0.230

Interior point 0.852 0.864 0.099 0.843 0.851 0.104

Global methods

Pattern search 0.892 0.907 0.080 0.878 0.867 0.085

Global search 0.802 0.840 0.159 0.821 0.818 0.112

Multistart 0.677 0.769 0.304 0.743 0.795 0.235

Genetic alg. 0.768 0.772 0.132 0.739 0.758 0.170

Tab. I Statistical results for improvement of
∥∥errA

∥∥
2
.
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Fig. 3 Comparison of modelled discharge calibrated in the N-S norm, the peak error
norm, and the volume error norm. Note that the N-S norm and the volume error
norm are overlapping almost perfectly.

hierarchical approach overall approach

mean median std mean median std

Local methods

Linesearch 0.796 0.848 0.215 0.712 0.821 0.324

Interior point 0.848 0.860 0.105 0.838 0.847 0.111

Global methods

Pattern search 0.882 0.904 0.097 0.877 0.875 0.097

Global search 0.806 0.826 0.145 0.797 0.829 0.160

Multistart 0.637 0.776 0.337 0.756 0.802 0.205

Genetic alg. 0.751 0.755 0.152 0.724 0.752 0.182

Tab. II Statistical results for improvement of
∥∥errA

∥∥
∞.

5.8 Parallel scalability

We performed several tests of parallel scalability of the calibration method for epi-
sodes with medium (Tab. VII) and heavy rain (Tab. VIII). The stopping criterion
was set to the 50 % reduction of the initial error of non-calibrated model. This cri-
terion was based on the previous experience with maximal possible error reduction
of the tested calibration methods. All calibration methods were able to achieve
such reduction. As expected, the performance of Line search and Pattern search
algorithm is not affected by the number of cores provided for the parallelization.
The results of the Global Search and Multi-start algorithm are almost identical
since both method use the Interior point as the local solver. We expected better
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Fig. 4 Relative improvements of error in L2-norm and L∞-norm for overall (grey)
and hierarchical (black) approach.
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Fig. 5 Correlations between mean of measured discharge and improvement of error
for overall approach.

406



Theuer M. et al.: Efficient methods of automatic calibration for rainfall-runoff. . .

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Mean of Q
o

Im
pr

ov
em

en
t

 

 

Linesearch
Interior point
Pattern search
Global search
Multistart
Genetic alg.

(a) Relative improvement of
∥∥errA∥∥

2
.

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Mean of Q
o

Im
pr

ov
em

en
t

 

 

(b) Relative improvement of
∥∥errA∥∥

∞.

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

1.2

Mean of Q
o

Im
pr

ov
em

en
t

 

 

(c) Relative improvement of
∥∥errB∥∥

2
.

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

1.2

Mean of Q
o

Im
pr

ov
em

en
t

 

 

(d) Relative improvement of
∥∥errB∥∥∞.

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Mean of Q
o

Im
pr

ov
em

en
t

 

 

(e) Relative improvement of
∥∥errC∥∥

2
.

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Mean of Q
o

Im
pr

ov
em

en
t

 

 

(f) Relative improvement of
∥∥errC∥∥

∞.

Fig. 6 Correlations between mean of measured discharge and improvement of error
for hierarchical approach.
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hierarchical approach overall approach

mean median std mean median std

Local methods

Linesearch 0.809 0.880 0.238 0.737 0.828 0.291

Interior point 0.814 0.886 0.233 0.815 0.922 0.244

Global methods

Pattern search 0.949 1.000 0.164 0.949 0.999 0.167

Global search 0.640 0.756 0.348 0.741 0.884 0.289

Multistart 0.464 0.466 0.423 0.752 0.843 0.269

Genetic alg. 0.941 0.994 0.118 0.920 0.979 0.140

Tab. III Statistical results for improvement of
∥∥errB

∥∥
2
.

hierarchical approach overall approach

mean median std mean median std

Local methods

Linesearch 0.794 0.893 0.260 0.599 0.686 0.366

Interior point 0.786 0.861 0.258 0.730 0.922 0.356

Global methods

Pattern search 0.943 1.000 0.174 0.880 0.989 0.223

Global search 0.580 0.634 0.387 0.611 0.658 0.381

Multistart 0.505 0.416 0.380 0.475 0.412 0.422

Genetic alg. 0.942 0.996 0.127 0.903 0.972 0.159

Tab. IV Statistical results for improvement of
∥∥errB

∥∥
∞.

hierarchical approach overall approach

mean median std mean median std

Local methods

Linesearch 0.646 0.610 0.153 0.639 0.603 0.147

Interior point 0.624 0.612 0.145 0.595 0.568 0.157

Global methods

Pattern search 0.694 0.684 0.115 0.662 0.628 0.132

Global search 0.540 0.520 0.164 0.502 0.512 0.215

Multistart 0.529 0.527 0.184 0.533 0.521 0.159

Genetic alg. 0.476 0.505 0.185 0.448 0.472 0.192

Tab. V Statistical results for improvement of
∥∥errC

∥∥
2
.
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hierarchical approach overall approach

mean median std mean median std

Local methods

Linesearch 0.652 0.641 0.156 0.612 0.577 0.161

Interior point 0.625 0.616 0.153 0.588 0.548 0.166

Global methods

Pattern search 0.687 0.667 0.124 0.677 0.662 0.131

Global search 0.556 0.570 0.186 0.522 0.522 0.165

Multistart 0.504 0.537 0.226 0.511 0.513 0.196

Genetic alg. 0.473 0.494 0.204 0.453 0.495 0.223

Tab. VI Statistical results for improvement of
∥∥errC

∥∥
∞.

speedup of the Multi-start algorithm, but the optimization reached desired impro-
vement within the run of one local solver so the parallelization of the global aspect
of the Multi-start algorithm did not manifest. The Genetic algorithm is the fastest
used algorithm for higher number of cores, but methods based on the Interior point
algorithm seem to have the best parallel scalability. The scalability graphs of the
tested algorithms are shown in Figs. 7 and 8.

Number of cores

1 2 4 8 16

Linesearch 27 27 27 27 27

Interior point 190 95 53 29 18

Pattern search 62 62 61 61 61

Global search 303 153 84 46 30

Multistart 296 155 84 45 29

Genetic alg. 195 71 31 17 16

Tab. VII Times in sec of calibration for episode with medium rain.

6. Conclusion and open problems

The main goal of the paper was to evaluate several approaches to automated cali-
bration of rainfall-runoff modelling. Two local minimization methods (line search
and interior point methods) and four global minimum searching algorithms (pattern
search, global search, multistart method and genetic algorithm) were tested on two
schematization processing strategies. The error improvement of the resulting mo-
del was chosen as the main criteria of this evaluation. For the error measurement,
three different generally used norms were used: Nash-Sutcliffe measurement model,
normed peak error, and normed volume error. As a very important constraint on
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Number of cores

1 2 4 8 16

Linesearch 44 43 43 43 43

Interior point 207 106 58 31 20

Pattern search 397 396 397 397 397

Global search 285 145 81 44 27

Multistart 284 147 81 44 27

Genetic alg. 106 28 15 17 8

Tab. VIII Times in sec of calibration for episode with heavy rain.
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Fig. 7 Speedup of calibration for episode with medium rain.

the tested calibration methods, we have used 30 min time limit that is natural re-
quirement of the Floreon+ system which serves an operational flood forecast every
one hour. Our numerical experiments show that the hierarchical schematization
processing strategy gives more accurate results. In terms of error improvement,
the pattern search global optimization method shows the best improvement for
all tested error norms. From the other side, both the hierarchical strategy and
pattern search method are the most time consuming techniques. Testing the time
performance and scalability of the optimization algorithms gives another view on
the calibration efficiency. The line search local optimization method and genetic
algorithm as a global optimization method give the 50 % error improvement in
the shortest times and the genetic algorithm also benefits from very good parallel
scalability up to 16 CPU cores.

Our future work will focus on massively parallel implementation and testing of
optimization algorithms as well as calibration on large sets of discharge measuring
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Fig. 8 Speedup of calibration for episode with heavy rain.

stations. Significant parallel speedup of less accurate global algorithms can give
them more time to improve their accuracy and thus overtake the most accurate
pattern search method with the worst parallel scalability. According to criteria
designed for specific Floreon+ requirements, the selected calibration methods and
approaches will be fully implemented using the C/C++ language in the parallel
software package for the automatic calibration of rainfall-runoff models. After veri-
fication of the implemented methods, the software will be deployed to the operation
process of the Floreon+ system.
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