THE FIRST HARDWARE MSC ALGORITHM
IMPLEMENTATION

V. Fabera; T. Musili J. Rada*

Abstract: This paper describes the first attempt of hardware implementation of
Multistream Compression (MSC) algorithm. The algorithm is transformed to se-
ries of Finite State Machines with Datapath using Register-Transfer methodology.
Those state machines are then implemented in VHDL to selected FPGA platform.
The algorithm utilizes a special tree data structure, called MSC tree. For stor-
age purpose of the MSC tree a Left Tree Representation is introduced. Due to
parallelism, the algorithm uses multiple port access to SDRAM memory.

Key words: multistream compression, MSC, FPGA, compression, parallel compres-
sion, left tree representation

Recetved: January 16, 2017 DOI: 10.14311/NNW.2017.27.029
Revised and accepted: December 3, 2017

1. Introduction

The MSC (MultiStream Compression) is a new lossless compression method, in-
vented by Czech scientist Jif{ Kochanek. The method is based on the idea that
data can be split into different parts [1]. For each part of the data, coding method
that gives the best compression result is chosen. Different methods can be used
that best suit the targeted objective. The methods Elias alpha and ZEBC used in
this implementation aim to get the best compression rate.

Each of the parts contains own data for compression, which are arranged in
streams. This method differs from other models based on splitting data into streams
by the fact that in this case the streams do not contain symbols, but counters. The
process of compression is rather complex and it presents the possibility of parallel
processing.

Soon after the MSC algorithm invention the research was almost exclusively
focused on the algorithm application, improvement of its compression rate (and
less execution time) using various transformations of input data and comparison
with different compression methods.

The diploma thesis [2] which tests the performance of MSC on Silesia corpus
and text files concludes that MSC provides the best results without a parser in
conjunction with BWT (Burrows-Wheeler Transform) and MTF (Move-to-Front).
And this combination gives better compression rate than RLE (Run Length En-
coding) and algorithms invented by Lempel and Ziv, namely LZC and LZSS. The

*Vit Fabera — Corresponding author; Tomas Musil; Jakub Rada; Czech Technical University
in Prague, Faculty of Transportation Sciences, Konviktska 20, 110 00 Praha 1, E-mail: fabera@
fd.cvut.cz, musil@fd.cvut.cz, radajak3@fd.cvut.cz

©CTU FTS 2017 541


mailto:fabera@fd.cvut.cz
mailto:fabera@fd.cvut.cz
mailto:musil@fd.cvut.cz
mailto:radajak3@fd.cvut.cz

Neural Network World 6/2017, 541-555

source [3] presents the advantages of LPT (Length-Preserving Transform) and
SCLPT (Shortened-Context LPT) transformations with BWT when compressing
large text files. It is also noted that some transformations have positive impact on
execution times and the source also points out the significance of transformations
that can lead to reduction of the length of compressed data to half compared to
simple MSC.

In [4] it is concluded that small text files are better coded using MTF or loading
word by word. In case of bigger English texts they are better coded using syllable
dictionary and subsequent application of BWT compared to simple MSC.

In paper [5] the authors tested the algorithm on Silesia Corpus that contains
various types of data and compared its performance with Huffman and arithmetic
coding. They found out that in comparison with those methods the Multistream
compression algorithm gave better results. All of the tested algorithms were used
also in conjunction with BWT and MTF. They also tested the algorithm on pictures
as part of the JPEG algorithm again with success. It is supposed the algorithm
can be widely used for different kinds of data in telecommunications [12].

All experiments so far have been done in software. However, due to its prop-
erties the MSC algorithm seems suitable for hardware implementation due to its
inherent parallel structure. This paper focuses on the implementation details of
the algorithm in hardware.

2. Implementation overview

The described hardware implementation was built using RTL methodology as de-
scribe in [6]. This means that the algorithm is elaborated in the form of Finite
State Machines with Datapath (FSMD). These FSMDs are formulated in VHDL [7]
(Very High Speed Integrated Circuits Hardware Description Language), one of the
most used languages for hardware design, and are mapped into a chosen FPGA
platform.

The Fig. 1 shows simplified designed structure of the MSC algorithm HW im-
plementation, including memories. The FSMDs representing steps of the algorithm
are pictured as rectangles with sharp edges whereas memories are pictured as rect-
angles with rounded edges. The arrows between FSMDs show the flow of the
algorithm and arrows between FSMDs and memories determine the communica-
tion with memories in each FSMD. For easier orientation FSMDs are highlighted
by grey background.

The parallel segments of the algorithm are also illustrated in the scheme in the
Fig. 1. Some of the memories are parallelized as well. Besides, there are nonparallel
memories that are accessed from parallel blocks. To prevent collisions caused by
simultaneous access to memory, an arbiter needs to be present in the design, which
decides which parallel blocks are prioritized in the access over others. As different
FSMDs share the memories, memory inputs need to be multiplexed, otherwise they
would be driven by more sources.

Due to the high memory demand, an external SDRAM is used. Therefore a
memory controller has to be part of the design serving as an interface between the
memory and the compression algorithm.

542



Fabera V., Musil T., Rada J.: The first hardware MSC algorithm implementation

NODE MEMORIES

‘ NODE 1 NODE 2 NODE 3 ‘

INPUT

STATISTICS

GET
COMPRESSION
HEADER

CREATE
STREAMS

ANALYZE

DATA STATISTICS

Iﬁ’tﬁ CREATE SS?JE‘;;E BUILT MSC | | DETERMINE
STATISTICS TREE THREADS

COMPRESS

GET ZEBC
TABLE

' THREAD
BUFFER

OuTPUT
COMPRESSED
DATA

DIFF
THREAD

BUILDING TREE MEMORIES

BUILD BUILD BUILD
TREE 1 TREE 2 TREE 3

N
ZEBC
‘ LEAVES TABLE

|

STREAMS STATISTICS

LARGE STREAM SMALL STREAM
STATISTICS STATISTICS

| SDRAM CONTROLLER }

SDRAM
INPUT LARGE STREAM SMALL STREAM
m STATISTICS STATISTICS STREAMSS

Fig. 1 Scheme of the MSC algorithm implementation.

3. The steps of the algorithm

The steps of the MSC algorithm are described in [5] (or detailed in Czech [1]).
Thus, the paper describes only implementation details, not the working principles.
The algorithm is specific of using a binary tree based upon the statistics of input

data like a Huffman tree.

3.1 Creation of binary tree

Before the process of tree building is described, it is necessary to make introduction
into representation of binary tree in memory. There are two widely used models of
binary tree representation in memory described in Section 3.1.1a) and 3.1.1b) [8],
which are found to be not suitable for MSC tree representation, as the tree has

some special properties:

— each parent knows the position of left and right child

— each node is capable of determining the direction to a particular leaf

— the option to traverse only specified subtree of the MSC tree (for parallel

processing)

543



Neural Network World 6/2017, 541-555

For this purpose a novel Left tree representation is introduced. All of the
considered tree representations will be demonstrated on the example of coding a
word “abracadabra”. This tree can be seen in the Fig. 2.

abrcd
11 Node
0 No of occurrences
First occurrence
a brcd
5 6
0 1
br cd
4 2
1 4
b r c d
2 2 1 1
1 2 4 6

Fig. 2 Exzample of MSC tree for “abracadabra”.

3.1.1 MSC tree representation

a) Sequential representation In this representation, the position of all nodes
in memory is fixed and so the root is always stored at index 0, the left child of any
node with index n is stored on position 2n + 1 and the index of right child of the
same node is calculated as 2n + 2. In case of uneven tree (tree where the depth
of the leaves varies considerably), a lot of memory is needed for the representation
and also big percentage ends up unused. Another problem is that when the tree is
to be traversed from the root to a particular leaf, additional information is required
in order to determine the correct path. For the example shown in Fig. 2, fifteen
cells are needed for storage of nine nodes, leaving 40 % of memory wasted (Tab. I).

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
node abred a bred - - br ed - - - - b r c d

Tab. I Scheme of the MSC algorithm implementation.

b) Linked representation In linked representation (LR), all nodes can be
stored in cells one after another, but it does not come for free — some additional
information is needed. Each node must store the index of left and right child in
the array. The obstacle with this representation is that only with this information,
the path from root to particular node cannot be found due to the random position

544



Fabera V., Musil T., Rada J.: The first hardware MSC algorithm implementation

of each node. Each leaf of the tree would require some string of bits that would
hold the information about which way to go from every node on the path.

The Tab. II shows one of the possible layouts of tree nodes in memory. It can
also be seen that there is a lot of unused memory space as leaves do not have
children and the path is needed for leaves only.

Index 0 1 2 3 4 5 6 7 8
Node d ¢ r b a cd br bred abred
left_ch - - - - - 1 3 6 4
right_.ch  — — — - - 0 2 5 7

Path 111 110 101 100 O - - - -

Tab. IT Example of MSC tree for “abracadabra”.

c) Left tree representation As the previous representations are barely usable
for the MSC tree, a new representation was invented for this purpose — Left Tree
Representation (LTR).

It does not waste memory but each item has the deterministic position in the
memory, which however depends on structure of the tree. Furthermore, it allows
the tree traversing from root to leaves without any added information.

Due to this representation, each node (if it is not a leaf) knows where to find
its descendants in memory and it can find a path from root to leaf due to smart
organization of nodes, which is governed by following rules.

— left child of node is stored on a subsequent position:

left_ch_index = parent_index + 1

— right child is stored on a position that is computed in a following way:

right_ch_index = parent_index + no_of_nodes_in_left_tree,

where no_of nodes_in_left_tree stands for number of nodes in left tree of the active
node. As Fig. 3 shows, left tree of “brcd” node contains 4 nodes.

The tree in the example above would be represented as node’s array in following
way (Tab. III).

Index 0 1 2 3 4 5 6 7 8
Node abrcd a bred br b r cd ¢ d
Number of nodes in left tree 2 1 4 2 1 1 2 1 1

Tab. III Sequential representation of nodes in memory.

The final test for the Left tree representation is to find the path from root to
a particular leaf. The only thing that is necessary for this task is the index of the

545



Neural Network World 6/2017, 541-555

Fig. 3 Left tree of “bred” node.

leaf in node’s array. Then, the task comes down to comparing the leaf’s index with
active node’s right child index. If leaf’s index is smaller than node’s right child
index, we proceed to left child, else proceed to right child.

3.1.2 Process of tree building

The construction of a MSC tree is governed by two restrictive requirements, which
causes that the process has to take place in two steps to achieve the desired repre-
sentation.

As a first step, the Linked Representation of tree is created. The leaves are
stored at lowest indexes from index 0 and newly created nodes are stored behind
them one after another.

In the second step, the linked representation is transformed into the Left Tree
Representation according to Fig. 4.

Fig. 4 Traversing of tree during transformation from LR to LTR.

3.2 Determination of subtrees

As some steps of the algorithm are carried out in parallel, each node needs to be
assigned to a particular block. To get those blocks, a tree needs to be divided into
subtrees or layers. In this implementation, the first option was chosen.

546



Fabera V., Musil T., Rada J.: The first hardware MSC algorithm implementation

Selection of the subtrees influences the processing time of stages of the algorithm
that run in parallel. The execution time of the analysis phase depends mainly
on total number of counters of all nodes in particular block. Duration of the
compression phase then depends considerably on number of occurrences of root
node of subtree.

We select blocks from the top of the tree as the nodes have higher number of
occurrences and thus higher number of counters in a stream that will be processed.
However, the root of the tree has only one counter in stream, so we generally do
not want it to have both children in different blocks, because during the analysis
stage there would be no nodes to analyze. This step copies the SW implementation
with a little simplification.

3.3 Creation of counter streams

This step was also inspired by the software implementation [1], but was adjusted
for implementation in hardware. The streams are stored into two different memory
structures, one for process of analysis and the other for the compression itself.

In the first case, each node of MSC tree has its own stream of counters. For
memory saving purposes, this stream is divided into two structures. Higher values
are stored in the structure called LARGE STATISTICS and smaller values to
SMALL STATISTICS. Those are divided by a delimiter.

In the described implementation, the value of delimiter was computed with
objective to minimize the memory demand of the STATISTICS. If memory is not
a concern and the goal is to maximize speed of the algorithm, the delimiter value
should be determined differently. The best way seems to be empiric determination
by observation for various input data. The lower counters are generally more tightly
packed. The values of counters from the lowest values to some set threshold after
which the values become dispersed shall be stored to SMALL STATISTICS and
the values above the threshold shall be stored to LARGE STATISTICS.

The counters for compression are stored into streams, whose number depends
on number of parallel blocks. Each of those streams contains values of counters of
nodes that belong to particular block and also counters of direct descendant nodes
of particular block. Those counters are ordered according to traversing MSC tree.
Their order is important.

3.4 Statistical analysis of streams

During analysis, for each parallel block each node of subtree is entered once and
analyzed. Also, the total length of coded data is calculated for particular parallel
block. The implementation chooses the method giving the best compression ratio.
The method is picked from Elias Alpha [9] and ZEBC coding.

The subtree of a parallel block is traversed from left top to right bottom. To
obtain attributes of a particular node, which are stored according to LTR, the
index of the node is just incremented by one in order to proceed into the next
node. Sometimes, it happens that the node on the next index is from a different
parallel block. If this node is left child of its parent, then right child is entered

547



Neural Network World 6/2017, 541-555

instead. If the node is right child, the analysis is terminated (right child is at the
subsequent index in LTR if the node at the current index is leaf node).

3.5 Compression

The compression is carried out as specified in the patent [1], with preservation of
all items in the overhead and headers. The binary values that appear on the output
from the algorithm can be either values coded by inverted Elias Alpha coding that
have defined structure and variable length or it can be arbitrary binary coded value
of length between 1 and 32 bits.

As the coded values appear on the output in random time and with random
lengths, an element that would buffer those values is needed. A combination of
8-bit register and BRAM (Block RAM in FPGA used as medium data storage
usually of the size of kBs) was selected for this task.

The register stacks and splits the variable length values so that they form 8-bit
blocks. When the register is full, its content is copied into first unoccupied position
in BRAM, thus buffering the values.

Generally, the data are compressed in parallel, so each parallel block has its
own buffer and the last byte in the each buffer is marked by the parity bit. Also
the overhead has its own buffer, but due to its known length, there is no need to
denote the last byte.

4. Memory aspects of implementation

One of the principal differences between coding in SW and HW is that in the latter
case the developer accesses directly memory. Thus, he must decide how to structure
the data in memory, how many bits should be used or which width of the memory
data bus should be used. Also, because the memory resources are very limited, the
developer sometimes has to trade some saved space for performance.

4.1 MSC tree in memory

Each node of the MSC tree contains many attributes. The single value attributes
of one node take up 138 bits in total. They are mapped into memories with 36-bit
data bus width (maximum data bus width supported by Spartan-6 BRAMs with
18kbits of capacity). All the attributes are stored on four addresses and take up
144 bits, leaving 6 bits unused for one node.

As the maximum number of nodes in a tree in this implementation is 511
(2 - alphabet_size — 1), it is obvious that the single value attributes will need 511 -
144 = 73,584 bits, which is nearly the maximum capacity of four 18kbit block
RAMSs. As the attributes of one node are stored in 4 addresses, it is advantageous
to store them to separate memories. Due to this separation, all of the attributes
are advantageously stored on the same address, only in different memory. Another
advantage is that there is a possibility to retrieve all the attributes of a node in
one clock cycle. The structure of the NODE memories can be seen in Tab. IV, V,

548



Fabera V., Musil T., Rada J.: The first hardware MSC algorithm implementation

VI and VII. Among the node attributes there are values of the statistics, number of
left tree nodes, values needed during traversing of the tree or needed for compression
and so on.

0 no_of_occ first_occ par_thr unused bits
(35—20) (19-4) (3-2) (1-0)

510 no_of_occ first_occ par_thr unused bits
(35—20) (19-4) (3-2) (1-0)

Tab. IV First block of memory containing node attributes (NODE1).

0 counter symbol type left_tree dir
(35-20) (19-12) (11-10) (9-1) (0)
510 counter symbol type left_tree dir

(35-20)  (19-12)  (11-10) (9-1) (0)

Tab. V Second block of memory containing node attributes (NODE2).

point _str point_par_thr thr_ind figl unused bit
(35-20) (19-4) (3-2) (1) (0)

510 point_str point_par_thr thr_ind figl unused bit

(35-20) (19-4) (3-2) (1) (0)

Tab. VI Third block of memory containing node attributes (NODE3).

0 Is_items  base flg2 | unused bit sum_counters best.m | unused bits
(35-28) (27-22) (21) (20) (19-4) (3-2) (1-0)

510 Is.items  base flg2 | unused bit sum_counters best.m | unused bits
(35-28) (27-22) (21) (20) (19-4) (3-2) (1-0)

Tab. VII Fourth block of memory containing node attributes (NODE/).

549



Neural Network World 6/2017, 541-555

4.2 Counter statistics

Besides the attributes stored in the NODE memories, the counter STATISTICS is
another attribute of node. However, it needs to be stored in external memory due to
high memory requirements. It is divided into two parts by delimiter. Delimiter is a
defined number that separates values of counters to statistics of low value counters
SMALL STATISTICS and statistics of large value counters LARGE STATISTICS.
The value of the delimiter is computed with respect to minimization of memory
demand for statistics storage. The delimiter is computed in a following way, which
applies for the worst case scenario.

o of i
min <(delimiter —1)-16 + \‘sme of nput dataJ . 32)

delimiter + 1

For this particular configuration, the delimiter is equal to 361. To understand the
formula above, the structure of both of the statistics have to be understood first.
One item in the SMALL STATISTICS occupies 16 bits and stores only the number
of occurrences of counter with particular value as the counter value is specified by
the position in the array.

For large statistics this approach would not be very convenient. The occurrence
of high values of counters is very sparse, which would leave us with a lot of unused
memory. Instead, the value of counter as well as its number of occurrences is stored
taking up 32 bits of memory and the items of large statistics are stored one after
another.

To get the maximum number of the items in LARGE STATISTICS, delimiter+1
must divide the maximum number of items in the input data. For this implemen-

tation:
65535 _ 181
361 +1

The statistics for one node will therefore take up
(360 - 16 + 181 - 32) = 5760 + 5792 = 11, 552 bits

As the statistics needs to be stored for each node separately, it consumes more
than 5 Mbits of memory.

In the described implementation, the value of delimiter was selected with ob-
jective to minimize the memory demand of the streams STATISTICS. If memory
is not a concern and the goal is to maximize speed of the algorithm, the delim-
iter value should be determined differently. It could be determined empirically by
observation for various input data. The lower counters are generally more tightly
packed. The values of counters from the lowest values to some set threshold after
which the values become dispersed shall be stored to SMALL STATISTICS and
the values above the threshold shall be stored to LARGE STATISTICS.

4.3 SDRAM interface

The SDRAM memory is high capacity memory that is needed for the capacity-
demanding data structures in the hardware implementation of the MSC algorithm.

550



Fabera V., Musil T., Rada J.: The first hardware MSC algorithm implementation

Namely, those demanding structures are INPUT DATA, STREAMS, SMALL
STATISTICS AND LARGE STATISTICS.

The interface between the algorithm Finite State Machines and the SDRAM
controller contains 4 equivalent ports. Each port is formed by 3 buses. The first
bus is used for control of the interface as well as for manipulation of a single item
of data. Each of the two remaining buses control a BRAM. Fig. 5 shows only one
port of the interface.

The complexity of the interface is given by the variety of data that are trans-
ferred via this interface and also due to parallel processing. More blocks can run
concurrently doing the same thing for different data.

Parallel processing is used for analysis and compression. During analysis, both
SMALL and LARGE STATISTICS are needed. In this case, it is not only one
value but the whole block for one particular node. For this purpose, both statistics
are copied into dedicated BRAMs. The LARGE STATISTICS is modified in the
process but need not be copied back to SDRAM. When the compression is being
carried out, values from STREAMS are read one by one.

4.3.1 Block diagram

The block diagram of SDRAM interface captures only 1 of 4 ports. How many
ports are needed (1 to 4) is determined by the number of parallel blocks used. The
arrows show the direction of the communication. The n in the names of the data
buses ranges from 0 to 3 and so the interface can be 4 times larger than shown on
Fig. 5.

Description of signals on the interface:

— CMD specifies the mode of action (READ/WRITE) or idling of SDRAM.

— SIZE specifies the amount of transferred data. If SIZE = ‘0’, only one item
is read from/written to an address specified by INDEX and POSITION.
The size of an item depends on the TYPE. Else if SIZE = ‘1’ items on all
POSITIONS from particular INDEX are transferred between SDRAM and
particular BRAM. This option applies only for SMALL STATISTICS and
LARGE STATISTICS.

— TYPE determines which data are manipulated. The list of used four types
is in Tab. VIII.

— INDEX specifies exact position for block of data and rough position for
specific item.

— POSITION specifies exact position of specific item.

— DATA _IN bus specifies data to be written into SDRAM in case of writing
one specific item.

— READY is output signal to announce that DATA_OUT is ready or that
writing is finished.

— DATA _OUT outputs the read data in case of reading one specific item.

551



— CLK_MSC/CLK_SDRAM are two different clock domains used by differ-

Neural Network World 6/2017, 541-555

ent interface sides

— other signals are standard signals for using BRAM memories.

READY_n (1}
4—————————————DATA_OUT_n (32)——
CMD_n (2)

SIZE_n (1)

TYPE_n (2)

INDEX_n (9}

POSITION_n (16)

DATA_IN_n (32}

CLK_MSC—) — CLK_SDRANM—

MSC SMALL 4—ADDRBss_n (91— SDRAM
ALGORITHM [ APDRAssn(8—H  STATISTICS  fe—ensss n(1— CONTROLLER
L Enass.n(— BRAM_N  —wesss =11

(mode 1Kx16) ¢—DIBss_n(16)}—

6——DOAss_n (16— ——DOBss_n (16)—)

CLK_MSC—| 44— CLK_SDRAM——

L ADDRAIs_n (81— LARGE | abprais_n (81—

——enAls_n (1—  STATISTICS ¢ engis_n (19—

——WEAIs_n (4—H BRAM_n -WEBIs_n = “1111"~

—DIAIs_n (32— (mode 512x32) [¢—DBls_n (32}—

[——DOAIs_n (32— ——DOBIs_n (32—

Fig. 5 The SDRAM interface.
type Bit representation Index Position Data_size

Input data 00 0 0-65534 8
Stream 01 0-3 0-65535 16
Small statistics 10 0-510 0-360 16
Large statistics 11 0-510 0-180 32

Tab. VIII The SDRAM interface.

552



Fabera V., Musil T., Rada J.: The first hardware MSC algorithm implementation

5. Results

Due to a high range of FPGA products and variety of manufacturers a special care
was dedicated to selection of the right platform. The main criteria reflected during
the selection of platform were price and available resources.

Choosing an oversized platform results in unnecessary expenses, which would
eventually make the implementation of design unfeasible, but the platform must
dispose with enough resources for the design. As the amount of all resources grows
more or less gradually with price, the decision to use external SDRAM due to
high memory demand of the algorithm presented the way how to prevent wasting
resources.

As the design was not optimized on any of the FPGA architectures which are
offered by the manufacturers it was decided to use Xilinx platform due to wider
data bus in built-in FPGA memories that brought the possibility to retrieve more
data in one clock cycle compared to its competitor Altera.

As it is advised to utilize FPGA resources not more than of 80% of its full
capacity [10] a platform with the XC6SLX45 FPGA type from Spartan-6 family [11]
connected to external SDRAM memory was selected. Tab. IX shows the utilization
of FPGA resources. The values of utilization are obtained from the development
tools after FPGA mapping and routing process. The values are taken for the
algorithm utilizing SDRAM memory.

Resource Absolute Usage Relative Usage
Number of Slice Registers 9,265 16 %
Number of Slice! LUTs? 14,346 52 %
Number of occupied Slices 4,786 70%
Number of used BRAMs 25 21%

Tab. IX FPGA resource utilization.

Due to optimization after the synthesis process (extensive pipelining) the system
frequency reaches 80 MHz. The SDRAM memory interface uses auxiliary clock
domain of 320 MHz synchronous with the system frequency.

The blocks that perform operations with long strings of bits, namely compara-
tors and adders in the analysis and build the tree modules are in our case the main
aspect limiting the maximum working frequency and consequently data through-
put of the algorithm. These operations are translated to 5 levels of logic (levels
of combinational logic between two registers) considering Spartan-6 6-input LUTSs,
causing time delay that prevents us from increasing the working frequency. The
working frequency could be increased in several ways using a different platform:

a) Utilization of an FPGA with generally faster logic elements, e.g. from the
Virtex-6 family

1Repetitive structure grouping of LUTs, flip-flops and connections in Xilinx FPGAs LUTs.
2LUT (Look-Up Table) — n-inputs combinational function generator.

553



Neural Network World 6/2017, 541-555

b) Utilization of an FPGA with multi-input LUTs (compared to 6-input LUT
of Spartan-6), e.g. platform from Altera Stratix II series

¢) Implementation of more mathematical operations using DSP blocks and logic
functions transformed into block memories thus requiring a larger circuit from
the Spartan-6 series due to the limited amount of DSP blocks and BRAMs

All of the options above would mean the use of more expensive FPGAs than
originally chosen Xilinx Spartan-6 family.

6. Conclusion

The paper describes the very first hardware implementation of MSC algorithm. The
software implementation served as a source of inspiration, however, new utilities
needed to be introduced. The new way of storing nodes of the MSC tree called
Left Tree Representation presented in the paper is viewed as a main contribution.
It can be used not only for MSC tree but basically any binary tree.

Due to high memory demand external SDRAM is used in the design. The
parallel access to the external memory generates a need of a complex SDRAM
interface which consumes additional logic in the FPGA.

This initial implementation that supports the maximum length 8 bit of input
data is programmed into an FPGA belonging to a low-end family. The imple-
mentation uses 2 clock domains with frequencies 80 MHz and 320 MHz. With the
planned optimization of design it is expected that the clock period as well as amount
of utilized resources decrease.

The MSC hardware implementation is particularly advantageous for designing
FPGA compression coprocessor both in mobile applications or end devices and in
high performance computers - here specifically in the form of PCI-Express card.
Nevertheless, it is difficult to carry out a fair performance comparison between
software and hardware implementation of the algorithm due to lack of a suitable
methodology for comparison of both platforms itself. The methodology sometimes
used in signal processing i.e. comparison of number of floating point operations per
second is not applicable for this purpose. In the case of PC and dataflow compari-
son, the full data path must be taken into account including data transmission via
PCI-Express bus. Rigorous comparison will be provided after designing complete
PCI-Express MSC card in further experiment.

References

[1] KOCHANEK J. Zpiisob transformace a bezeztritové komprimace dat v elektronické podobg.
Czech Republic: Patent Application, 2007. Appl. no. 2007-114.

[2] UZEL P. Entropic coders. Prague: UK 2009, Diploma thesis, UK, Faculty of Mathematics
and Physics, Department of Software Engineering.

[3] UNGER L. Improvements of Multistream compression. Prague: UK 2010, Diploma thesis,
UK, Faculty of Mathematics and Physics, Department of Software Engineering.

[4] JELINEK J. Suitable methods of data prepration for mutistream compression. Prague: UK
2011, Bachelor thesis, UK, Faculty of Mathematics and Physics, Department of Software
Engineering.

554



Fabera V., Musil T., Rada J.: The first hardware MSC algorithm implementation

[5]

[7]

(8]

[9]

(10]
(11]

(12]

KOCHANEK J., LANSKY J., UZEL P., ZEMLICKA M. The New Statistical Compression
Method: Multistream Compression. In: First International Conference on the Applications
of Digital Information and Web Technologies [online]|, Ostrava: IEEE, 2008 [cit: 07/17/16].
Available on: http://ieeexplore.ieee.org/stamp/stamp. jsp?arnumber=4664366.

CHU, P. P. RTL Hardware Design Using VHDL. Cleveland: John Wiley & Sons, Inc, 2006.
ISBN: 978-0-471-72092-8.

IEEE Standard VHDL Language Reference Manual,” in IEEE Std 1076-2008 (Revision of
IEEE Std 1076-2002), pp. c1-626, [online][cit: 07/15/16]. Available on: http://ieeexplore.
ieee.org/stamp/stamp. jsp?tp={&}arnumber=4772740.

ROHINI S. Representation of binary tree in  memory, 2013  [online]
[cit: 06/27/16].  Available  on: http://www.slideshare.net/rrohinishinde/
representation-of-binary-tree-in-memory.

TRIVIALNI ALGORITMUS PRO VYHLEDAVANI VZORU. Dokumentografické in-
formacnd systémy — Komprese. [Online| [cit: 07/17/16]. Available on: http://www.ms.mff.
cuni.cz/~kopecky/vyuka/dis/11/dis11_v1.html.

FPGA CENTRAL. FPGA Device Selection [Presentation]. Published on: 2009 [online] [cit:
08/15/16]. Available on: http://www.slideshare.net/vkr101/fpga-device-selection.
XILINX. [online]. Spartan-6 Family Overview. 2011 [cit: 07/19/16]. Available on: http:
//www.xilinx.com/support/documentation/data_sheets/ds160.pdf.

JANESOVA V., DOUDA V.: Predictive Model and Methodology for Optical Telecommuni-

cations Infrastructure. Neural Network World, 26(4), pp. 351-362, 2016, doi: 10.14311/NNW.
2016.26.020.

555


http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4664366
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp={&}arnumber=4772740
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp={&}arnumber=4772740
http://www.slideshare.net/rrohinishinde/representation-of-binary-tree-in-memory
http://www.slideshare.net/rrohinishinde/representation-of-binary-tree-in-memory
http://www.ms.mff.cuni.cz/~kopecky/vyuka/dis/11/dis11_v1.html
http://www.ms.mff.cuni.cz/~kopecky/vyuka/dis/11/dis11_v1.html
http://www.slideshare.net/vkr101/fpga-device-selection
http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf
http://dx.doi.org/10.14311/NNW.2016.26.020
http://dx.doi.org/10.14311/NNW.2016.26.020

